Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Lars-Peter Clausen | 3648 | 63.11% | 11 | 28.21% |
Alexandru Ardelean | 989 | 17.11% | 10 | 25.64% |
Paul Cercueil | 927 | 16.04% | 6 | 15.38% |
Nuno Sá | 99 | 1.71% | 2 | 5.13% |
Mathias Tausen | 68 | 1.18% | 1 | 2.56% |
Chuhong Yuan | 13 | 0.22% | 1 | 2.56% |
Dragos Bogdan | 13 | 0.22% | 2 | 5.13% |
Michael Hennerich | 8 | 0.14% | 1 | 2.56% |
Gustavo A. R. Silva | 6 | 0.10% | 1 | 2.56% |
Kees Cook | 5 | 0.09% | 1 | 2.56% |
Tudor-Dan Ambarus | 2 | 0.03% | 1 | 2.56% |
Moritz Fischer | 1 | 0.02% | 1 | 2.56% |
Thomas Gleixner | 1 | 0.02% | 1 | 2.56% |
Total | 5780 | 39 |
// SPDX-License-Identifier: GPL-2.0-only /* * Driver for the Analog Devices AXI-DMAC core * * Copyright 2013-2019 Analog Devices Inc. * Author: Lars-Peter Clausen <lars@metafoo.de> */ #include <linux/bitfield.h> #include <linux/clk.h> #include <linux/device.h> #include <linux/dma-mapping.h> #include <linux/dmaengine.h> #include <linux/err.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/of.h> #include <linux/of_dma.h> #include <linux/of_address.h> #include <linux/platform_device.h> #include <linux/regmap.h> #include <linux/slab.h> #include <linux/fpga/adi-axi-common.h> #include <dt-bindings/dma/axi-dmac.h> #include "dmaengine.h" #include "virt-dma.h" /* * The AXI-DMAC is a soft IP core that is used in FPGA designs. The core has * various instantiation parameters which decided the exact feature set support * by the core. * * Each channel of the core has a source interface and a destination interface. * The number of channels and the type of the channel interfaces is selected at * configuration time. A interface can either be a connected to a central memory * interconnect, which allows access to system memory, or it can be connected to * a dedicated bus which is directly connected to a data port on a peripheral. * Given that those are configuration options of the core that are selected when * it is instantiated this means that they can not be changed by software at * runtime. By extension this means that each channel is uni-directional. It can * either be device to memory or memory to device, but not both. Also since the * device side is a dedicated data bus only connected to a single peripheral * there is no address than can or needs to be configured for the device side. */ #define AXI_DMAC_REG_INTERFACE_DESC 0x10 #define AXI_DMAC_DMA_SRC_TYPE_MSK GENMASK(13, 12) #define AXI_DMAC_DMA_SRC_TYPE_GET(x) FIELD_GET(AXI_DMAC_DMA_SRC_TYPE_MSK, x) #define AXI_DMAC_DMA_SRC_WIDTH_MSK GENMASK(11, 8) #define AXI_DMAC_DMA_SRC_WIDTH_GET(x) FIELD_GET(AXI_DMAC_DMA_SRC_WIDTH_MSK, x) #define AXI_DMAC_DMA_DST_TYPE_MSK GENMASK(5, 4) #define AXI_DMAC_DMA_DST_TYPE_GET(x) FIELD_GET(AXI_DMAC_DMA_DST_TYPE_MSK, x) #define AXI_DMAC_DMA_DST_WIDTH_MSK GENMASK(3, 0) #define AXI_DMAC_DMA_DST_WIDTH_GET(x) FIELD_GET(AXI_DMAC_DMA_DST_WIDTH_MSK, x) #define AXI_DMAC_REG_COHERENCY_DESC 0x14 #define AXI_DMAC_DST_COHERENT_MSK BIT(0) #define AXI_DMAC_DST_COHERENT_GET(x) FIELD_GET(AXI_DMAC_DST_COHERENT_MSK, x) #define AXI_DMAC_REG_IRQ_MASK 0x80 #define AXI_DMAC_REG_IRQ_PENDING 0x84 #define AXI_DMAC_REG_IRQ_SOURCE 0x88 #define AXI_DMAC_REG_CTRL 0x400 #define AXI_DMAC_REG_TRANSFER_ID 0x404 #define AXI_DMAC_REG_START_TRANSFER 0x408 #define AXI_DMAC_REG_FLAGS 0x40c #define AXI_DMAC_REG_DEST_ADDRESS 0x410 #define AXI_DMAC_REG_SRC_ADDRESS 0x414 #define AXI_DMAC_REG_X_LENGTH 0x418 #define AXI_DMAC_REG_Y_LENGTH 0x41c #define AXI_DMAC_REG_DEST_STRIDE 0x420 #define AXI_DMAC_REG_SRC_STRIDE 0x424 #define AXI_DMAC_REG_TRANSFER_DONE 0x428 #define AXI_DMAC_REG_ACTIVE_TRANSFER_ID 0x42c #define AXI_DMAC_REG_STATUS 0x430 #define AXI_DMAC_REG_CURRENT_SRC_ADDR 0x434 #define AXI_DMAC_REG_CURRENT_DEST_ADDR 0x438 #define AXI_DMAC_REG_PARTIAL_XFER_LEN 0x44c #define AXI_DMAC_REG_PARTIAL_XFER_ID 0x450 #define AXI_DMAC_REG_CURRENT_SG_ID 0x454 #define AXI_DMAC_REG_SG_ADDRESS 0x47c #define AXI_DMAC_REG_SG_ADDRESS_HIGH 0x4bc #define AXI_DMAC_CTRL_ENABLE BIT(0) #define AXI_DMAC_CTRL_PAUSE BIT(1) #define AXI_DMAC_CTRL_ENABLE_SG BIT(2) #define AXI_DMAC_IRQ_SOT BIT(0) #define AXI_DMAC_IRQ_EOT BIT(1) #define AXI_DMAC_FLAG_CYCLIC BIT(0) #define AXI_DMAC_FLAG_LAST BIT(1) #define AXI_DMAC_FLAG_PARTIAL_REPORT BIT(2) #define AXI_DMAC_FLAG_PARTIAL_XFER_DONE BIT(31) /* The maximum ID allocated by the hardware is 31 */ #define AXI_DMAC_SG_UNUSED 32U /* Flags for axi_dmac_hw_desc.flags */ #define AXI_DMAC_HW_FLAG_LAST BIT(0) #define AXI_DMAC_HW_FLAG_IRQ BIT(1) struct axi_dmac_hw_desc { u32 flags; u32 id; u64 dest_addr; u64 src_addr; u64 next_sg_addr; u32 y_len; u32 x_len; u32 src_stride; u32 dst_stride; u64 __pad[2]; }; struct axi_dmac_sg { unsigned int partial_len; bool schedule_when_free; struct axi_dmac_hw_desc *hw; dma_addr_t hw_phys; }; struct axi_dmac_desc { struct virt_dma_desc vdesc; struct axi_dmac_chan *chan; bool cyclic; bool have_partial_xfer; unsigned int num_submitted; unsigned int num_completed; unsigned int num_sgs; struct axi_dmac_sg sg[] __counted_by(num_sgs); }; struct axi_dmac_chan { struct virt_dma_chan vchan; struct axi_dmac_desc *next_desc; struct list_head active_descs; enum dma_transfer_direction direction; unsigned int src_width; unsigned int dest_width; unsigned int src_type; unsigned int dest_type; unsigned int max_length; unsigned int address_align_mask; unsigned int length_align_mask; bool hw_partial_xfer; bool hw_cyclic; bool hw_2d; bool hw_sg; }; struct axi_dmac { void __iomem *base; int irq; struct clk *clk; struct dma_device dma_dev; struct axi_dmac_chan chan; }; static struct axi_dmac *chan_to_axi_dmac(struct axi_dmac_chan *chan) { return container_of(chan->vchan.chan.device, struct axi_dmac, dma_dev); } static struct axi_dmac_chan *to_axi_dmac_chan(struct dma_chan *c) { return container_of(c, struct axi_dmac_chan, vchan.chan); } static struct axi_dmac_desc *to_axi_dmac_desc(struct virt_dma_desc *vdesc) { return container_of(vdesc, struct axi_dmac_desc, vdesc); } static void axi_dmac_write(struct axi_dmac *axi_dmac, unsigned int reg, unsigned int val) { writel(val, axi_dmac->base + reg); } static int axi_dmac_read(struct axi_dmac *axi_dmac, unsigned int reg) { return readl(axi_dmac->base + reg); } static int axi_dmac_src_is_mem(struct axi_dmac_chan *chan) { return chan->src_type == AXI_DMAC_BUS_TYPE_AXI_MM; } static int axi_dmac_dest_is_mem(struct axi_dmac_chan *chan) { return chan->dest_type == AXI_DMAC_BUS_TYPE_AXI_MM; } static bool axi_dmac_check_len(struct axi_dmac_chan *chan, unsigned int len) { if (len == 0) return false; if ((len & chan->length_align_mask) != 0) /* Not aligned */ return false; return true; } static bool axi_dmac_check_addr(struct axi_dmac_chan *chan, dma_addr_t addr) { if ((addr & chan->address_align_mask) != 0) /* Not aligned */ return false; return true; } static void axi_dmac_start_transfer(struct axi_dmac_chan *chan) { struct axi_dmac *dmac = chan_to_axi_dmac(chan); struct virt_dma_desc *vdesc; struct axi_dmac_desc *desc; struct axi_dmac_sg *sg; unsigned int flags = 0; unsigned int val; if (!chan->hw_sg) { val = axi_dmac_read(dmac, AXI_DMAC_REG_START_TRANSFER); if (val) /* Queue is full, wait for the next SOT IRQ */ return; } desc = chan->next_desc; if (!desc) { vdesc = vchan_next_desc(&chan->vchan); if (!vdesc) return; list_move_tail(&vdesc->node, &chan->active_descs); desc = to_axi_dmac_desc(vdesc); } sg = &desc->sg[desc->num_submitted]; /* Already queued in cyclic mode. Wait for it to finish */ if (sg->hw->id != AXI_DMAC_SG_UNUSED) { sg->schedule_when_free = true; return; } if (chan->hw_sg) { chan->next_desc = NULL; } else if (++desc->num_submitted == desc->num_sgs || desc->have_partial_xfer) { if (desc->cyclic) desc->num_submitted = 0; /* Start again */ else chan->next_desc = NULL; flags |= AXI_DMAC_FLAG_LAST; } else { chan->next_desc = desc; } sg->hw->id = axi_dmac_read(dmac, AXI_DMAC_REG_TRANSFER_ID); if (!chan->hw_sg) { if (axi_dmac_dest_is_mem(chan)) { axi_dmac_write(dmac, AXI_DMAC_REG_DEST_ADDRESS, sg->hw->dest_addr); axi_dmac_write(dmac, AXI_DMAC_REG_DEST_STRIDE, sg->hw->dst_stride); } if (axi_dmac_src_is_mem(chan)) { axi_dmac_write(dmac, AXI_DMAC_REG_SRC_ADDRESS, sg->hw->src_addr); axi_dmac_write(dmac, AXI_DMAC_REG_SRC_STRIDE, sg->hw->src_stride); } } /* * If the hardware supports cyclic transfers and there is no callback to * call, enable hw cyclic mode to avoid unnecessary interrupts. */ if (chan->hw_cyclic && desc->cyclic && !desc->vdesc.tx.callback) { if (chan->hw_sg) desc->sg[desc->num_sgs - 1].hw->flags &= ~AXI_DMAC_HW_FLAG_IRQ; else if (desc->num_sgs == 1) flags |= AXI_DMAC_FLAG_CYCLIC; } if (chan->hw_partial_xfer) flags |= AXI_DMAC_FLAG_PARTIAL_REPORT; if (chan->hw_sg) { axi_dmac_write(dmac, AXI_DMAC_REG_SG_ADDRESS, (u32)sg->hw_phys); axi_dmac_write(dmac, AXI_DMAC_REG_SG_ADDRESS_HIGH, (u64)sg->hw_phys >> 32); } else { axi_dmac_write(dmac, AXI_DMAC_REG_X_LENGTH, sg->hw->x_len); axi_dmac_write(dmac, AXI_DMAC_REG_Y_LENGTH, sg->hw->y_len); } axi_dmac_write(dmac, AXI_DMAC_REG_FLAGS, flags); axi_dmac_write(dmac, AXI_DMAC_REG_START_TRANSFER, 1); } static struct axi_dmac_desc *axi_dmac_active_desc(struct axi_dmac_chan *chan) { return list_first_entry_or_null(&chan->active_descs, struct axi_dmac_desc, vdesc.node); } static inline unsigned int axi_dmac_total_sg_bytes(struct axi_dmac_chan *chan, struct axi_dmac_sg *sg) { if (chan->hw_2d) return (sg->hw->x_len + 1) * (sg->hw->y_len + 1); else return (sg->hw->x_len + 1); } static void axi_dmac_dequeue_partial_xfers(struct axi_dmac_chan *chan) { struct axi_dmac *dmac = chan_to_axi_dmac(chan); struct axi_dmac_desc *desc; struct axi_dmac_sg *sg; u32 xfer_done, len, id, i; bool found_sg; do { len = axi_dmac_read(dmac, AXI_DMAC_REG_PARTIAL_XFER_LEN); id = axi_dmac_read(dmac, AXI_DMAC_REG_PARTIAL_XFER_ID); found_sg = false; list_for_each_entry(desc, &chan->active_descs, vdesc.node) { for (i = 0; i < desc->num_sgs; i++) { sg = &desc->sg[i]; if (sg->hw->id == AXI_DMAC_SG_UNUSED) continue; if (sg->hw->id == id) { desc->have_partial_xfer = true; sg->partial_len = len; found_sg = true; break; } } if (found_sg) break; } if (found_sg) { dev_dbg(dmac->dma_dev.dev, "Found partial segment id=%u, len=%u\n", id, len); } else { dev_warn(dmac->dma_dev.dev, "Not found partial segment id=%u, len=%u\n", id, len); } /* Check if we have any more partial transfers */ xfer_done = axi_dmac_read(dmac, AXI_DMAC_REG_TRANSFER_DONE); xfer_done = !(xfer_done & AXI_DMAC_FLAG_PARTIAL_XFER_DONE); } while (!xfer_done); } static void axi_dmac_compute_residue(struct axi_dmac_chan *chan, struct axi_dmac_desc *active) { struct dmaengine_result *rslt = &active->vdesc.tx_result; unsigned int start = active->num_completed - 1; struct axi_dmac_sg *sg; unsigned int i, total; rslt->result = DMA_TRANS_NOERROR; rslt->residue = 0; if (chan->hw_sg) return; /* * We get here if the last completed segment is partial, which * means we can compute the residue from that segment onwards */ for (i = start; i < active->num_sgs; i++) { sg = &active->sg[i]; total = axi_dmac_total_sg_bytes(chan, sg); rslt->residue += (total - sg->partial_len); } } static bool axi_dmac_transfer_done(struct axi_dmac_chan *chan, unsigned int completed_transfers) { struct axi_dmac_desc *active; struct axi_dmac_sg *sg; bool start_next = false; active = axi_dmac_active_desc(chan); if (!active) return false; if (chan->hw_partial_xfer && (completed_transfers & AXI_DMAC_FLAG_PARTIAL_XFER_DONE)) axi_dmac_dequeue_partial_xfers(chan); if (chan->hw_sg) { if (active->cyclic) { vchan_cyclic_callback(&active->vdesc); } else { list_del(&active->vdesc.node); vchan_cookie_complete(&active->vdesc); active = axi_dmac_active_desc(chan); start_next = !!active; } } else { do { sg = &active->sg[active->num_completed]; if (sg->hw->id == AXI_DMAC_SG_UNUSED) /* Not yet submitted */ break; if (!(BIT(sg->hw->id) & completed_transfers)) break; active->num_completed++; sg->hw->id = AXI_DMAC_SG_UNUSED; if (sg->schedule_when_free) { sg->schedule_when_free = false; start_next = true; } if (sg->partial_len) axi_dmac_compute_residue(chan, active); if (active->cyclic) vchan_cyclic_callback(&active->vdesc); if (active->num_completed == active->num_sgs || sg->partial_len) { if (active->cyclic) { active->num_completed = 0; /* wrap around */ } else { list_del(&active->vdesc.node); vchan_cookie_complete(&active->vdesc); active = axi_dmac_active_desc(chan); } } } while (active); } return start_next; } static irqreturn_t axi_dmac_interrupt_handler(int irq, void *devid) { struct axi_dmac *dmac = devid; unsigned int pending; bool start_next = false; pending = axi_dmac_read(dmac, AXI_DMAC_REG_IRQ_PENDING); if (!pending) return IRQ_NONE; axi_dmac_write(dmac, AXI_DMAC_REG_IRQ_PENDING, pending); spin_lock(&dmac->chan.vchan.lock); /* One or more transfers have finished */ if (pending & AXI_DMAC_IRQ_EOT) { unsigned int completed; completed = axi_dmac_read(dmac, AXI_DMAC_REG_TRANSFER_DONE); start_next = axi_dmac_transfer_done(&dmac->chan, completed); } /* Space has become available in the descriptor queue */ if ((pending & AXI_DMAC_IRQ_SOT) || start_next) axi_dmac_start_transfer(&dmac->chan); spin_unlock(&dmac->chan.vchan.lock); return IRQ_HANDLED; } static int axi_dmac_terminate_all(struct dma_chan *c) { struct axi_dmac_chan *chan = to_axi_dmac_chan(c); struct axi_dmac *dmac = chan_to_axi_dmac(chan); unsigned long flags; LIST_HEAD(head); spin_lock_irqsave(&chan->vchan.lock, flags); axi_dmac_write(dmac, AXI_DMAC_REG_CTRL, 0); chan->next_desc = NULL; vchan_get_all_descriptors(&chan->vchan, &head); list_splice_tail_init(&chan->active_descs, &head); spin_unlock_irqrestore(&chan->vchan.lock, flags); vchan_dma_desc_free_list(&chan->vchan, &head); return 0; } static void axi_dmac_synchronize(struct dma_chan *c) { struct axi_dmac_chan *chan = to_axi_dmac_chan(c); vchan_synchronize(&chan->vchan); } static void axi_dmac_issue_pending(struct dma_chan *c) { struct axi_dmac_chan *chan = to_axi_dmac_chan(c); struct axi_dmac *dmac = chan_to_axi_dmac(chan); unsigned long flags; u32 ctrl = AXI_DMAC_CTRL_ENABLE; if (chan->hw_sg) ctrl |= AXI_DMAC_CTRL_ENABLE_SG; axi_dmac_write(dmac, AXI_DMAC_REG_CTRL, ctrl); spin_lock_irqsave(&chan->vchan.lock, flags); if (vchan_issue_pending(&chan->vchan)) axi_dmac_start_transfer(chan); spin_unlock_irqrestore(&chan->vchan.lock, flags); } static struct axi_dmac_desc * axi_dmac_alloc_desc(struct axi_dmac_chan *chan, unsigned int num_sgs) { struct axi_dmac *dmac = chan_to_axi_dmac(chan); struct device *dev = dmac->dma_dev.dev; struct axi_dmac_hw_desc *hws; struct axi_dmac_desc *desc; dma_addr_t hw_phys; unsigned int i; desc = kzalloc(struct_size(desc, sg, num_sgs), GFP_NOWAIT); if (!desc) return NULL; desc->num_sgs = num_sgs; desc->chan = chan; hws = dma_alloc_coherent(dev, PAGE_ALIGN(num_sgs * sizeof(*hws)), &hw_phys, GFP_ATOMIC); if (!hws) { kfree(desc); return NULL; } for (i = 0; i < num_sgs; i++) { desc->sg[i].hw = &hws[i]; desc->sg[i].hw_phys = hw_phys + i * sizeof(*hws); hws[i].id = AXI_DMAC_SG_UNUSED; hws[i].flags = 0; /* Link hardware descriptors */ hws[i].next_sg_addr = hw_phys + (i + 1) * sizeof(*hws); } /* The last hardware descriptor will trigger an interrupt */ desc->sg[num_sgs - 1].hw->flags = AXI_DMAC_HW_FLAG_LAST | AXI_DMAC_HW_FLAG_IRQ; return desc; } static void axi_dmac_free_desc(struct axi_dmac_desc *desc) { struct axi_dmac *dmac = chan_to_axi_dmac(desc->chan); struct device *dev = dmac->dma_dev.dev; struct axi_dmac_hw_desc *hw = desc->sg[0].hw; dma_addr_t hw_phys = desc->sg[0].hw_phys; dma_free_coherent(dev, PAGE_ALIGN(desc->num_sgs * sizeof(*hw)), hw, hw_phys); kfree(desc); } static struct axi_dmac_sg *axi_dmac_fill_linear_sg(struct axi_dmac_chan *chan, enum dma_transfer_direction direction, dma_addr_t addr, unsigned int num_periods, unsigned int period_len, struct axi_dmac_sg *sg) { unsigned int num_segments, i; unsigned int segment_size; unsigned int len; /* Split into multiple equally sized segments if necessary */ num_segments = DIV_ROUND_UP(period_len, chan->max_length); segment_size = DIV_ROUND_UP(period_len, num_segments); /* Take care of alignment */ segment_size = ((segment_size - 1) | chan->length_align_mask) + 1; for (i = 0; i < num_periods; i++) { for (len = period_len; len > segment_size; sg++) { if (direction == DMA_DEV_TO_MEM) sg->hw->dest_addr = addr; else sg->hw->src_addr = addr; sg->hw->x_len = segment_size - 1; sg->hw->y_len = 0; sg->hw->flags = 0; addr += segment_size; len -= segment_size; } if (direction == DMA_DEV_TO_MEM) sg->hw->dest_addr = addr; else sg->hw->src_addr = addr; sg->hw->x_len = len - 1; sg->hw->y_len = 0; sg++; addr += len; } return sg; } static struct dma_async_tx_descriptor * axi_dmac_prep_peripheral_dma_vec(struct dma_chan *c, const struct dma_vec *vecs, size_t nb, enum dma_transfer_direction direction, unsigned long flags) { struct axi_dmac_chan *chan = to_axi_dmac_chan(c); struct axi_dmac_desc *desc; unsigned int num_sgs = 0; struct axi_dmac_sg *dsg; size_t i; if (direction != chan->direction) return NULL; for (i = 0; i < nb; i++) num_sgs += DIV_ROUND_UP(vecs[i].len, chan->max_length); desc = axi_dmac_alloc_desc(chan, num_sgs); if (!desc) return NULL; dsg = desc->sg; for (i = 0; i < nb; i++) { if (!axi_dmac_check_addr(chan, vecs[i].addr) || !axi_dmac_check_len(chan, vecs[i].len)) { kfree(desc); return NULL; } dsg = axi_dmac_fill_linear_sg(chan, direction, vecs[i].addr, 1, vecs[i].len, dsg); } desc->cyclic = false; return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags); } static struct dma_async_tx_descriptor *axi_dmac_prep_slave_sg( struct dma_chan *c, struct scatterlist *sgl, unsigned int sg_len, enum dma_transfer_direction direction, unsigned long flags, void *context) { struct axi_dmac_chan *chan = to_axi_dmac_chan(c); struct axi_dmac_desc *desc; struct axi_dmac_sg *dsg; struct scatterlist *sg; unsigned int num_sgs; unsigned int i; if (direction != chan->direction) return NULL; num_sgs = 0; for_each_sg(sgl, sg, sg_len, i) num_sgs += DIV_ROUND_UP(sg_dma_len(sg), chan->max_length); desc = axi_dmac_alloc_desc(chan, num_sgs); if (!desc) return NULL; dsg = desc->sg; for_each_sg(sgl, sg, sg_len, i) { if (!axi_dmac_check_addr(chan, sg_dma_address(sg)) || !axi_dmac_check_len(chan, sg_dma_len(sg))) { axi_dmac_free_desc(desc); return NULL; } dsg = axi_dmac_fill_linear_sg(chan, direction, sg_dma_address(sg), 1, sg_dma_len(sg), dsg); } desc->cyclic = false; return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags); } static struct dma_async_tx_descriptor *axi_dmac_prep_dma_cyclic( struct dma_chan *c, dma_addr_t buf_addr, size_t buf_len, size_t period_len, enum dma_transfer_direction direction, unsigned long flags) { struct axi_dmac_chan *chan = to_axi_dmac_chan(c); struct axi_dmac_desc *desc; unsigned int num_periods, num_segments, num_sgs; if (direction != chan->direction) return NULL; if (!axi_dmac_check_len(chan, buf_len) || !axi_dmac_check_addr(chan, buf_addr)) return NULL; if (period_len == 0 || buf_len % period_len) return NULL; num_periods = buf_len / period_len; num_segments = DIV_ROUND_UP(period_len, chan->max_length); num_sgs = num_periods * num_segments; desc = axi_dmac_alloc_desc(chan, num_sgs); if (!desc) return NULL; /* Chain the last descriptor to the first, and remove its "last" flag */ desc->sg[num_sgs - 1].hw->next_sg_addr = desc->sg[0].hw_phys; desc->sg[num_sgs - 1].hw->flags &= ~AXI_DMAC_HW_FLAG_LAST; axi_dmac_fill_linear_sg(chan, direction, buf_addr, num_periods, period_len, desc->sg); desc->cyclic = true; return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags); } static struct dma_async_tx_descriptor *axi_dmac_prep_interleaved( struct dma_chan *c, struct dma_interleaved_template *xt, unsigned long flags) { struct axi_dmac_chan *chan = to_axi_dmac_chan(c); struct axi_dmac_desc *desc; size_t dst_icg, src_icg; if (xt->frame_size != 1) return NULL; if (xt->dir != chan->direction) return NULL; if (axi_dmac_src_is_mem(chan)) { if (!xt->src_inc || !axi_dmac_check_addr(chan, xt->src_start)) return NULL; } if (axi_dmac_dest_is_mem(chan)) { if (!xt->dst_inc || !axi_dmac_check_addr(chan, xt->dst_start)) return NULL; } dst_icg = dmaengine_get_dst_icg(xt, &xt->sgl[0]); src_icg = dmaengine_get_src_icg(xt, &xt->sgl[0]); if (chan->hw_2d) { if (!axi_dmac_check_len(chan, xt->sgl[0].size) || xt->numf == 0) return NULL; if (xt->sgl[0].size + dst_icg > chan->max_length || xt->sgl[0].size + src_icg > chan->max_length) return NULL; } else { if (dst_icg != 0 || src_icg != 0) return NULL; if (chan->max_length / xt->sgl[0].size < xt->numf) return NULL; if (!axi_dmac_check_len(chan, xt->sgl[0].size * xt->numf)) return NULL; } desc = axi_dmac_alloc_desc(chan, 1); if (!desc) return NULL; if (axi_dmac_src_is_mem(chan)) { desc->sg[0].hw->src_addr = xt->src_start; desc->sg[0].hw->src_stride = xt->sgl[0].size + src_icg; } if (axi_dmac_dest_is_mem(chan)) { desc->sg[0].hw->dest_addr = xt->dst_start; desc->sg[0].hw->dst_stride = xt->sgl[0].size + dst_icg; } if (chan->hw_2d) { desc->sg[0].hw->x_len = xt->sgl[0].size - 1; desc->sg[0].hw->y_len = xt->numf - 1; } else { desc->sg[0].hw->x_len = xt->sgl[0].size * xt->numf - 1; desc->sg[0].hw->y_len = 0; } if (flags & DMA_CYCLIC) desc->cyclic = true; return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags); } static void axi_dmac_free_chan_resources(struct dma_chan *c) { vchan_free_chan_resources(to_virt_chan(c)); } static void axi_dmac_desc_free(struct virt_dma_desc *vdesc) { axi_dmac_free_desc(to_axi_dmac_desc(vdesc)); } static bool axi_dmac_regmap_rdwr(struct device *dev, unsigned int reg) { switch (reg) { case AXI_DMAC_REG_IRQ_MASK: case AXI_DMAC_REG_IRQ_SOURCE: case AXI_DMAC_REG_IRQ_PENDING: case AXI_DMAC_REG_CTRL: case AXI_DMAC_REG_TRANSFER_ID: case AXI_DMAC_REG_START_TRANSFER: case AXI_DMAC_REG_FLAGS: case AXI_DMAC_REG_DEST_ADDRESS: case AXI_DMAC_REG_SRC_ADDRESS: case AXI_DMAC_REG_X_LENGTH: case AXI_DMAC_REG_Y_LENGTH: case AXI_DMAC_REG_DEST_STRIDE: case AXI_DMAC_REG_SRC_STRIDE: case AXI_DMAC_REG_TRANSFER_DONE: case AXI_DMAC_REG_ACTIVE_TRANSFER_ID: case AXI_DMAC_REG_STATUS: case AXI_DMAC_REG_CURRENT_SRC_ADDR: case AXI_DMAC_REG_CURRENT_DEST_ADDR: case AXI_DMAC_REG_PARTIAL_XFER_LEN: case AXI_DMAC_REG_PARTIAL_XFER_ID: case AXI_DMAC_REG_CURRENT_SG_ID: case AXI_DMAC_REG_SG_ADDRESS: case AXI_DMAC_REG_SG_ADDRESS_HIGH: return true; default: return false; } } static const struct regmap_config axi_dmac_regmap_config = { .reg_bits = 32, .val_bits = 32, .reg_stride = 4, .max_register = AXI_DMAC_REG_PARTIAL_XFER_ID, .readable_reg = axi_dmac_regmap_rdwr, .writeable_reg = axi_dmac_regmap_rdwr, }; static void axi_dmac_adjust_chan_params(struct axi_dmac_chan *chan) { chan->address_align_mask = max(chan->dest_width, chan->src_width) - 1; if (axi_dmac_dest_is_mem(chan) && axi_dmac_src_is_mem(chan)) chan->direction = DMA_MEM_TO_MEM; else if (!axi_dmac_dest_is_mem(chan) && axi_dmac_src_is_mem(chan)) chan->direction = DMA_MEM_TO_DEV; else if (axi_dmac_dest_is_mem(chan) && !axi_dmac_src_is_mem(chan)) chan->direction = DMA_DEV_TO_MEM; else chan->direction = DMA_DEV_TO_DEV; } /* * The configuration stored in the devicetree matches the configuration * parameters of the peripheral instance and allows the driver to know which * features are implemented and how it should behave. */ static int axi_dmac_parse_chan_dt(struct device_node *of_chan, struct axi_dmac_chan *chan) { u32 val; int ret; ret = of_property_read_u32(of_chan, "reg", &val); if (ret) return ret; /* We only support 1 channel for now */ if (val != 0) return -EINVAL; ret = of_property_read_u32(of_chan, "adi,source-bus-type", &val); if (ret) return ret; if (val > AXI_DMAC_BUS_TYPE_FIFO) return -EINVAL; chan->src_type = val; ret = of_property_read_u32(of_chan, "adi,destination-bus-type", &val); if (ret) return ret; if (val > AXI_DMAC_BUS_TYPE_FIFO) return -EINVAL; chan->dest_type = val; ret = of_property_read_u32(of_chan, "adi,source-bus-width", &val); if (ret) return ret; chan->src_width = val / 8; ret = of_property_read_u32(of_chan, "adi,destination-bus-width", &val); if (ret) return ret; chan->dest_width = val / 8; axi_dmac_adjust_chan_params(chan); return 0; } static int axi_dmac_parse_dt(struct device *dev, struct axi_dmac *dmac) { struct device_node *of_channels, *of_chan; int ret; of_channels = of_get_child_by_name(dev->of_node, "adi,channels"); if (of_channels == NULL) return -ENODEV; for_each_child_of_node(of_channels, of_chan) { ret = axi_dmac_parse_chan_dt(of_chan, &dmac->chan); if (ret) { of_node_put(of_chan); of_node_put(of_channels); return -EINVAL; } } of_node_put(of_channels); return 0; } static int axi_dmac_read_chan_config(struct device *dev, struct axi_dmac *dmac) { struct axi_dmac_chan *chan = &dmac->chan; unsigned int val, desc; desc = axi_dmac_read(dmac, AXI_DMAC_REG_INTERFACE_DESC); if (desc == 0) { dev_err(dev, "DMA interface register reads zero\n"); return -EFAULT; } val = AXI_DMAC_DMA_SRC_TYPE_GET(desc); if (val > AXI_DMAC_BUS_TYPE_FIFO) { dev_err(dev, "Invalid source bus type read: %d\n", val); return -EINVAL; } chan->src_type = val; val = AXI_DMAC_DMA_DST_TYPE_GET(desc); if (val > AXI_DMAC_BUS_TYPE_FIFO) { dev_err(dev, "Invalid destination bus type read: %d\n", val); return -EINVAL; } chan->dest_type = val; val = AXI_DMAC_DMA_SRC_WIDTH_GET(desc); if (val == 0) { dev_err(dev, "Source bus width is zero\n"); return -EINVAL; } /* widths are stored in log2 */ chan->src_width = 1 << val; val = AXI_DMAC_DMA_DST_WIDTH_GET(desc); if (val == 0) { dev_err(dev, "Destination bus width is zero\n"); return -EINVAL; } chan->dest_width = 1 << val; axi_dmac_adjust_chan_params(chan); return 0; } static int axi_dmac_detect_caps(struct axi_dmac *dmac, unsigned int version) { struct axi_dmac_chan *chan = &dmac->chan; axi_dmac_write(dmac, AXI_DMAC_REG_FLAGS, AXI_DMAC_FLAG_CYCLIC); if (axi_dmac_read(dmac, AXI_DMAC_REG_FLAGS) == AXI_DMAC_FLAG_CYCLIC) chan->hw_cyclic = true; axi_dmac_write(dmac, AXI_DMAC_REG_SG_ADDRESS, 0xffffffff); if (axi_dmac_read(dmac, AXI_DMAC_REG_SG_ADDRESS)) chan->hw_sg = true; axi_dmac_write(dmac, AXI_DMAC_REG_Y_LENGTH, 1); if (axi_dmac_read(dmac, AXI_DMAC_REG_Y_LENGTH) == 1) chan->hw_2d = true; axi_dmac_write(dmac, AXI_DMAC_REG_X_LENGTH, 0xffffffff); chan->max_length = axi_dmac_read(dmac, AXI_DMAC_REG_X_LENGTH); if (chan->max_length != UINT_MAX) chan->max_length++; axi_dmac_write(dmac, AXI_DMAC_REG_DEST_ADDRESS, 0xffffffff); if (axi_dmac_read(dmac, AXI_DMAC_REG_DEST_ADDRESS) == 0 && chan->dest_type == AXI_DMAC_BUS_TYPE_AXI_MM) { dev_err(dmac->dma_dev.dev, "Destination memory-mapped interface not supported."); return -ENODEV; } axi_dmac_write(dmac, AXI_DMAC_REG_SRC_ADDRESS, 0xffffffff); if (axi_dmac_read(dmac, AXI_DMAC_REG_SRC_ADDRESS) == 0 && chan->src_type == AXI_DMAC_BUS_TYPE_AXI_MM) { dev_err(dmac->dma_dev.dev, "Source memory-mapped interface not supported."); return -ENODEV; } if (version >= ADI_AXI_PCORE_VER(4, 2, 'a')) chan->hw_partial_xfer = true; if (version >= ADI_AXI_PCORE_VER(4, 1, 'a')) { axi_dmac_write(dmac, AXI_DMAC_REG_X_LENGTH, 0x00); chan->length_align_mask = axi_dmac_read(dmac, AXI_DMAC_REG_X_LENGTH); } else { chan->length_align_mask = chan->address_align_mask; } return 0; } static void axi_dmac_tasklet_kill(void *task) { tasklet_kill(task); } static void axi_dmac_free_dma_controller(void *of_node) { of_dma_controller_free(of_node); } static int axi_dmac_probe(struct platform_device *pdev) { struct dma_device *dma_dev; struct axi_dmac *dmac; struct regmap *regmap; unsigned int version; u32 irq_mask = 0; int ret; dmac = devm_kzalloc(&pdev->dev, sizeof(*dmac), GFP_KERNEL); if (!dmac) return -ENOMEM; dmac->irq = platform_get_irq(pdev, 0); if (dmac->irq < 0) return dmac->irq; if (dmac->irq == 0) return -EINVAL; dmac->base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(dmac->base)) return PTR_ERR(dmac->base); dmac->clk = devm_clk_get_enabled(&pdev->dev, NULL); if (IS_ERR(dmac->clk)) return PTR_ERR(dmac->clk); version = axi_dmac_read(dmac, ADI_AXI_REG_VERSION); if (version >= ADI_AXI_PCORE_VER(4, 3, 'a')) ret = axi_dmac_read_chan_config(&pdev->dev, dmac); else ret = axi_dmac_parse_dt(&pdev->dev, dmac); if (ret < 0) return ret; INIT_LIST_HEAD(&dmac->chan.active_descs); dma_set_max_seg_size(&pdev->dev, UINT_MAX); dma_dev = &dmac->dma_dev; dma_cap_set(DMA_SLAVE, dma_dev->cap_mask); dma_cap_set(DMA_CYCLIC, dma_dev->cap_mask); dma_cap_set(DMA_INTERLEAVE, dma_dev->cap_mask); dma_dev->device_free_chan_resources = axi_dmac_free_chan_resources; dma_dev->device_tx_status = dma_cookie_status; dma_dev->device_issue_pending = axi_dmac_issue_pending; dma_dev->device_prep_slave_sg = axi_dmac_prep_slave_sg; dma_dev->device_prep_peripheral_dma_vec = axi_dmac_prep_peripheral_dma_vec; dma_dev->device_prep_dma_cyclic = axi_dmac_prep_dma_cyclic; dma_dev->device_prep_interleaved_dma = axi_dmac_prep_interleaved; dma_dev->device_terminate_all = axi_dmac_terminate_all; dma_dev->device_synchronize = axi_dmac_synchronize; dma_dev->dev = &pdev->dev; dma_dev->src_addr_widths = BIT(dmac->chan.src_width); dma_dev->dst_addr_widths = BIT(dmac->chan.dest_width); dma_dev->directions = BIT(dmac->chan.direction); dma_dev->residue_granularity = DMA_RESIDUE_GRANULARITY_DESCRIPTOR; dma_dev->max_sg_burst = 31; /* 31 SGs maximum in one burst */ INIT_LIST_HEAD(&dma_dev->channels); dmac->chan.vchan.desc_free = axi_dmac_desc_free; vchan_init(&dmac->chan.vchan, dma_dev); ret = axi_dmac_detect_caps(dmac, version); if (ret) return ret; dma_dev->copy_align = (dmac->chan.address_align_mask + 1); if (dmac->chan.hw_sg) irq_mask |= AXI_DMAC_IRQ_SOT; axi_dmac_write(dmac, AXI_DMAC_REG_IRQ_MASK, irq_mask); if (of_dma_is_coherent(pdev->dev.of_node)) { ret = axi_dmac_read(dmac, AXI_DMAC_REG_COHERENCY_DESC); if (version < ADI_AXI_PCORE_VER(4, 4, 'a') || !AXI_DMAC_DST_COHERENT_GET(ret)) { dev_err(dmac->dma_dev.dev, "Coherent DMA not supported in hardware"); return -EINVAL; } } ret = dmaenginem_async_device_register(dma_dev); if (ret) return ret; /* * Put the action in here so it get's done before unregistering the DMA * device. */ ret = devm_add_action_or_reset(&pdev->dev, axi_dmac_tasklet_kill, &dmac->chan.vchan.task); if (ret) return ret; ret = of_dma_controller_register(pdev->dev.of_node, of_dma_xlate_by_chan_id, dma_dev); if (ret) return ret; ret = devm_add_action_or_reset(&pdev->dev, axi_dmac_free_dma_controller, pdev->dev.of_node); if (ret) return ret; ret = devm_request_irq(&pdev->dev, dmac->irq, axi_dmac_interrupt_handler, IRQF_SHARED, dev_name(&pdev->dev), dmac); if (ret) return ret; regmap = devm_regmap_init_mmio(&pdev->dev, dmac->base, &axi_dmac_regmap_config); return PTR_ERR_OR_ZERO(regmap); } static const struct of_device_id axi_dmac_of_match_table[] = { { .compatible = "adi,axi-dmac-1.00.a" }, { }, }; MODULE_DEVICE_TABLE(of, axi_dmac_of_match_table); static struct platform_driver axi_dmac_driver = { .driver = { .name = "dma-axi-dmac", .of_match_table = axi_dmac_of_match_table, }, .probe = axi_dmac_probe, }; module_platform_driver(axi_dmac_driver); MODULE_AUTHOR("Lars-Peter Clausen <lars@metafoo.de>"); MODULE_DESCRIPTION("DMA controller driver for the AXI-DMAC controller"); MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1