Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Akhil R | 10436 | 99.98% | 1 | 50.00% |
Dan Carpenter | 2 | 0.02% | 1 | 50.00% |
Total | 10438 | 2 |
// SPDX-License-Identifier: GPL-2.0-only // SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. /* * Crypto driver to handle block cipher algorithms using NVIDIA Security Engine. */ #include <linux/clk.h> #include <linux/dma-mapping.h> #include <linux/module.h> #include <linux/of_device.h> #include <linux/platform_device.h> #include <crypto/aead.h> #include <crypto/aes.h> #include <crypto/engine.h> #include <crypto/gcm.h> #include <crypto/scatterwalk.h> #include <crypto/xts.h> #include <crypto/internal/aead.h> #include <crypto/internal/hash.h> #include <crypto/internal/skcipher.h> #include "tegra-se.h" struct tegra_aes_ctx { struct tegra_se *se; u32 alg; u32 ivsize; u32 key1_id; u32 key2_id; }; struct tegra_aes_reqctx { struct tegra_se_datbuf datbuf; bool encrypt; u32 config; u32 crypto_config; u32 len; u32 *iv; }; struct tegra_aead_ctx { struct tegra_se *se; unsigned int authsize; u32 alg; u32 keylen; u32 key_id; }; struct tegra_aead_reqctx { struct tegra_se_datbuf inbuf; struct tegra_se_datbuf outbuf; struct scatterlist *src_sg; struct scatterlist *dst_sg; unsigned int assoclen; unsigned int cryptlen; unsigned int authsize; bool encrypt; u32 config; u32 crypto_config; u32 key_id; u32 iv[4]; u8 authdata[16]; }; struct tegra_cmac_ctx { struct tegra_se *se; unsigned int alg; u32 key_id; struct crypto_shash *fallback_tfm; }; struct tegra_cmac_reqctx { struct scatterlist *src_sg; struct tegra_se_datbuf datbuf; struct tegra_se_datbuf residue; unsigned int total_len; unsigned int blk_size; unsigned int task; u32 crypto_config; u32 config; u32 key_id; u32 *iv; u32 result[CMAC_RESULT_REG_COUNT]; }; /* increment counter (128-bit int) */ static void ctr_iv_inc(__u8 *counter, __u8 bits, __u32 nums) { do { --bits; nums += counter[bits]; counter[bits] = nums & 0xff; nums >>= 8; } while (bits && nums); } static void tegra_cbc_iv_copyback(struct skcipher_request *req, struct tegra_aes_ctx *ctx) { struct tegra_aes_reqctx *rctx = skcipher_request_ctx(req); unsigned int offset; offset = req->cryptlen - ctx->ivsize; if (rctx->encrypt) memcpy(req->iv, rctx->datbuf.buf + offset, ctx->ivsize); else scatterwalk_map_and_copy(req->iv, req->src, offset, ctx->ivsize, 0); } static void tegra_aes_update_iv(struct skcipher_request *req, struct tegra_aes_ctx *ctx) { int num; if (ctx->alg == SE_ALG_CBC) { tegra_cbc_iv_copyback(req, ctx); } else if (ctx->alg == SE_ALG_CTR) { num = req->cryptlen / ctx->ivsize; if (req->cryptlen % ctx->ivsize) num++; ctr_iv_inc(req->iv, ctx->ivsize, num); } } static int tegra234_aes_crypto_cfg(u32 alg, bool encrypt) { switch (alg) { case SE_ALG_CMAC: case SE_ALG_GMAC: case SE_ALG_GCM: case SE_ALG_GCM_FINAL: return 0; case SE_ALG_CBC: if (encrypt) return SE_CRYPTO_CFG_CBC_ENCRYPT; else return SE_CRYPTO_CFG_CBC_DECRYPT; case SE_ALG_ECB: if (encrypt) return SE_CRYPTO_CFG_ECB_ENCRYPT; else return SE_CRYPTO_CFG_ECB_DECRYPT; case SE_ALG_XTS: if (encrypt) return SE_CRYPTO_CFG_XTS_ENCRYPT; else return SE_CRYPTO_CFG_XTS_DECRYPT; case SE_ALG_CTR: return SE_CRYPTO_CFG_CTR; case SE_ALG_CBC_MAC: return SE_CRYPTO_CFG_CBC_MAC; default: break; } return -EINVAL; } static int tegra234_aes_cfg(u32 alg, bool encrypt) { switch (alg) { case SE_ALG_CBC: case SE_ALG_ECB: case SE_ALG_XTS: case SE_ALG_CTR: if (encrypt) return SE_CFG_AES_ENCRYPT; else return SE_CFG_AES_DECRYPT; case SE_ALG_GMAC: if (encrypt) return SE_CFG_GMAC_ENCRYPT; else return SE_CFG_GMAC_DECRYPT; case SE_ALG_GCM: if (encrypt) return SE_CFG_GCM_ENCRYPT; else return SE_CFG_GCM_DECRYPT; case SE_ALG_GCM_FINAL: if (encrypt) return SE_CFG_GCM_FINAL_ENCRYPT; else return SE_CFG_GCM_FINAL_DECRYPT; case SE_ALG_CMAC: return SE_CFG_CMAC; case SE_ALG_CBC_MAC: return SE_AES_ENC_ALG_AES_ENC | SE_AES_DST_HASH_REG; } return -EINVAL; } static unsigned int tegra_aes_prep_cmd(struct tegra_aes_ctx *ctx, struct tegra_aes_reqctx *rctx) { unsigned int data_count, res_bits, i = 0, j; struct tegra_se *se = ctx->se; u32 *cpuvaddr = se->cmdbuf->addr; dma_addr_t addr = rctx->datbuf.addr; data_count = rctx->len / AES_BLOCK_SIZE; res_bits = (rctx->len % AES_BLOCK_SIZE) * 8; /* * Hardware processes data_count + 1 blocks. * Reduce 1 block if there is no residue */ if (!res_bits) data_count--; if (rctx->iv) { cpuvaddr[i++] = host1x_opcode_setpayload(SE_CRYPTO_CTR_REG_COUNT); cpuvaddr[i++] = se_host1x_opcode_incr_w(se->hw->regs->linear_ctr); for (j = 0; j < SE_CRYPTO_CTR_REG_COUNT; j++) cpuvaddr[i++] = rctx->iv[j]; } cpuvaddr[i++] = se_host1x_opcode_nonincr(se->hw->regs->last_blk, 1); cpuvaddr[i++] = SE_LAST_BLOCK_VAL(data_count) | SE_LAST_BLOCK_RES_BITS(res_bits); cpuvaddr[i++] = se_host1x_opcode_incr(se->hw->regs->config, 6); cpuvaddr[i++] = rctx->config; cpuvaddr[i++] = rctx->crypto_config; /* Source address setting */ cpuvaddr[i++] = lower_32_bits(addr); cpuvaddr[i++] = SE_ADDR_HI_MSB(upper_32_bits(addr)) | SE_ADDR_HI_SZ(rctx->len); /* Destination address setting */ cpuvaddr[i++] = lower_32_bits(addr); cpuvaddr[i++] = SE_ADDR_HI_MSB(upper_32_bits(addr)) | SE_ADDR_HI_SZ(rctx->len); cpuvaddr[i++] = se_host1x_opcode_nonincr(se->hw->regs->op, 1); cpuvaddr[i++] = SE_AES_OP_WRSTALL | SE_AES_OP_LASTBUF | SE_AES_OP_START; cpuvaddr[i++] = se_host1x_opcode_nonincr(host1x_uclass_incr_syncpt_r(), 1); cpuvaddr[i++] = host1x_uclass_incr_syncpt_cond_f(1) | host1x_uclass_incr_syncpt_indx_f(se->syncpt_id); dev_dbg(se->dev, "cfg %#x crypto cfg %#x\n", rctx->config, rctx->crypto_config); return i; } static int tegra_aes_do_one_req(struct crypto_engine *engine, void *areq) { struct skcipher_request *req = container_of(areq, struct skcipher_request, base); struct tegra_aes_ctx *ctx = crypto_skcipher_ctx(crypto_skcipher_reqtfm(req)); struct tegra_aes_reqctx *rctx = skcipher_request_ctx(req); struct tegra_se *se = ctx->se; unsigned int cmdlen; int ret; rctx->datbuf.buf = dma_alloc_coherent(se->dev, SE_AES_BUFLEN, &rctx->datbuf.addr, GFP_KERNEL); if (!rctx->datbuf.buf) return -ENOMEM; rctx->datbuf.size = SE_AES_BUFLEN; rctx->iv = (u32 *)req->iv; rctx->len = req->cryptlen; /* Pad input to AES Block size */ if (ctx->alg != SE_ALG_XTS) { if (rctx->len % AES_BLOCK_SIZE) rctx->len += AES_BLOCK_SIZE - (rctx->len % AES_BLOCK_SIZE); } scatterwalk_map_and_copy(rctx->datbuf.buf, req->src, 0, req->cryptlen, 0); /* Prepare the command and submit for execution */ cmdlen = tegra_aes_prep_cmd(ctx, rctx); ret = tegra_se_host1x_submit(se, cmdlen); /* Copy the result */ tegra_aes_update_iv(req, ctx); scatterwalk_map_and_copy(rctx->datbuf.buf, req->dst, 0, req->cryptlen, 1); /* Free the buffer */ dma_free_coherent(ctx->se->dev, SE_AES_BUFLEN, rctx->datbuf.buf, rctx->datbuf.addr); crypto_finalize_skcipher_request(se->engine, req, ret); return 0; } static int tegra_aes_cra_init(struct crypto_skcipher *tfm) { struct tegra_aes_ctx *ctx = crypto_skcipher_ctx(tfm); struct skcipher_alg *alg = crypto_skcipher_alg(tfm); struct tegra_se_alg *se_alg; const char *algname; int ret; se_alg = container_of(alg, struct tegra_se_alg, alg.skcipher.base); crypto_skcipher_set_reqsize(tfm, sizeof(struct tegra_aes_reqctx)); ctx->ivsize = crypto_skcipher_ivsize(tfm); ctx->se = se_alg->se_dev; ctx->key1_id = 0; ctx->key2_id = 0; algname = crypto_tfm_alg_name(&tfm->base); ret = se_algname_to_algid(algname); if (ret < 0) { dev_err(ctx->se->dev, "invalid algorithm\n"); return ret; } ctx->alg = ret; return 0; } static void tegra_aes_cra_exit(struct crypto_skcipher *tfm) { struct tegra_aes_ctx *ctx = crypto_tfm_ctx(&tfm->base); if (ctx->key1_id) tegra_key_invalidate(ctx->se, ctx->key1_id, ctx->alg); if (ctx->key2_id) tegra_key_invalidate(ctx->se, ctx->key2_id, ctx->alg); } static int tegra_aes_setkey(struct crypto_skcipher *tfm, const u8 *key, u32 keylen) { struct tegra_aes_ctx *ctx = crypto_skcipher_ctx(tfm); if (aes_check_keylen(keylen)) { dev_dbg(ctx->se->dev, "invalid key length (%d)\n", keylen); return -EINVAL; } return tegra_key_submit(ctx->se, key, keylen, ctx->alg, &ctx->key1_id); } static int tegra_xts_setkey(struct crypto_skcipher *tfm, const u8 *key, u32 keylen) { struct tegra_aes_ctx *ctx = crypto_skcipher_ctx(tfm); u32 len = keylen / 2; int ret; ret = xts_verify_key(tfm, key, keylen); if (ret || aes_check_keylen(len)) { dev_dbg(ctx->se->dev, "invalid key length (%d)\n", keylen); return -EINVAL; } ret = tegra_key_submit(ctx->se, key, len, ctx->alg, &ctx->key1_id); if (ret) return ret; return tegra_key_submit(ctx->se, key + len, len, ctx->alg, &ctx->key2_id); return 0; } static int tegra_aes_kac_manifest(u32 user, u32 alg, u32 keylen) { int manifest; manifest = SE_KAC_USER_NS; switch (alg) { case SE_ALG_CBC: case SE_ALG_ECB: case SE_ALG_CTR: manifest |= SE_KAC_ENC; break; case SE_ALG_XTS: manifest |= SE_KAC_XTS; break; case SE_ALG_GCM: manifest |= SE_KAC_GCM; break; case SE_ALG_CMAC: manifest |= SE_KAC_CMAC; break; case SE_ALG_CBC_MAC: manifest |= SE_KAC_ENC; break; default: return -EINVAL; } switch (keylen) { case AES_KEYSIZE_128: manifest |= SE_KAC_SIZE_128; break; case AES_KEYSIZE_192: manifest |= SE_KAC_SIZE_192; break; case AES_KEYSIZE_256: manifest |= SE_KAC_SIZE_256; break; default: return -EINVAL; } return manifest; } static int tegra_aes_crypt(struct skcipher_request *req, bool encrypt) { struct crypto_skcipher *tfm; struct tegra_aes_ctx *ctx; struct tegra_aes_reqctx *rctx; tfm = crypto_skcipher_reqtfm(req); ctx = crypto_skcipher_ctx(tfm); rctx = skcipher_request_ctx(req); if (ctx->alg != SE_ALG_XTS) { if (!IS_ALIGNED(req->cryptlen, crypto_skcipher_blocksize(tfm))) { dev_dbg(ctx->se->dev, "invalid length (%d)", req->cryptlen); return -EINVAL; } } else if (req->cryptlen < XTS_BLOCK_SIZE) { dev_dbg(ctx->se->dev, "invalid length (%d)", req->cryptlen); return -EINVAL; } if (!req->cryptlen) return 0; rctx->encrypt = encrypt; rctx->config = tegra234_aes_cfg(ctx->alg, encrypt); rctx->crypto_config = tegra234_aes_crypto_cfg(ctx->alg, encrypt); rctx->crypto_config |= SE_AES_KEY_INDEX(ctx->key1_id); if (ctx->key2_id) rctx->crypto_config |= SE_AES_KEY2_INDEX(ctx->key2_id); return crypto_transfer_skcipher_request_to_engine(ctx->se->engine, req); } static int tegra_aes_encrypt(struct skcipher_request *req) { return tegra_aes_crypt(req, true); } static int tegra_aes_decrypt(struct skcipher_request *req) { return tegra_aes_crypt(req, false); } static struct tegra_se_alg tegra_aes_algs[] = { { .alg.skcipher.op.do_one_request = tegra_aes_do_one_req, .alg.skcipher.base = { .init = tegra_aes_cra_init, .exit = tegra_aes_cra_exit, .setkey = tegra_aes_setkey, .encrypt = tegra_aes_encrypt, .decrypt = tegra_aes_decrypt, .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .ivsize = AES_BLOCK_SIZE, .base = { .cra_name = "cbc(aes)", .cra_driver_name = "cbc-aes-tegra", .cra_priority = 500, .cra_flags = CRYPTO_ALG_TYPE_SKCIPHER | CRYPTO_ALG_ASYNC, .cra_blocksize = AES_BLOCK_SIZE, .cra_ctxsize = sizeof(struct tegra_aes_ctx), .cra_alignmask = 0xf, .cra_module = THIS_MODULE, }, } }, { .alg.skcipher.op.do_one_request = tegra_aes_do_one_req, .alg.skcipher.base = { .init = tegra_aes_cra_init, .exit = tegra_aes_cra_exit, .setkey = tegra_aes_setkey, .encrypt = tegra_aes_encrypt, .decrypt = tegra_aes_decrypt, .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .base = { .cra_name = "ecb(aes)", .cra_driver_name = "ecb-aes-tegra", .cra_priority = 500, .cra_flags = CRYPTO_ALG_TYPE_SKCIPHER | CRYPTO_ALG_ASYNC, .cra_blocksize = AES_BLOCK_SIZE, .cra_ctxsize = sizeof(struct tegra_aes_ctx), .cra_alignmask = 0xf, .cra_module = THIS_MODULE, }, } }, { .alg.skcipher.op.do_one_request = tegra_aes_do_one_req, .alg.skcipher.base = { .init = tegra_aes_cra_init, .exit = tegra_aes_cra_exit, .setkey = tegra_aes_setkey, .encrypt = tegra_aes_encrypt, .decrypt = tegra_aes_decrypt, .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .ivsize = AES_BLOCK_SIZE, .base = { .cra_name = "ctr(aes)", .cra_driver_name = "ctr-aes-tegra", .cra_priority = 500, .cra_flags = CRYPTO_ALG_TYPE_SKCIPHER | CRYPTO_ALG_ASYNC, .cra_blocksize = 1, .cra_ctxsize = sizeof(struct tegra_aes_ctx), .cra_alignmask = 0xf, .cra_module = THIS_MODULE, }, } }, { .alg.skcipher.op.do_one_request = tegra_aes_do_one_req, .alg.skcipher.base = { .init = tegra_aes_cra_init, .exit = tegra_aes_cra_exit, .setkey = tegra_xts_setkey, .encrypt = tegra_aes_encrypt, .decrypt = tegra_aes_decrypt, .min_keysize = 2 * AES_MIN_KEY_SIZE, .max_keysize = 2 * AES_MAX_KEY_SIZE, .ivsize = AES_BLOCK_SIZE, .base = { .cra_name = "xts(aes)", .cra_driver_name = "xts-aes-tegra", .cra_priority = 500, .cra_blocksize = AES_BLOCK_SIZE, .cra_ctxsize = sizeof(struct tegra_aes_ctx), .cra_alignmask = (__alignof__(u64) - 1), .cra_module = THIS_MODULE, }, } }, }; static unsigned int tegra_gmac_prep_cmd(struct tegra_aead_ctx *ctx, struct tegra_aead_reqctx *rctx) { unsigned int data_count, res_bits, i = 0; struct tegra_se *se = ctx->se; u32 *cpuvaddr = se->cmdbuf->addr; data_count = (rctx->assoclen / AES_BLOCK_SIZE); res_bits = (rctx->assoclen % AES_BLOCK_SIZE) * 8; /* * Hardware processes data_count + 1 blocks. * Reduce 1 block if there is no residue */ if (!res_bits) data_count--; cpuvaddr[i++] = se_host1x_opcode_nonincr(se->hw->regs->last_blk, 1); cpuvaddr[i++] = SE_LAST_BLOCK_VAL(data_count) | SE_LAST_BLOCK_RES_BITS(res_bits); cpuvaddr[i++] = se_host1x_opcode_incr(se->hw->regs->config, 4); cpuvaddr[i++] = rctx->config; cpuvaddr[i++] = rctx->crypto_config; cpuvaddr[i++] = lower_32_bits(rctx->inbuf.addr); cpuvaddr[i++] = SE_ADDR_HI_MSB(upper_32_bits(rctx->inbuf.addr)) | SE_ADDR_HI_SZ(rctx->assoclen); cpuvaddr[i++] = se_host1x_opcode_nonincr(se->hw->regs->op, 1); cpuvaddr[i++] = SE_AES_OP_WRSTALL | SE_AES_OP_FINAL | SE_AES_OP_INIT | SE_AES_OP_LASTBUF | SE_AES_OP_START; cpuvaddr[i++] = se_host1x_opcode_nonincr(host1x_uclass_incr_syncpt_r(), 1); cpuvaddr[i++] = host1x_uclass_incr_syncpt_cond_f(1) | host1x_uclass_incr_syncpt_indx_f(se->syncpt_id); return i; } static unsigned int tegra_gcm_crypt_prep_cmd(struct tegra_aead_ctx *ctx, struct tegra_aead_reqctx *rctx) { unsigned int data_count, res_bits, i = 0, j; struct tegra_se *se = ctx->se; u32 *cpuvaddr = se->cmdbuf->addr, op; data_count = (rctx->cryptlen / AES_BLOCK_SIZE); res_bits = (rctx->cryptlen % AES_BLOCK_SIZE) * 8; op = SE_AES_OP_WRSTALL | SE_AES_OP_FINAL | SE_AES_OP_LASTBUF | SE_AES_OP_START; /* * If there is no assoc data, * this will be the init command */ if (!rctx->assoclen) op |= SE_AES_OP_INIT; /* * Hardware processes data_count + 1 blocks. * Reduce 1 block if there is no residue */ if (!res_bits) data_count--; cpuvaddr[i++] = host1x_opcode_setpayload(SE_CRYPTO_CTR_REG_COUNT); cpuvaddr[i++] = se_host1x_opcode_incr_w(se->hw->regs->linear_ctr); for (j = 0; j < SE_CRYPTO_CTR_REG_COUNT; j++) cpuvaddr[i++] = rctx->iv[j]; cpuvaddr[i++] = se_host1x_opcode_nonincr(se->hw->regs->last_blk, 1); cpuvaddr[i++] = SE_LAST_BLOCK_VAL(data_count) | SE_LAST_BLOCK_RES_BITS(res_bits); cpuvaddr[i++] = se_host1x_opcode_incr(se->hw->regs->config, 6); cpuvaddr[i++] = rctx->config; cpuvaddr[i++] = rctx->crypto_config; /* Source Address */ cpuvaddr[i++] = lower_32_bits(rctx->inbuf.addr); cpuvaddr[i++] = SE_ADDR_HI_MSB(upper_32_bits(rctx->inbuf.addr)) | SE_ADDR_HI_SZ(rctx->cryptlen); /* Destination Address */ cpuvaddr[i++] = lower_32_bits(rctx->outbuf.addr); cpuvaddr[i++] = SE_ADDR_HI_MSB(upper_32_bits(rctx->outbuf.addr)) | SE_ADDR_HI_SZ(rctx->cryptlen); cpuvaddr[i++] = se_host1x_opcode_nonincr(se->hw->regs->op, 1); cpuvaddr[i++] = op; cpuvaddr[i++] = se_host1x_opcode_nonincr(host1x_uclass_incr_syncpt_r(), 1); cpuvaddr[i++] = host1x_uclass_incr_syncpt_cond_f(1) | host1x_uclass_incr_syncpt_indx_f(se->syncpt_id); dev_dbg(se->dev, "cfg %#x crypto cfg %#x\n", rctx->config, rctx->crypto_config); return i; } static int tegra_gcm_prep_final_cmd(struct tegra_se *se, u32 *cpuvaddr, struct tegra_aead_reqctx *rctx) { unsigned int i = 0, j; u32 op; op = SE_AES_OP_WRSTALL | SE_AES_OP_FINAL | SE_AES_OP_LASTBUF | SE_AES_OP_START; /* * Set init for zero sized vector */ if (!rctx->assoclen && !rctx->cryptlen) op |= SE_AES_OP_INIT; cpuvaddr[i++] = se_host1x_opcode_incr(se->hw->regs->aad_len, 2); cpuvaddr[i++] = rctx->assoclen * 8; cpuvaddr[i++] = 0; cpuvaddr[i++] = se_host1x_opcode_incr(se->hw->regs->cryp_msg_len, 2); cpuvaddr[i++] = rctx->cryptlen * 8; cpuvaddr[i++] = 0; cpuvaddr[i++] = host1x_opcode_setpayload(SE_CRYPTO_CTR_REG_COUNT); cpuvaddr[i++] = se_host1x_opcode_incr_w(se->hw->regs->linear_ctr); for (j = 0; j < SE_CRYPTO_CTR_REG_COUNT; j++) cpuvaddr[i++] = rctx->iv[j]; cpuvaddr[i++] = se_host1x_opcode_incr(se->hw->regs->config, 6); cpuvaddr[i++] = rctx->config; cpuvaddr[i++] = rctx->crypto_config; cpuvaddr[i++] = 0; cpuvaddr[i++] = 0; /* Destination Address */ cpuvaddr[i++] = lower_32_bits(rctx->outbuf.addr); cpuvaddr[i++] = SE_ADDR_HI_MSB(upper_32_bits(rctx->outbuf.addr)) | SE_ADDR_HI_SZ(0x10); /* HW always generates 128-bit tag */ cpuvaddr[i++] = se_host1x_opcode_nonincr(se->hw->regs->op, 1); cpuvaddr[i++] = op; cpuvaddr[i++] = se_host1x_opcode_nonincr(host1x_uclass_incr_syncpt_r(), 1); cpuvaddr[i++] = host1x_uclass_incr_syncpt_cond_f(1) | host1x_uclass_incr_syncpt_indx_f(se->syncpt_id); dev_dbg(se->dev, "cfg %#x crypto cfg %#x\n", rctx->config, rctx->crypto_config); return i; } static int tegra_gcm_do_gmac(struct tegra_aead_ctx *ctx, struct tegra_aead_reqctx *rctx) { struct tegra_se *se = ctx->se; unsigned int cmdlen; scatterwalk_map_and_copy(rctx->inbuf.buf, rctx->src_sg, 0, rctx->assoclen, 0); rctx->config = tegra234_aes_cfg(SE_ALG_GMAC, rctx->encrypt); rctx->crypto_config = tegra234_aes_crypto_cfg(SE_ALG_GMAC, rctx->encrypt) | SE_AES_KEY_INDEX(ctx->key_id); cmdlen = tegra_gmac_prep_cmd(ctx, rctx); return tegra_se_host1x_submit(se, cmdlen); } static int tegra_gcm_do_crypt(struct tegra_aead_ctx *ctx, struct tegra_aead_reqctx *rctx) { struct tegra_se *se = ctx->se; int cmdlen, ret; scatterwalk_map_and_copy(rctx->inbuf.buf, rctx->src_sg, rctx->assoclen, rctx->cryptlen, 0); rctx->config = tegra234_aes_cfg(SE_ALG_GCM, rctx->encrypt); rctx->crypto_config = tegra234_aes_crypto_cfg(SE_ALG_GCM, rctx->encrypt) | SE_AES_KEY_INDEX(ctx->key_id); /* Prepare command and submit */ cmdlen = tegra_gcm_crypt_prep_cmd(ctx, rctx); ret = tegra_se_host1x_submit(se, cmdlen); if (ret) return ret; /* Copy the result */ scatterwalk_map_and_copy(rctx->outbuf.buf, rctx->dst_sg, rctx->assoclen, rctx->cryptlen, 1); return 0; } static int tegra_gcm_do_final(struct tegra_aead_ctx *ctx, struct tegra_aead_reqctx *rctx) { struct tegra_se *se = ctx->se; u32 *cpuvaddr = se->cmdbuf->addr; int cmdlen, ret, offset; rctx->config = tegra234_aes_cfg(SE_ALG_GCM_FINAL, rctx->encrypt); rctx->crypto_config = tegra234_aes_crypto_cfg(SE_ALG_GCM_FINAL, rctx->encrypt) | SE_AES_KEY_INDEX(ctx->key_id); /* Prepare command and submit */ cmdlen = tegra_gcm_prep_final_cmd(se, cpuvaddr, rctx); ret = tegra_se_host1x_submit(se, cmdlen); if (ret) return ret; if (rctx->encrypt) { /* Copy the result */ offset = rctx->assoclen + rctx->cryptlen; scatterwalk_map_and_copy(rctx->outbuf.buf, rctx->dst_sg, offset, rctx->authsize, 1); } return 0; } static int tegra_gcm_do_verify(struct tegra_se *se, struct tegra_aead_reqctx *rctx) { unsigned int offset; u8 mac[16]; offset = rctx->assoclen + rctx->cryptlen; scatterwalk_map_and_copy(mac, rctx->src_sg, offset, rctx->authsize, 0); if (crypto_memneq(rctx->outbuf.buf, mac, rctx->authsize)) return -EBADMSG; return 0; } static inline int tegra_ccm_check_iv(const u8 *iv) { /* iv[0] gives value of q-1 * 2 <= q <= 8 as per NIST 800-38C notation * 2 <= L <= 8, so 1 <= L' <= 7. as per rfc 3610 notation */ if (iv[0] < 1 || iv[0] > 7) { pr_debug("ccm_check_iv failed %d\n", iv[0]); return -EINVAL; } return 0; } static unsigned int tegra_cbcmac_prep_cmd(struct tegra_aead_ctx *ctx, struct tegra_aead_reqctx *rctx) { unsigned int data_count, i = 0; struct tegra_se *se = ctx->se; u32 *cpuvaddr = se->cmdbuf->addr; data_count = (rctx->inbuf.size / AES_BLOCK_SIZE) - 1; cpuvaddr[i++] = se_host1x_opcode_nonincr(se->hw->regs->last_blk, 1); cpuvaddr[i++] = SE_LAST_BLOCK_VAL(data_count); cpuvaddr[i++] = se_host1x_opcode_incr(se->hw->regs->config, 6); cpuvaddr[i++] = rctx->config; cpuvaddr[i++] = rctx->crypto_config; cpuvaddr[i++] = lower_32_bits(rctx->inbuf.addr); cpuvaddr[i++] = SE_ADDR_HI_MSB(upper_32_bits(rctx->inbuf.addr)) | SE_ADDR_HI_SZ(rctx->inbuf.size); cpuvaddr[i++] = lower_32_bits(rctx->outbuf.addr); cpuvaddr[i++] = SE_ADDR_HI_MSB(upper_32_bits(rctx->outbuf.addr)) | SE_ADDR_HI_SZ(0x10); /* HW always generates 128 bit tag */ cpuvaddr[i++] = se_host1x_opcode_nonincr(se->hw->regs->op, 1); cpuvaddr[i++] = SE_AES_OP_WRSTALL | SE_AES_OP_LASTBUF | SE_AES_OP_START; cpuvaddr[i++] = se_host1x_opcode_nonincr(host1x_uclass_incr_syncpt_r(), 1); cpuvaddr[i++] = host1x_uclass_incr_syncpt_cond_f(1) | host1x_uclass_incr_syncpt_indx_f(se->syncpt_id); return i; } static unsigned int tegra_ctr_prep_cmd(struct tegra_aead_ctx *ctx, struct tegra_aead_reqctx *rctx) { unsigned int i = 0, j; struct tegra_se *se = ctx->se; u32 *cpuvaddr = se->cmdbuf->addr; cpuvaddr[i++] = host1x_opcode_setpayload(SE_CRYPTO_CTR_REG_COUNT); cpuvaddr[i++] = se_host1x_opcode_incr_w(se->hw->regs->linear_ctr); for (j = 0; j < SE_CRYPTO_CTR_REG_COUNT; j++) cpuvaddr[i++] = rctx->iv[j]; cpuvaddr[i++] = se_host1x_opcode_nonincr(se->hw->regs->last_blk, 1); cpuvaddr[i++] = (rctx->inbuf.size / AES_BLOCK_SIZE) - 1; cpuvaddr[i++] = se_host1x_opcode_incr(se->hw->regs->config, 6); cpuvaddr[i++] = rctx->config; cpuvaddr[i++] = rctx->crypto_config; /* Source address setting */ cpuvaddr[i++] = lower_32_bits(rctx->inbuf.addr); cpuvaddr[i++] = SE_ADDR_HI_MSB(upper_32_bits(rctx->inbuf.addr)) | SE_ADDR_HI_SZ(rctx->inbuf.size); /* Destination address setting */ cpuvaddr[i++] = lower_32_bits(rctx->outbuf.addr); cpuvaddr[i++] = SE_ADDR_HI_MSB(upper_32_bits(rctx->outbuf.addr)) | SE_ADDR_HI_SZ(rctx->inbuf.size); cpuvaddr[i++] = se_host1x_opcode_nonincr(se->hw->regs->op, 1); cpuvaddr[i++] = SE_AES_OP_WRSTALL | SE_AES_OP_LASTBUF | SE_AES_OP_START; cpuvaddr[i++] = se_host1x_opcode_nonincr(host1x_uclass_incr_syncpt_r(), 1); cpuvaddr[i++] = host1x_uclass_incr_syncpt_cond_f(1) | host1x_uclass_incr_syncpt_indx_f(se->syncpt_id); dev_dbg(se->dev, "cfg %#x crypto cfg %#x\n", rctx->config, rctx->crypto_config); return i; } static int tegra_ccm_do_cbcmac(struct tegra_aead_ctx *ctx, struct tegra_aead_reqctx *rctx) { struct tegra_se *se = ctx->se; int cmdlen; rctx->config = tegra234_aes_cfg(SE_ALG_CBC_MAC, rctx->encrypt); rctx->crypto_config = tegra234_aes_crypto_cfg(SE_ALG_CBC_MAC, rctx->encrypt) | SE_AES_KEY_INDEX(ctx->key_id); /* Prepare command and submit */ cmdlen = tegra_cbcmac_prep_cmd(ctx, rctx); return tegra_se_host1x_submit(se, cmdlen); } static int tegra_ccm_set_msg_len(u8 *block, unsigned int msglen, int csize) { __be32 data; memset(block, 0, csize); block += csize; if (csize >= 4) csize = 4; else if (msglen > (1 << (8 * csize))) return -EOVERFLOW; data = cpu_to_be32(msglen); memcpy(block - csize, (u8 *)&data + 4 - csize, csize); return 0; } static int tegra_ccm_format_nonce(struct tegra_aead_reqctx *rctx, u8 *nonce) { unsigned int q, t; u8 *q_ptr, *iv = (u8 *)rctx->iv; memcpy(nonce, rctx->iv, 16); /*** 1. Prepare Flags Octet ***/ /* Encode t (mac length) */ t = rctx->authsize; nonce[0] |= (((t - 2) / 2) << 3); /* Adata */ if (rctx->assoclen) nonce[0] |= (1 << 6); /*** Encode Q - message length ***/ q = iv[0] + 1; q_ptr = nonce + 16 - q; return tegra_ccm_set_msg_len(q_ptr, rctx->cryptlen, q); } static int tegra_ccm_format_adata(u8 *adata, unsigned int a) { int len = 0; /* add control info for associated data * RFC 3610 and NIST Special Publication 800-38C */ if (a < 65280) { *(__be16 *)adata = cpu_to_be16(a); len = 2; } else { *(__be16 *)adata = cpu_to_be16(0xfffe); *(__be32 *)&adata[2] = cpu_to_be32(a); len = 6; } return len; } static int tegra_ccm_add_padding(u8 *buf, unsigned int len) { unsigned int padlen = 16 - (len % 16); u8 padding[16] = {0}; if (padlen == 16) return 0; memcpy(buf, padding, padlen); return padlen; } static int tegra_ccm_format_blocks(struct tegra_aead_reqctx *rctx) { unsigned int alen = 0, offset = 0; u8 nonce[16], adata[16]; int ret; ret = tegra_ccm_format_nonce(rctx, nonce); if (ret) return ret; memcpy(rctx->inbuf.buf, nonce, 16); offset = 16; if (rctx->assoclen) { alen = tegra_ccm_format_adata(adata, rctx->assoclen); memcpy(rctx->inbuf.buf + offset, adata, alen); offset += alen; scatterwalk_map_and_copy(rctx->inbuf.buf + offset, rctx->src_sg, 0, rctx->assoclen, 0); offset += rctx->assoclen; offset += tegra_ccm_add_padding(rctx->inbuf.buf + offset, rctx->assoclen + alen); } return offset; } static int tegra_ccm_mac_result(struct tegra_se *se, struct tegra_aead_reqctx *rctx) { u32 result[16]; int i, ret; /* Read and clear Result */ for (i = 0; i < CMAC_RESULT_REG_COUNT; i++) result[i] = readl(se->base + se->hw->regs->result + (i * 4)); for (i = 0; i < CMAC_RESULT_REG_COUNT; i++) writel(0, se->base + se->hw->regs->result + (i * 4)); if (rctx->encrypt) { memcpy(rctx->authdata, result, rctx->authsize); } else { ret = crypto_memneq(rctx->authdata, result, rctx->authsize); if (ret) return -EBADMSG; } return 0; } static int tegra_ccm_ctr_result(struct tegra_se *se, struct tegra_aead_reqctx *rctx) { /* Copy result */ scatterwalk_map_and_copy(rctx->outbuf.buf + 16, rctx->dst_sg, rctx->assoclen, rctx->cryptlen, 1); if (rctx->encrypt) scatterwalk_map_and_copy(rctx->outbuf.buf, rctx->dst_sg, rctx->assoclen + rctx->cryptlen, rctx->authsize, 1); else memcpy(rctx->authdata, rctx->outbuf.buf, rctx->authsize); return 0; } static int tegra_ccm_compute_auth(struct tegra_aead_ctx *ctx, struct tegra_aead_reqctx *rctx) { struct tegra_se *se = ctx->se; struct scatterlist *sg; int offset, ret; offset = tegra_ccm_format_blocks(rctx); if (offset < 0) return -EINVAL; /* Copy plain text to the buffer */ sg = rctx->encrypt ? rctx->src_sg : rctx->dst_sg; scatterwalk_map_and_copy(rctx->inbuf.buf + offset, sg, rctx->assoclen, rctx->cryptlen, 0); offset += rctx->cryptlen; offset += tegra_ccm_add_padding(rctx->inbuf.buf + offset, rctx->cryptlen); rctx->inbuf.size = offset; ret = tegra_ccm_do_cbcmac(ctx, rctx); if (ret) return ret; return tegra_ccm_mac_result(se, rctx); } static int tegra_ccm_do_ctr(struct tegra_aead_ctx *ctx, struct tegra_aead_reqctx *rctx) { struct tegra_se *se = ctx->se; unsigned int cmdlen, offset = 0; struct scatterlist *sg = rctx->src_sg; int ret; rctx->config = tegra234_aes_cfg(SE_ALG_CTR, rctx->encrypt); rctx->crypto_config = tegra234_aes_crypto_cfg(SE_ALG_CTR, rctx->encrypt) | SE_AES_KEY_INDEX(ctx->key_id); /* Copy authdata in the top of buffer for encryption/decryption */ if (rctx->encrypt) memcpy(rctx->inbuf.buf, rctx->authdata, rctx->authsize); else scatterwalk_map_and_copy(rctx->inbuf.buf, sg, rctx->assoclen + rctx->cryptlen, rctx->authsize, 0); offset += rctx->authsize; offset += tegra_ccm_add_padding(rctx->inbuf.buf + offset, rctx->authsize); /* If there is no cryptlen, proceed to submit the task */ if (rctx->cryptlen) { scatterwalk_map_and_copy(rctx->inbuf.buf + offset, sg, rctx->assoclen, rctx->cryptlen, 0); offset += rctx->cryptlen; offset += tegra_ccm_add_padding(rctx->inbuf.buf + offset, rctx->cryptlen); } rctx->inbuf.size = offset; /* Prepare command and submit */ cmdlen = tegra_ctr_prep_cmd(ctx, rctx); ret = tegra_se_host1x_submit(se, cmdlen); if (ret) return ret; return tegra_ccm_ctr_result(se, rctx); } static int tegra_ccm_crypt_init(struct aead_request *req, struct tegra_se *se, struct tegra_aead_reqctx *rctx) { struct crypto_aead *tfm = crypto_aead_reqtfm(req); u8 *iv = (u8 *)rctx->iv; int ret, i; rctx->src_sg = req->src; rctx->dst_sg = req->dst; rctx->assoclen = req->assoclen; rctx->authsize = crypto_aead_authsize(tfm); memcpy(iv, req->iv, 16); ret = tegra_ccm_check_iv(iv); if (ret) return ret; /* Note: rfc 3610 and NIST 800-38C require counter (ctr_0) of * zero to encrypt auth tag. * req->iv has the formatted ctr_0 (i.e. Flags || N || 0). */ memset(iv + 15 - iv[0], 0, iv[0] + 1); /* Clear any previous result */ for (i = 0; i < CMAC_RESULT_REG_COUNT; i++) writel(0, se->base + se->hw->regs->result + (i * 4)); return 0; } static int tegra_ccm_do_one_req(struct crypto_engine *engine, void *areq) { struct aead_request *req = container_of(areq, struct aead_request, base); struct tegra_aead_reqctx *rctx = aead_request_ctx(req); struct crypto_aead *tfm = crypto_aead_reqtfm(req); struct tegra_aead_ctx *ctx = crypto_aead_ctx(tfm); struct tegra_se *se = ctx->se; int ret; /* Allocate buffers required */ rctx->inbuf.buf = dma_alloc_coherent(ctx->se->dev, SE_AES_BUFLEN, &rctx->inbuf.addr, GFP_KERNEL); if (!rctx->inbuf.buf) return -ENOMEM; rctx->inbuf.size = SE_AES_BUFLEN; rctx->outbuf.buf = dma_alloc_coherent(ctx->se->dev, SE_AES_BUFLEN, &rctx->outbuf.addr, GFP_KERNEL); if (!rctx->outbuf.buf) { ret = -ENOMEM; goto outbuf_err; } rctx->outbuf.size = SE_AES_BUFLEN; ret = tegra_ccm_crypt_init(req, se, rctx); if (ret) goto out; if (rctx->encrypt) { rctx->cryptlen = req->cryptlen; /* CBC MAC Operation */ ret = tegra_ccm_compute_auth(ctx, rctx); if (ret) goto out; /* CTR operation */ ret = tegra_ccm_do_ctr(ctx, rctx); if (ret) goto out; } else { rctx->cryptlen = req->cryptlen - ctx->authsize; if (ret) goto out; /* CTR operation */ ret = tegra_ccm_do_ctr(ctx, rctx); if (ret) goto out; /* CBC MAC Operation */ ret = tegra_ccm_compute_auth(ctx, rctx); if (ret) goto out; } out: dma_free_coherent(ctx->se->dev, SE_AES_BUFLEN, rctx->outbuf.buf, rctx->outbuf.addr); outbuf_err: dma_free_coherent(ctx->se->dev, SE_AES_BUFLEN, rctx->inbuf.buf, rctx->inbuf.addr); crypto_finalize_aead_request(ctx->se->engine, req, ret); return 0; } static int tegra_gcm_do_one_req(struct crypto_engine *engine, void *areq) { struct aead_request *req = container_of(areq, struct aead_request, base); struct crypto_aead *tfm = crypto_aead_reqtfm(req); struct tegra_aead_ctx *ctx = crypto_aead_ctx(tfm); struct tegra_aead_reqctx *rctx = aead_request_ctx(req); int ret; /* Allocate buffers required */ rctx->inbuf.buf = dma_alloc_coherent(ctx->se->dev, SE_AES_BUFLEN, &rctx->inbuf.addr, GFP_KERNEL); if (!rctx->inbuf.buf) return -ENOMEM; rctx->inbuf.size = SE_AES_BUFLEN; rctx->outbuf.buf = dma_alloc_coherent(ctx->se->dev, SE_AES_BUFLEN, &rctx->outbuf.addr, GFP_KERNEL); if (!rctx->outbuf.buf) { ret = -ENOMEM; goto outbuf_err; } rctx->outbuf.size = SE_AES_BUFLEN; rctx->src_sg = req->src; rctx->dst_sg = req->dst; rctx->assoclen = req->assoclen; rctx->authsize = crypto_aead_authsize(tfm); if (rctx->encrypt) rctx->cryptlen = req->cryptlen; else rctx->cryptlen = req->cryptlen - ctx->authsize; memcpy(rctx->iv, req->iv, GCM_AES_IV_SIZE); rctx->iv[3] = (1 << 24); /* If there is associated data perform GMAC operation */ if (rctx->assoclen) { ret = tegra_gcm_do_gmac(ctx, rctx); if (ret) goto out; } /* GCM Encryption/Decryption operation */ if (rctx->cryptlen) { ret = tegra_gcm_do_crypt(ctx, rctx); if (ret) goto out; } /* GCM_FINAL operation */ ret = tegra_gcm_do_final(ctx, rctx); if (ret) goto out; if (!rctx->encrypt) ret = tegra_gcm_do_verify(ctx->se, rctx); out: dma_free_coherent(ctx->se->dev, SE_AES_BUFLEN, rctx->outbuf.buf, rctx->outbuf.addr); outbuf_err: dma_free_coherent(ctx->se->dev, SE_AES_BUFLEN, rctx->inbuf.buf, rctx->inbuf.addr); /* Finalize the request if there are no errors */ crypto_finalize_aead_request(ctx->se->engine, req, ret); return 0; } static int tegra_aead_cra_init(struct crypto_aead *tfm) { struct tegra_aead_ctx *ctx = crypto_aead_ctx(tfm); struct aead_alg *alg = crypto_aead_alg(tfm); struct tegra_se_alg *se_alg; const char *algname; int ret; algname = crypto_tfm_alg_name(&tfm->base); se_alg = container_of(alg, struct tegra_se_alg, alg.aead.base); crypto_aead_set_reqsize(tfm, sizeof(struct tegra_aead_reqctx)); ctx->se = se_alg->se_dev; ctx->key_id = 0; ret = se_algname_to_algid(algname); if (ret < 0) { dev_err(ctx->se->dev, "invalid algorithm\n"); return ret; } ctx->alg = ret; return 0; } static int tegra_ccm_setauthsize(struct crypto_aead *tfm, unsigned int authsize) { struct tegra_aead_ctx *ctx = crypto_aead_ctx(tfm); switch (authsize) { case 4: case 6: case 8: case 10: case 12: case 14: case 16: break; default: return -EINVAL; } ctx->authsize = authsize; return 0; } static int tegra_gcm_setauthsize(struct crypto_aead *tfm, unsigned int authsize) { struct tegra_aead_ctx *ctx = crypto_aead_ctx(tfm); int ret; ret = crypto_gcm_check_authsize(authsize); if (ret) return ret; ctx->authsize = authsize; return 0; } static void tegra_aead_cra_exit(struct crypto_aead *tfm) { struct tegra_aead_ctx *ctx = crypto_tfm_ctx(&tfm->base); if (ctx->key_id) tegra_key_invalidate(ctx->se, ctx->key_id, ctx->alg); } static int tegra_aead_crypt(struct aead_request *req, bool encrypt) { struct crypto_aead *tfm = crypto_aead_reqtfm(req); struct tegra_aead_ctx *ctx = crypto_aead_ctx(tfm); struct tegra_aead_reqctx *rctx = aead_request_ctx(req); rctx->encrypt = encrypt; return crypto_transfer_aead_request_to_engine(ctx->se->engine, req); } static int tegra_aead_encrypt(struct aead_request *req) { return tegra_aead_crypt(req, true); } static int tegra_aead_decrypt(struct aead_request *req) { return tegra_aead_crypt(req, false); } static int tegra_aead_setkey(struct crypto_aead *tfm, const u8 *key, u32 keylen) { struct tegra_aead_ctx *ctx = crypto_aead_ctx(tfm); if (aes_check_keylen(keylen)) { dev_dbg(ctx->se->dev, "invalid key length (%d)\n", keylen); return -EINVAL; } return tegra_key_submit(ctx->se, key, keylen, ctx->alg, &ctx->key_id); } static unsigned int tegra_cmac_prep_cmd(struct tegra_cmac_ctx *ctx, struct tegra_cmac_reqctx *rctx) { unsigned int data_count, res_bits = 0, i = 0, j; struct tegra_se *se = ctx->se; u32 *cpuvaddr = se->cmdbuf->addr, op; data_count = (rctx->datbuf.size / AES_BLOCK_SIZE); op = SE_AES_OP_WRSTALL | SE_AES_OP_START | SE_AES_OP_LASTBUF; if (!(rctx->task & SHA_UPDATE)) { op |= SE_AES_OP_FINAL; res_bits = (rctx->datbuf.size % AES_BLOCK_SIZE) * 8; } if (!res_bits && data_count) data_count--; if (rctx->task & SHA_FIRST) { rctx->task &= ~SHA_FIRST; cpuvaddr[i++] = host1x_opcode_setpayload(SE_CRYPTO_CTR_REG_COUNT); cpuvaddr[i++] = se_host1x_opcode_incr_w(se->hw->regs->linear_ctr); /* Load 0 IV */ for (j = 0; j < SE_CRYPTO_CTR_REG_COUNT; j++) cpuvaddr[i++] = 0; } cpuvaddr[i++] = se_host1x_opcode_nonincr(se->hw->regs->last_blk, 1); cpuvaddr[i++] = SE_LAST_BLOCK_VAL(data_count) | SE_LAST_BLOCK_RES_BITS(res_bits); cpuvaddr[i++] = se_host1x_opcode_incr(se->hw->regs->config, 6); cpuvaddr[i++] = rctx->config; cpuvaddr[i++] = rctx->crypto_config; /* Source Address */ cpuvaddr[i++] = lower_32_bits(rctx->datbuf.addr); cpuvaddr[i++] = SE_ADDR_HI_MSB(upper_32_bits(rctx->datbuf.addr)) | SE_ADDR_HI_SZ(rctx->datbuf.size); cpuvaddr[i++] = 0; cpuvaddr[i++] = SE_ADDR_HI_SZ(AES_BLOCK_SIZE); cpuvaddr[i++] = se_host1x_opcode_nonincr(se->hw->regs->op, 1); cpuvaddr[i++] = op; cpuvaddr[i++] = se_host1x_opcode_nonincr(host1x_uclass_incr_syncpt_r(), 1); cpuvaddr[i++] = host1x_uclass_incr_syncpt_cond_f(1) | host1x_uclass_incr_syncpt_indx_f(se->syncpt_id); return i; } static void tegra_cmac_copy_result(struct tegra_se *se, struct tegra_cmac_reqctx *rctx) { int i; for (i = 0; i < CMAC_RESULT_REG_COUNT; i++) rctx->result[i] = readl(se->base + se->hw->regs->result + (i * 4)); } static void tegra_cmac_paste_result(struct tegra_se *se, struct tegra_cmac_reqctx *rctx) { int i; for (i = 0; i < CMAC_RESULT_REG_COUNT; i++) writel(rctx->result[i], se->base + se->hw->regs->result + (i * 4)); } static int tegra_cmac_do_update(struct ahash_request *req) { struct tegra_cmac_reqctx *rctx = ahash_request_ctx(req); struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct tegra_cmac_ctx *ctx = crypto_ahash_ctx(tfm); struct tegra_se *se = ctx->se; unsigned int nblks, nresidue, cmdlen; int ret; if (!req->nbytes) return 0; nresidue = (req->nbytes + rctx->residue.size) % rctx->blk_size; nblks = (req->nbytes + rctx->residue.size) / rctx->blk_size; /* * Reserve the last block as residue during final() to process. */ if (!nresidue && nblks) { nresidue += rctx->blk_size; nblks--; } rctx->src_sg = req->src; rctx->datbuf.size = (req->nbytes + rctx->residue.size) - nresidue; rctx->total_len += rctx->datbuf.size; rctx->config = tegra234_aes_cfg(SE_ALG_CMAC, 0); rctx->crypto_config = SE_AES_KEY_INDEX(ctx->key_id); /* * Keep one block and residue bytes in residue and * return. The bytes will be processed in final() */ if (nblks < 1) { scatterwalk_map_and_copy(rctx->residue.buf + rctx->residue.size, rctx->src_sg, 0, req->nbytes, 0); rctx->residue.size += req->nbytes; return 0; } /* Copy the previous residue first */ if (rctx->residue.size) memcpy(rctx->datbuf.buf, rctx->residue.buf, rctx->residue.size); scatterwalk_map_and_copy(rctx->datbuf.buf + rctx->residue.size, rctx->src_sg, 0, req->nbytes - nresidue, 0); scatterwalk_map_and_copy(rctx->residue.buf, rctx->src_sg, req->nbytes - nresidue, nresidue, 0); /* Update residue value with the residue after current block */ rctx->residue.size = nresidue; /* * If this is not the first 'update' call, paste the previous copied * intermediate results to the registers so that it gets picked up. * This is to support the import/export functionality. */ if (!(rctx->task & SHA_FIRST)) tegra_cmac_paste_result(ctx->se, rctx); cmdlen = tegra_cmac_prep_cmd(ctx, rctx); ret = tegra_se_host1x_submit(se, cmdlen); /* * If this is not the final update, copy the intermediate results * from the registers so that it can be used in the next 'update' * call. This is to support the import/export functionality. */ if (!(rctx->task & SHA_FINAL)) tegra_cmac_copy_result(ctx->se, rctx); return ret; } static int tegra_cmac_do_final(struct ahash_request *req) { struct tegra_cmac_reqctx *rctx = ahash_request_ctx(req); struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct tegra_cmac_ctx *ctx = crypto_ahash_ctx(tfm); struct tegra_se *se = ctx->se; u32 *result = (u32 *)req->result; int ret = 0, i, cmdlen; if (!req->nbytes && !rctx->total_len && ctx->fallback_tfm) { return crypto_shash_tfm_digest(ctx->fallback_tfm, rctx->datbuf.buf, 0, req->result); } memcpy(rctx->datbuf.buf, rctx->residue.buf, rctx->residue.size); rctx->datbuf.size = rctx->residue.size; rctx->total_len += rctx->residue.size; rctx->config = tegra234_aes_cfg(SE_ALG_CMAC, 0); /* Prepare command and submit */ cmdlen = tegra_cmac_prep_cmd(ctx, rctx); ret = tegra_se_host1x_submit(se, cmdlen); if (ret) goto out; /* Read and clear Result register */ for (i = 0; i < CMAC_RESULT_REG_COUNT; i++) result[i] = readl(se->base + se->hw->regs->result + (i * 4)); for (i = 0; i < CMAC_RESULT_REG_COUNT; i++) writel(0, se->base + se->hw->regs->result + (i * 4)); out: dma_free_coherent(se->dev, SE_SHA_BUFLEN, rctx->datbuf.buf, rctx->datbuf.addr); dma_free_coherent(se->dev, crypto_ahash_blocksize(tfm) * 2, rctx->residue.buf, rctx->residue.addr); return ret; } static int tegra_cmac_do_one_req(struct crypto_engine *engine, void *areq) { struct ahash_request *req = ahash_request_cast(areq); struct tegra_cmac_reqctx *rctx = ahash_request_ctx(req); struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct tegra_cmac_ctx *ctx = crypto_ahash_ctx(tfm); struct tegra_se *se = ctx->se; int ret; if (rctx->task & SHA_UPDATE) { ret = tegra_cmac_do_update(req); rctx->task &= ~SHA_UPDATE; } if (rctx->task & SHA_FINAL) { ret = tegra_cmac_do_final(req); rctx->task &= ~SHA_FINAL; } crypto_finalize_hash_request(se->engine, req, ret); return 0; } static void tegra_cmac_init_fallback(struct crypto_ahash *tfm, struct tegra_cmac_ctx *ctx, const char *algname) { unsigned int statesize; ctx->fallback_tfm = crypto_alloc_shash(algname, 0, CRYPTO_ALG_NEED_FALLBACK); if (IS_ERR(ctx->fallback_tfm)) { dev_warn(ctx->se->dev, "failed to allocate fallback for %s\n", algname); ctx->fallback_tfm = NULL; return; } statesize = crypto_shash_statesize(ctx->fallback_tfm); if (statesize > sizeof(struct tegra_cmac_reqctx)) crypto_ahash_set_statesize(tfm, statesize); } static int tegra_cmac_cra_init(struct crypto_tfm *tfm) { struct tegra_cmac_ctx *ctx = crypto_tfm_ctx(tfm); struct crypto_ahash *ahash_tfm = __crypto_ahash_cast(tfm); struct ahash_alg *alg = __crypto_ahash_alg(tfm->__crt_alg); struct tegra_se_alg *se_alg; const char *algname; int ret; algname = crypto_tfm_alg_name(tfm); se_alg = container_of(alg, struct tegra_se_alg, alg.ahash.base); crypto_ahash_set_reqsize(ahash_tfm, sizeof(struct tegra_cmac_reqctx)); ctx->se = se_alg->se_dev; ctx->key_id = 0; ret = se_algname_to_algid(algname); if (ret < 0) { dev_err(ctx->se->dev, "invalid algorithm\n"); return ret; } ctx->alg = ret; tegra_cmac_init_fallback(ahash_tfm, ctx, algname); return 0; } static void tegra_cmac_cra_exit(struct crypto_tfm *tfm) { struct tegra_cmac_ctx *ctx = crypto_tfm_ctx(tfm); if (ctx->fallback_tfm) crypto_free_shash(ctx->fallback_tfm); tegra_key_invalidate(ctx->se, ctx->key_id, ctx->alg); } static int tegra_cmac_init(struct ahash_request *req) { struct tegra_cmac_reqctx *rctx = ahash_request_ctx(req); struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct tegra_cmac_ctx *ctx = crypto_ahash_ctx(tfm); struct tegra_se *se = ctx->se; int i; rctx->total_len = 0; rctx->datbuf.size = 0; rctx->residue.size = 0; rctx->task = SHA_FIRST; rctx->blk_size = crypto_ahash_blocksize(tfm); rctx->residue.buf = dma_alloc_coherent(se->dev, rctx->blk_size * 2, &rctx->residue.addr, GFP_KERNEL); if (!rctx->residue.buf) goto resbuf_fail; rctx->residue.size = 0; rctx->datbuf.buf = dma_alloc_coherent(se->dev, SE_SHA_BUFLEN, &rctx->datbuf.addr, GFP_KERNEL); if (!rctx->datbuf.buf) goto datbuf_fail; rctx->datbuf.size = 0; /* Clear any previous result */ for (i = 0; i < CMAC_RESULT_REG_COUNT; i++) writel(0, se->base + se->hw->regs->result + (i * 4)); return 0; datbuf_fail: dma_free_coherent(se->dev, rctx->blk_size, rctx->residue.buf, rctx->residue.addr); resbuf_fail: return -ENOMEM; } static int tegra_cmac_setkey(struct crypto_ahash *tfm, const u8 *key, unsigned int keylen) { struct tegra_cmac_ctx *ctx = crypto_ahash_ctx(tfm); if (aes_check_keylen(keylen)) { dev_dbg(ctx->se->dev, "invalid key length (%d)\n", keylen); return -EINVAL; } if (ctx->fallback_tfm) crypto_shash_setkey(ctx->fallback_tfm, key, keylen); return tegra_key_submit(ctx->se, key, keylen, ctx->alg, &ctx->key_id); } static int tegra_cmac_update(struct ahash_request *req) { struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct tegra_cmac_ctx *ctx = crypto_ahash_ctx(tfm); struct tegra_cmac_reqctx *rctx = ahash_request_ctx(req); rctx->task |= SHA_UPDATE; return crypto_transfer_hash_request_to_engine(ctx->se->engine, req); } static int tegra_cmac_final(struct ahash_request *req) { struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct tegra_cmac_ctx *ctx = crypto_ahash_ctx(tfm); struct tegra_cmac_reqctx *rctx = ahash_request_ctx(req); rctx->task |= SHA_FINAL; return crypto_transfer_hash_request_to_engine(ctx->se->engine, req); } static int tegra_cmac_finup(struct ahash_request *req) { struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct tegra_cmac_ctx *ctx = crypto_ahash_ctx(tfm); struct tegra_cmac_reqctx *rctx = ahash_request_ctx(req); rctx->task |= SHA_UPDATE | SHA_FINAL; return crypto_transfer_hash_request_to_engine(ctx->se->engine, req); } static int tegra_cmac_digest(struct ahash_request *req) { struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct tegra_cmac_ctx *ctx = crypto_ahash_ctx(tfm); struct tegra_cmac_reqctx *rctx = ahash_request_ctx(req); tegra_cmac_init(req); rctx->task |= SHA_UPDATE | SHA_FINAL; return crypto_transfer_hash_request_to_engine(ctx->se->engine, req); } static int tegra_cmac_export(struct ahash_request *req, void *out) { struct tegra_cmac_reqctx *rctx = ahash_request_ctx(req); memcpy(out, rctx, sizeof(*rctx)); return 0; } static int tegra_cmac_import(struct ahash_request *req, const void *in) { struct tegra_cmac_reqctx *rctx = ahash_request_ctx(req); memcpy(rctx, in, sizeof(*rctx)); return 0; } static struct tegra_se_alg tegra_aead_algs[] = { { .alg.aead.op.do_one_request = tegra_gcm_do_one_req, .alg.aead.base = { .init = tegra_aead_cra_init, .exit = tegra_aead_cra_exit, .setkey = tegra_aead_setkey, .setauthsize = tegra_gcm_setauthsize, .encrypt = tegra_aead_encrypt, .decrypt = tegra_aead_decrypt, .maxauthsize = AES_BLOCK_SIZE, .ivsize = GCM_AES_IV_SIZE, .base = { .cra_name = "gcm(aes)", .cra_driver_name = "gcm-aes-tegra", .cra_priority = 500, .cra_blocksize = 1, .cra_ctxsize = sizeof(struct tegra_aead_ctx), .cra_alignmask = 0xf, .cra_module = THIS_MODULE, }, } }, { .alg.aead.op.do_one_request = tegra_ccm_do_one_req, .alg.aead.base = { .init = tegra_aead_cra_init, .exit = tegra_aead_cra_exit, .setkey = tegra_aead_setkey, .setauthsize = tegra_ccm_setauthsize, .encrypt = tegra_aead_encrypt, .decrypt = tegra_aead_decrypt, .maxauthsize = AES_BLOCK_SIZE, .ivsize = AES_BLOCK_SIZE, .chunksize = AES_BLOCK_SIZE, .base = { .cra_name = "ccm(aes)", .cra_driver_name = "ccm-aes-tegra", .cra_priority = 500, .cra_blocksize = 1, .cra_ctxsize = sizeof(struct tegra_aead_ctx), .cra_alignmask = 0xf, .cra_module = THIS_MODULE, }, } } }; static struct tegra_se_alg tegra_cmac_algs[] = { { .alg.ahash.op.do_one_request = tegra_cmac_do_one_req, .alg.ahash.base = { .init = tegra_cmac_init, .setkey = tegra_cmac_setkey, .update = tegra_cmac_update, .final = tegra_cmac_final, .finup = tegra_cmac_finup, .digest = tegra_cmac_digest, .export = tegra_cmac_export, .import = tegra_cmac_import, .halg.digestsize = AES_BLOCK_SIZE, .halg.statesize = sizeof(struct tegra_cmac_reqctx), .halg.base = { .cra_name = "cmac(aes)", .cra_driver_name = "tegra-se-cmac", .cra_priority = 300, .cra_flags = CRYPTO_ALG_TYPE_AHASH, .cra_blocksize = AES_BLOCK_SIZE, .cra_ctxsize = sizeof(struct tegra_cmac_ctx), .cra_alignmask = 0, .cra_module = THIS_MODULE, .cra_init = tegra_cmac_cra_init, .cra_exit = tegra_cmac_cra_exit, } } } }; int tegra_init_aes(struct tegra_se *se) { struct aead_engine_alg *aead_alg; struct ahash_engine_alg *ahash_alg; struct skcipher_engine_alg *sk_alg; int i, ret; se->manifest = tegra_aes_kac_manifest; for (i = 0; i < ARRAY_SIZE(tegra_aes_algs); i++) { sk_alg = &tegra_aes_algs[i].alg.skcipher; tegra_aes_algs[i].se_dev = se; ret = crypto_engine_register_skcipher(sk_alg); if (ret) { dev_err(se->dev, "failed to register %s\n", sk_alg->base.base.cra_name); goto err_aes; } } for (i = 0; i < ARRAY_SIZE(tegra_aead_algs); i++) { aead_alg = &tegra_aead_algs[i].alg.aead; tegra_aead_algs[i].se_dev = se; ret = crypto_engine_register_aead(aead_alg); if (ret) { dev_err(se->dev, "failed to register %s\n", aead_alg->base.base.cra_name); goto err_aead; } } for (i = 0; i < ARRAY_SIZE(tegra_cmac_algs); i++) { ahash_alg = &tegra_cmac_algs[i].alg.ahash; tegra_cmac_algs[i].se_dev = se; ret = crypto_engine_register_ahash(ahash_alg); if (ret) { dev_err(se->dev, "failed to register %s\n", ahash_alg->base.halg.base.cra_name); goto err_cmac; } } return 0; err_cmac: while (i--) crypto_engine_unregister_ahash(&tegra_cmac_algs[i].alg.ahash); i = ARRAY_SIZE(tegra_aead_algs); err_aead: while (i--) crypto_engine_unregister_aead(&tegra_aead_algs[i].alg.aead); i = ARRAY_SIZE(tegra_aes_algs); err_aes: while (i--) crypto_engine_unregister_skcipher(&tegra_aes_algs[i].alg.skcipher); return ret; } void tegra_deinit_aes(struct tegra_se *se) { int i; for (i = 0; i < ARRAY_SIZE(tegra_aes_algs); i++) crypto_engine_unregister_skcipher(&tegra_aes_algs[i].alg.skcipher); for (i = 0; i < ARRAY_SIZE(tegra_aead_algs); i++) crypto_engine_unregister_aead(&tegra_aead_algs[i].alg.aead); for (i = 0; i < ARRAY_SIZE(tegra_cmac_algs); i++) crypto_engine_unregister_ahash(&tegra_cmac_algs[i].alg.ahash); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1