Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Dan J Williams | 3381 | 50.77% | 12 | 14.81% |
Seraj Alijan | 695 | 10.44% | 4 | 4.94% |
Håvard Skinnemoen | 673 | 10.11% | 1 | 1.23% |
Alexandru Ardelean | 589 | 8.84% | 5 | 6.17% |
Andy Shevchenko | 332 | 4.98% | 20 | 24.69% |
Sinan Kaya | 303 | 4.55% | 2 | 2.47% |
Peter Ujfalusi | 96 | 1.44% | 3 | 3.70% |
Dave Jiang | 92 | 1.38% | 3 | 3.70% |
Adam Wallis | 77 | 1.16% | 1 | 1.23% |
Laura Abbott | 61 | 0.92% | 1 | 1.23% |
Amelie Delaunay | 57 | 0.86% | 1 | 1.23% |
Akinobu Mita | 54 | 0.81% | 1 | 1.23% |
Vladimir Murzin | 51 | 0.77% | 2 | 2.47% |
Yang Shunyong | 48 | 0.72% | 2 | 2.47% |
Appana Durga Kedareswara Rao | 30 | 0.45% | 1 | 1.23% |
Tejun Heo | 19 | 0.29% | 1 | 1.23% |
Geert Uytterhoeven | 14 | 0.21% | 1 | 1.23% |
Nicolas Ferre | 13 | 0.20% | 1 | 1.23% |
Viresh Kumar | 12 | 0.18% | 1 | 1.23% |
Kay Sievers | 12 | 0.18% | 1 | 1.23% |
Geliang Tang | 8 | 0.12% | 1 | 1.23% |
陈学兵 | 6 | 0.09% | 1 | 1.23% |
Guennadi Liakhovetski | 5 | 0.08% | 2 | 2.47% |
Jeff Johnson | 5 | 0.08% | 1 | 1.23% |
Stefan Roese | 4 | 0.06% | 1 | 1.23% |
Luis R. Rodriguez | 4 | 0.06% | 1 | 1.23% |
Ingo Molnar | 3 | 0.05% | 1 | 1.23% |
David S. Miller | 3 | 0.05% | 1 | 1.23% |
Dan Carpenter | 3 | 0.05% | 1 | 1.23% |
Thomas Gleixner | 2 | 0.03% | 1 | 1.23% |
Jerome Blin | 2 | 0.03% | 1 | 1.23% |
Linus Torvalds (pre-git) | 2 | 0.03% | 1 | 1.23% |
Linus Torvalds | 1 | 0.02% | 1 | 1.23% |
Jason A. Donenfeld | 1 | 0.02% | 1 | 1.23% |
Joe Perches | 1 | 0.02% | 1 | 1.23% |
Vinod Koul | 1 | 0.02% | 1 | 1.23% |
Total | 6660 | 81 |
// SPDX-License-Identifier: GPL-2.0-only /* * DMA Engine test module * * Copyright (C) 2007 Atmel Corporation * Copyright (C) 2013 Intel Corporation */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/err.h> #include <linux/delay.h> #include <linux/dma-mapping.h> #include <linux/dmaengine.h> #include <linux/freezer.h> #include <linux/init.h> #include <linux/kthread.h> #include <linux/sched/task.h> #include <linux/module.h> #include <linux/moduleparam.h> #include <linux/random.h> #include <linux/slab.h> #include <linux/wait.h> static bool nobounce; module_param(nobounce, bool, 0644); MODULE_PARM_DESC(nobounce, "Prevent using swiotlb buffer (default: use swiotlb buffer)"); static unsigned int test_buf_size = 16384; module_param(test_buf_size, uint, 0644); MODULE_PARM_DESC(test_buf_size, "Size of the memcpy test buffer"); static char test_device[32]; module_param_string(device, test_device, sizeof(test_device), 0644); MODULE_PARM_DESC(device, "Bus ID of the DMA Engine to test (default: any)"); static unsigned int threads_per_chan = 1; module_param(threads_per_chan, uint, 0644); MODULE_PARM_DESC(threads_per_chan, "Number of threads to start per channel (default: 1)"); static unsigned int max_channels; module_param(max_channels, uint, 0644); MODULE_PARM_DESC(max_channels, "Maximum number of channels to use (default: all)"); static unsigned int iterations; module_param(iterations, uint, 0644); MODULE_PARM_DESC(iterations, "Iterations before stopping test (default: infinite)"); static unsigned int dmatest; module_param(dmatest, uint, 0644); MODULE_PARM_DESC(dmatest, "dmatest 0-memcpy 1-memset (default: 0)"); static unsigned int xor_sources = 3; module_param(xor_sources, uint, 0644); MODULE_PARM_DESC(xor_sources, "Number of xor source buffers (default: 3)"); static unsigned int pq_sources = 3; module_param(pq_sources, uint, 0644); MODULE_PARM_DESC(pq_sources, "Number of p+q source buffers (default: 3)"); static int timeout = 3000; module_param(timeout, int, 0644); MODULE_PARM_DESC(timeout, "Transfer Timeout in msec (default: 3000), " "Pass -1 for infinite timeout"); static bool noverify; module_param(noverify, bool, 0644); MODULE_PARM_DESC(noverify, "Disable data verification (default: verify)"); static bool norandom; module_param(norandom, bool, 0644); MODULE_PARM_DESC(norandom, "Disable random offset setup (default: random)"); static bool verbose; module_param(verbose, bool, 0644); MODULE_PARM_DESC(verbose, "Enable \"success\" result messages (default: off)"); static int alignment = -1; module_param(alignment, int, 0644); MODULE_PARM_DESC(alignment, "Custom data address alignment taken as 2^(alignment) (default: not used (-1))"); static unsigned int transfer_size; module_param(transfer_size, uint, 0644); MODULE_PARM_DESC(transfer_size, "Optional custom transfer size in bytes (default: not used (0))"); static bool polled; module_param(polled, bool, 0644); MODULE_PARM_DESC(polled, "Use polling for completion instead of interrupts"); /** * struct dmatest_params - test parameters. * @nobounce: prevent using swiotlb buffer * @buf_size: size of the memcpy test buffer * @channel: bus ID of the channel to test * @device: bus ID of the DMA Engine to test * @threads_per_chan: number of threads to start per channel * @max_channels: maximum number of channels to use * @iterations: iterations before stopping test * @xor_sources: number of xor source buffers * @pq_sources: number of p+q source buffers * @timeout: transfer timeout in msec, -1 for infinite timeout * @noverify: disable data verification * @norandom: disable random offset setup * @alignment: custom data address alignment taken as 2^alignment * @transfer_size: custom transfer size in bytes * @polled: use polling for completion instead of interrupts */ struct dmatest_params { bool nobounce; unsigned int buf_size; char channel[20]; char device[32]; unsigned int threads_per_chan; unsigned int max_channels; unsigned int iterations; unsigned int xor_sources; unsigned int pq_sources; int timeout; bool noverify; bool norandom; int alignment; unsigned int transfer_size; bool polled; }; /** * struct dmatest_info - test information. * @params: test parameters * @channels: channels under test * @nr_channels: number of channels under test * @lock: access protection to the fields of this structure * @did_init: module has been initialized completely * @last_error: test has faced configuration issues */ static struct dmatest_info { /* Test parameters */ struct dmatest_params params; /* Internal state */ struct list_head channels; unsigned int nr_channels; int last_error; struct mutex lock; bool did_init; } test_info = { .channels = LIST_HEAD_INIT(test_info.channels), .lock = __MUTEX_INITIALIZER(test_info.lock), }; static int dmatest_run_set(const char *val, const struct kernel_param *kp); static int dmatest_run_get(char *val, const struct kernel_param *kp); static const struct kernel_param_ops run_ops = { .set = dmatest_run_set, .get = dmatest_run_get, }; static bool dmatest_run; module_param_cb(run, &run_ops, &dmatest_run, 0644); MODULE_PARM_DESC(run, "Run the test (default: false)"); static int dmatest_chan_set(const char *val, const struct kernel_param *kp); static int dmatest_chan_get(char *val, const struct kernel_param *kp); static const struct kernel_param_ops multi_chan_ops = { .set = dmatest_chan_set, .get = dmatest_chan_get, }; static char test_channel[20]; static struct kparam_string newchan_kps = { .string = test_channel, .maxlen = 20, }; module_param_cb(channel, &multi_chan_ops, &newchan_kps, 0644); MODULE_PARM_DESC(channel, "Bus ID of the channel to test (default: any)"); static int dmatest_test_list_get(char *val, const struct kernel_param *kp); static const struct kernel_param_ops test_list_ops = { .get = dmatest_test_list_get, }; module_param_cb(test_list, &test_list_ops, NULL, 0444); MODULE_PARM_DESC(test_list, "Print current test list"); /* Maximum amount of mismatched bytes in buffer to print */ #define MAX_ERROR_COUNT 32 /* * Initialization patterns. All bytes in the source buffer has bit 7 * set, all bytes in the destination buffer has bit 7 cleared. * * Bit 6 is set for all bytes which are to be copied by the DMA * engine. Bit 5 is set for all bytes which are to be overwritten by * the DMA engine. * * The remaining bits are the inverse of a counter which increments by * one for each byte address. */ #define PATTERN_SRC 0x80 #define PATTERN_DST 0x00 #define PATTERN_COPY 0x40 #define PATTERN_OVERWRITE 0x20 #define PATTERN_COUNT_MASK 0x1f #define PATTERN_MEMSET_IDX 0x01 /* Fixed point arithmetic ops */ #define FIXPT_SHIFT 8 #define FIXPNT_MASK 0xFF #define FIXPT_TO_INT(a) ((a) >> FIXPT_SHIFT) #define INT_TO_FIXPT(a) ((a) << FIXPT_SHIFT) #define FIXPT_GET_FRAC(a) ((((a) & FIXPNT_MASK) * 100) >> FIXPT_SHIFT) /* poor man's completion - we want to use wait_event_freezable() on it */ struct dmatest_done { bool done; wait_queue_head_t *wait; }; struct dmatest_data { u8 **raw; u8 **aligned; gfp_t gfp_flags; unsigned int cnt; unsigned int off; }; struct dmatest_thread { struct list_head node; struct dmatest_info *info; struct task_struct *task; struct dma_chan *chan; struct dmatest_data src; struct dmatest_data dst; enum dma_transaction_type type; wait_queue_head_t done_wait; struct dmatest_done test_done; bool done; bool pending; }; struct dmatest_chan { struct list_head node; struct dma_chan *chan; struct list_head threads; }; static DECLARE_WAIT_QUEUE_HEAD(thread_wait); static bool wait; static bool is_threaded_test_run(struct dmatest_info *info) { struct dmatest_chan *dtc; list_for_each_entry(dtc, &info->channels, node) { struct dmatest_thread *thread; list_for_each_entry(thread, &dtc->threads, node) { if (!thread->done && !thread->pending) return true; } } return false; } static bool is_threaded_test_pending(struct dmatest_info *info) { struct dmatest_chan *dtc; list_for_each_entry(dtc, &info->channels, node) { struct dmatest_thread *thread; list_for_each_entry(thread, &dtc->threads, node) { if (thread->pending) return true; } } return false; } static int dmatest_wait_get(char *val, const struct kernel_param *kp) { struct dmatest_info *info = &test_info; struct dmatest_params *params = &info->params; if (params->iterations) wait_event(thread_wait, !is_threaded_test_run(info)); wait = true; return param_get_bool(val, kp); } static const struct kernel_param_ops wait_ops = { .get = dmatest_wait_get, .set = param_set_bool, }; module_param_cb(wait, &wait_ops, &wait, 0444); MODULE_PARM_DESC(wait, "Wait for tests to complete (default: false)"); static bool dmatest_match_channel(struct dmatest_params *params, struct dma_chan *chan) { if (params->channel[0] == '\0') return true; return strcmp(dma_chan_name(chan), params->channel) == 0; } static bool dmatest_match_device(struct dmatest_params *params, struct dma_device *device) { if (params->device[0] == '\0') return true; return strcmp(dev_name(device->dev), params->device) == 0; } static unsigned long dmatest_random(void) { unsigned long buf; get_random_bytes(&buf, sizeof(buf)); return buf; } static inline u8 gen_inv_idx(u8 index, bool is_memset) { u8 val = is_memset ? PATTERN_MEMSET_IDX : index; return ~val & PATTERN_COUNT_MASK; } static inline u8 gen_src_value(u8 index, bool is_memset) { return PATTERN_SRC | gen_inv_idx(index, is_memset); } static inline u8 gen_dst_value(u8 index, bool is_memset) { return PATTERN_DST | gen_inv_idx(index, is_memset); } static void dmatest_init_srcs(u8 **bufs, unsigned int start, unsigned int len, unsigned int buf_size, bool is_memset) { unsigned int i; u8 *buf; for (; (buf = *bufs); bufs++) { for (i = 0; i < start; i++) buf[i] = gen_src_value(i, is_memset); for ( ; i < start + len; i++) buf[i] = gen_src_value(i, is_memset) | PATTERN_COPY; for ( ; i < buf_size; i++) buf[i] = gen_src_value(i, is_memset); buf++; } } static void dmatest_init_dsts(u8 **bufs, unsigned int start, unsigned int len, unsigned int buf_size, bool is_memset) { unsigned int i; u8 *buf; for (; (buf = *bufs); bufs++) { for (i = 0; i < start; i++) buf[i] = gen_dst_value(i, is_memset); for ( ; i < start + len; i++) buf[i] = gen_dst_value(i, is_memset) | PATTERN_OVERWRITE; for ( ; i < buf_size; i++) buf[i] = gen_dst_value(i, is_memset); } } static void dmatest_mismatch(u8 actual, u8 pattern, unsigned int index, unsigned int counter, bool is_srcbuf, bool is_memset) { u8 diff = actual ^ pattern; u8 expected = pattern | gen_inv_idx(counter, is_memset); const char *thread_name = current->comm; if (is_srcbuf) pr_warn("%s: srcbuf[0x%x] overwritten! Expected %02x, got %02x\n", thread_name, index, expected, actual); else if ((pattern & PATTERN_COPY) && (diff & (PATTERN_COPY | PATTERN_OVERWRITE))) pr_warn("%s: dstbuf[0x%x] not copied! Expected %02x, got %02x\n", thread_name, index, expected, actual); else if (diff & PATTERN_SRC) pr_warn("%s: dstbuf[0x%x] was copied! Expected %02x, got %02x\n", thread_name, index, expected, actual); else pr_warn("%s: dstbuf[0x%x] mismatch! Expected %02x, got %02x\n", thread_name, index, expected, actual); } static unsigned int dmatest_verify(u8 **bufs, unsigned int start, unsigned int end, unsigned int counter, u8 pattern, bool is_srcbuf, bool is_memset) { unsigned int i; unsigned int error_count = 0; u8 actual; u8 expected; u8 *buf; unsigned int counter_orig = counter; for (; (buf = *bufs); bufs++) { counter = counter_orig; for (i = start; i < end; i++) { actual = buf[i]; expected = pattern | gen_inv_idx(counter, is_memset); if (actual != expected) { if (error_count < MAX_ERROR_COUNT) dmatest_mismatch(actual, pattern, i, counter, is_srcbuf, is_memset); error_count++; } counter++; } } if (error_count > MAX_ERROR_COUNT) pr_warn("%s: %u errors suppressed\n", current->comm, error_count - MAX_ERROR_COUNT); return error_count; } static void dmatest_callback(void *arg) { struct dmatest_done *done = arg; struct dmatest_thread *thread = container_of(done, struct dmatest_thread, test_done); if (!thread->done) { done->done = true; wake_up_all(done->wait); } else { /* * If thread->done, it means that this callback occurred * after the parent thread has cleaned up. This can * happen in the case that driver doesn't implement * the terminate_all() functionality and a dma operation * did not occur within the timeout period */ WARN(1, "dmatest: Kernel memory may be corrupted!!\n"); } } static unsigned int min_odd(unsigned int x, unsigned int y) { unsigned int val = min(x, y); return val % 2 ? val : val - 1; } static void result(const char *err, unsigned int n, unsigned int src_off, unsigned int dst_off, unsigned int len, unsigned long data) { if (IS_ERR_VALUE(data)) { pr_info("%s: result #%u: '%s' with src_off=0x%x dst_off=0x%x len=0x%x (%ld)\n", current->comm, n, err, src_off, dst_off, len, data); } else { pr_info("%s: result #%u: '%s' with src_off=0x%x dst_off=0x%x len=0x%x (%lu)\n", current->comm, n, err, src_off, dst_off, len, data); } } static void dbg_result(const char *err, unsigned int n, unsigned int src_off, unsigned int dst_off, unsigned int len, unsigned long data) { pr_debug("%s: result #%u: '%s' with src_off=0x%x dst_off=0x%x len=0x%x (%lu)\n", current->comm, n, err, src_off, dst_off, len, data); } #define verbose_result(err, n, src_off, dst_off, len, data) ({ \ if (verbose) \ result(err, n, src_off, dst_off, len, data); \ else \ dbg_result(err, n, src_off, dst_off, len, data);\ }) static unsigned long long dmatest_persec(s64 runtime, unsigned int val) { unsigned long long per_sec = 1000000; if (runtime <= 0) return 0; /* drop precision until runtime is 32-bits */ while (runtime > UINT_MAX) { runtime >>= 1; per_sec <<= 1; } per_sec *= val; per_sec = INT_TO_FIXPT(per_sec); do_div(per_sec, runtime); return per_sec; } static unsigned long long dmatest_KBs(s64 runtime, unsigned long long len) { return FIXPT_TO_INT(dmatest_persec(runtime, len >> 10)); } static void __dmatest_free_test_data(struct dmatest_data *d, unsigned int cnt) { unsigned int i; for (i = 0; i < cnt; i++) kfree(d->raw[i]); kfree(d->aligned); kfree(d->raw); } static void dmatest_free_test_data(struct dmatest_data *d) { __dmatest_free_test_data(d, d->cnt); } static int dmatest_alloc_test_data(struct dmatest_data *d, unsigned int buf_size, u8 align) { unsigned int i = 0; d->raw = kcalloc(d->cnt + 1, sizeof(u8 *), GFP_KERNEL); if (!d->raw) return -ENOMEM; d->aligned = kcalloc(d->cnt + 1, sizeof(u8 *), GFP_KERNEL); if (!d->aligned) goto err; for (i = 0; i < d->cnt; i++) { d->raw[i] = kmalloc(buf_size + align, d->gfp_flags); if (!d->raw[i]) goto err; /* align to alignment restriction */ if (align) d->aligned[i] = PTR_ALIGN(d->raw[i], align); else d->aligned[i] = d->raw[i]; } return 0; err: __dmatest_free_test_data(d, i); return -ENOMEM; } /* * This function repeatedly tests DMA transfers of various lengths and * offsets for a given operation type until it is told to exit by * kthread_stop(). There may be multiple threads running this function * in parallel for a single channel, and there may be multiple channels * being tested in parallel. * * Before each test, the source and destination buffer is initialized * with a known pattern. This pattern is different depending on * whether it's in an area which is supposed to be copied or * overwritten, and different in the source and destination buffers. * So if the DMA engine doesn't copy exactly what we tell it to copy, * we'll notice. */ static int dmatest_func(void *data) { struct dmatest_thread *thread = data; struct dmatest_done *done = &thread->test_done; struct dmatest_info *info; struct dmatest_params *params; struct dma_chan *chan; struct dma_device *dev; struct device *dma_dev; unsigned int error_count; unsigned int failed_tests = 0; unsigned int total_tests = 0; dma_cookie_t cookie; enum dma_status status; enum dma_ctrl_flags flags; u8 *pq_coefs = NULL; int ret; unsigned int buf_size; struct dmatest_data *src; struct dmatest_data *dst; int i; ktime_t ktime, start, diff; ktime_t filltime = 0; ktime_t comparetime = 0; s64 runtime = 0; unsigned long long total_len = 0; unsigned long long iops = 0; u8 align = 0; bool is_memset = false; dma_addr_t *srcs; dma_addr_t *dma_pq; set_freezable(); ret = -ENOMEM; smp_rmb(); thread->pending = false; info = thread->info; params = &info->params; chan = thread->chan; dev = chan->device; dma_dev = dmaengine_get_dma_device(chan); src = &thread->src; dst = &thread->dst; if (thread->type == DMA_MEMCPY) { align = params->alignment < 0 ? dev->copy_align : params->alignment; src->cnt = dst->cnt = 1; } else if (thread->type == DMA_MEMSET) { align = params->alignment < 0 ? dev->fill_align : params->alignment; src->cnt = dst->cnt = 1; is_memset = true; } else if (thread->type == DMA_XOR) { /* force odd to ensure dst = src */ src->cnt = min_odd(params->xor_sources | 1, dev->max_xor); dst->cnt = 1; align = params->alignment < 0 ? dev->xor_align : params->alignment; } else if (thread->type == DMA_PQ) { /* force odd to ensure dst = src */ src->cnt = min_odd(params->pq_sources | 1, dma_maxpq(dev, 0)); dst->cnt = 2; align = params->alignment < 0 ? dev->pq_align : params->alignment; pq_coefs = kmalloc(params->pq_sources + 1, GFP_KERNEL); if (!pq_coefs) goto err_thread_type; for (i = 0; i < src->cnt; i++) pq_coefs[i] = 1; } else goto err_thread_type; /* Check if buffer count fits into map count variable (u8) */ if ((src->cnt + dst->cnt) >= 255) { pr_err("too many buffers (%d of 255 supported)\n", src->cnt + dst->cnt); goto err_free_coefs; } buf_size = params->buf_size; if (1 << align > buf_size) { pr_err("%u-byte buffer too small for %d-byte alignment\n", buf_size, 1 << align); goto err_free_coefs; } src->gfp_flags = GFP_KERNEL; dst->gfp_flags = GFP_KERNEL; if (params->nobounce) { src->gfp_flags = GFP_DMA; dst->gfp_flags = GFP_DMA; } if (dmatest_alloc_test_data(src, buf_size, align) < 0) goto err_free_coefs; if (dmatest_alloc_test_data(dst, buf_size, align) < 0) goto err_src; set_user_nice(current, 10); srcs = kcalloc(src->cnt, sizeof(dma_addr_t), GFP_KERNEL); if (!srcs) goto err_dst; dma_pq = kcalloc(dst->cnt, sizeof(dma_addr_t), GFP_KERNEL); if (!dma_pq) goto err_srcs_array; /* * src and dst buffers are freed by ourselves below */ if (params->polled) flags = DMA_CTRL_ACK; else flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT; ktime = ktime_get(); while (!(kthread_should_stop() || (params->iterations && total_tests >= params->iterations))) { struct dma_async_tx_descriptor *tx = NULL; struct dmaengine_unmap_data *um; dma_addr_t *dsts; unsigned int len; total_tests++; if (params->transfer_size) { if (params->transfer_size >= buf_size) { pr_err("%u-byte transfer size must be lower than %u-buffer size\n", params->transfer_size, buf_size); break; } len = params->transfer_size; } else if (params->norandom) { len = buf_size; } else { len = dmatest_random() % buf_size + 1; } /* Do not alter transfer size explicitly defined by user */ if (!params->transfer_size) { len = (len >> align) << align; if (!len) len = 1 << align; } total_len += len; if (params->norandom) { src->off = 0; dst->off = 0; } else { src->off = dmatest_random() % (buf_size - len + 1); dst->off = dmatest_random() % (buf_size - len + 1); src->off = (src->off >> align) << align; dst->off = (dst->off >> align) << align; } if (!params->noverify) { start = ktime_get(); dmatest_init_srcs(src->aligned, src->off, len, buf_size, is_memset); dmatest_init_dsts(dst->aligned, dst->off, len, buf_size, is_memset); diff = ktime_sub(ktime_get(), start); filltime = ktime_add(filltime, diff); } um = dmaengine_get_unmap_data(dma_dev, src->cnt + dst->cnt, GFP_KERNEL); if (!um) { failed_tests++; result("unmap data NULL", total_tests, src->off, dst->off, len, ret); continue; } um->len = buf_size; for (i = 0; i < src->cnt; i++) { void *buf = src->aligned[i]; struct page *pg = virt_to_page(buf); unsigned long pg_off = offset_in_page(buf); um->addr[i] = dma_map_page(dma_dev, pg, pg_off, um->len, DMA_TO_DEVICE); srcs[i] = um->addr[i] + src->off; ret = dma_mapping_error(dma_dev, um->addr[i]); if (ret) { result("src mapping error", total_tests, src->off, dst->off, len, ret); goto error_unmap_continue; } um->to_cnt++; } /* map with DMA_BIDIRECTIONAL to force writeback/invalidate */ dsts = &um->addr[src->cnt]; for (i = 0; i < dst->cnt; i++) { void *buf = dst->aligned[i]; struct page *pg = virt_to_page(buf); unsigned long pg_off = offset_in_page(buf); dsts[i] = dma_map_page(dma_dev, pg, pg_off, um->len, DMA_BIDIRECTIONAL); ret = dma_mapping_error(dma_dev, dsts[i]); if (ret) { result("dst mapping error", total_tests, src->off, dst->off, len, ret); goto error_unmap_continue; } um->bidi_cnt++; } if (thread->type == DMA_MEMCPY) tx = dev->device_prep_dma_memcpy(chan, dsts[0] + dst->off, srcs[0], len, flags); else if (thread->type == DMA_MEMSET) tx = dev->device_prep_dma_memset(chan, dsts[0] + dst->off, *(src->aligned[0] + src->off), len, flags); else if (thread->type == DMA_XOR) tx = dev->device_prep_dma_xor(chan, dsts[0] + dst->off, srcs, src->cnt, len, flags); else if (thread->type == DMA_PQ) { for (i = 0; i < dst->cnt; i++) dma_pq[i] = dsts[i] + dst->off; tx = dev->device_prep_dma_pq(chan, dma_pq, srcs, src->cnt, pq_coefs, len, flags); } if (!tx) { result("prep error", total_tests, src->off, dst->off, len, ret); msleep(100); goto error_unmap_continue; } done->done = false; if (!params->polled) { tx->callback = dmatest_callback; tx->callback_param = done; } cookie = tx->tx_submit(tx); if (dma_submit_error(cookie)) { result("submit error", total_tests, src->off, dst->off, len, ret); msleep(100); goto error_unmap_continue; } if (params->polled) { status = dma_sync_wait(chan, cookie); dmaengine_terminate_sync(chan); if (status == DMA_COMPLETE) done->done = true; } else { dma_async_issue_pending(chan); wait_event_freezable_timeout(thread->done_wait, done->done, msecs_to_jiffies(params->timeout)); status = dma_async_is_tx_complete(chan, cookie, NULL, NULL); } if (!done->done) { result("test timed out", total_tests, src->off, dst->off, len, 0); goto error_unmap_continue; } else if (status != DMA_COMPLETE && !(dma_has_cap(DMA_COMPLETION_NO_ORDER, dev->cap_mask) && status == DMA_OUT_OF_ORDER)) { result(status == DMA_ERROR ? "completion error status" : "completion busy status", total_tests, src->off, dst->off, len, ret); goto error_unmap_continue; } dmaengine_unmap_put(um); if (params->noverify) { verbose_result("test passed", total_tests, src->off, dst->off, len, 0); continue; } start = ktime_get(); pr_debug("%s: verifying source buffer...\n", current->comm); error_count = dmatest_verify(src->aligned, 0, src->off, 0, PATTERN_SRC, true, is_memset); error_count += dmatest_verify(src->aligned, src->off, src->off + len, src->off, PATTERN_SRC | PATTERN_COPY, true, is_memset); error_count += dmatest_verify(src->aligned, src->off + len, buf_size, src->off + len, PATTERN_SRC, true, is_memset); pr_debug("%s: verifying dest buffer...\n", current->comm); error_count += dmatest_verify(dst->aligned, 0, dst->off, 0, PATTERN_DST, false, is_memset); error_count += dmatest_verify(dst->aligned, dst->off, dst->off + len, src->off, PATTERN_SRC | PATTERN_COPY, false, is_memset); error_count += dmatest_verify(dst->aligned, dst->off + len, buf_size, dst->off + len, PATTERN_DST, false, is_memset); diff = ktime_sub(ktime_get(), start); comparetime = ktime_add(comparetime, diff); if (error_count) { result("data error", total_tests, src->off, dst->off, len, error_count); failed_tests++; } else { verbose_result("test passed", total_tests, src->off, dst->off, len, 0); } continue; error_unmap_continue: dmaengine_unmap_put(um); failed_tests++; } ktime = ktime_sub(ktime_get(), ktime); ktime = ktime_sub(ktime, comparetime); ktime = ktime_sub(ktime, filltime); runtime = ktime_to_us(ktime); ret = 0; kfree(dma_pq); err_srcs_array: kfree(srcs); err_dst: dmatest_free_test_data(dst); err_src: dmatest_free_test_data(src); err_free_coefs: kfree(pq_coefs); err_thread_type: iops = dmatest_persec(runtime, total_tests); pr_info("%s: summary %u tests, %u failures %llu.%02llu iops %llu KB/s (%d)\n", current->comm, total_tests, failed_tests, FIXPT_TO_INT(iops), FIXPT_GET_FRAC(iops), dmatest_KBs(runtime, total_len), ret); /* terminate all transfers on specified channels */ if (ret || failed_tests) dmaengine_terminate_sync(chan); thread->done = true; wake_up(&thread_wait); return ret; } static void dmatest_cleanup_channel(struct dmatest_chan *dtc) { struct dmatest_thread *thread; struct dmatest_thread *_thread; int ret; list_for_each_entry_safe(thread, _thread, &dtc->threads, node) { ret = kthread_stop(thread->task); pr_debug("thread %s exited with status %d\n", thread->task->comm, ret); list_del(&thread->node); put_task_struct(thread->task); kfree(thread); } /* terminate all transfers on specified channels */ dmaengine_terminate_sync(dtc->chan); kfree(dtc); } static int dmatest_add_threads(struct dmatest_info *info, struct dmatest_chan *dtc, enum dma_transaction_type type) { struct dmatest_params *params = &info->params; struct dmatest_thread *thread; struct dma_chan *chan = dtc->chan; char *op; unsigned int i; if (type == DMA_MEMCPY) op = "copy"; else if (type == DMA_MEMSET) op = "set"; else if (type == DMA_XOR) op = "xor"; else if (type == DMA_PQ) op = "pq"; else return -EINVAL; for (i = 0; i < params->threads_per_chan; i++) { thread = kzalloc(sizeof(struct dmatest_thread), GFP_KERNEL); if (!thread) { pr_warn("No memory for %s-%s%u\n", dma_chan_name(chan), op, i); break; } thread->info = info; thread->chan = dtc->chan; thread->type = type; thread->test_done.wait = &thread->done_wait; init_waitqueue_head(&thread->done_wait); smp_wmb(); thread->task = kthread_create(dmatest_func, thread, "%s-%s%u", dma_chan_name(chan), op, i); if (IS_ERR(thread->task)) { pr_warn("Failed to create thread %s-%s%u\n", dma_chan_name(chan), op, i); kfree(thread); break; } /* srcbuf and dstbuf are allocated by the thread itself */ get_task_struct(thread->task); list_add_tail(&thread->node, &dtc->threads); thread->pending = true; } return i; } static int dmatest_add_channel(struct dmatest_info *info, struct dma_chan *chan) { struct dmatest_chan *dtc; struct dma_device *dma_dev = chan->device; unsigned int thread_count = 0; int cnt; dtc = kmalloc(sizeof(struct dmatest_chan), GFP_KERNEL); if (!dtc) { pr_warn("No memory for %s\n", dma_chan_name(chan)); return -ENOMEM; } dtc->chan = chan; INIT_LIST_HEAD(&dtc->threads); if (dma_has_cap(DMA_COMPLETION_NO_ORDER, dma_dev->cap_mask) && info->params.polled) { info->params.polled = false; pr_warn("DMA_COMPLETION_NO_ORDER, polled disabled\n"); } if (dma_has_cap(DMA_MEMCPY, dma_dev->cap_mask)) { if (dmatest == 0) { cnt = dmatest_add_threads(info, dtc, DMA_MEMCPY); thread_count += cnt > 0 ? cnt : 0; } } if (dma_has_cap(DMA_MEMSET, dma_dev->cap_mask)) { if (dmatest == 1) { cnt = dmatest_add_threads(info, dtc, DMA_MEMSET); thread_count += cnt > 0 ? cnt : 0; } } if (dma_has_cap(DMA_XOR, dma_dev->cap_mask)) { cnt = dmatest_add_threads(info, dtc, DMA_XOR); thread_count += cnt > 0 ? cnt : 0; } if (dma_has_cap(DMA_PQ, dma_dev->cap_mask)) { cnt = dmatest_add_threads(info, dtc, DMA_PQ); thread_count += cnt > 0 ? cnt : 0; } pr_info("Added %u threads using %s\n", thread_count, dma_chan_name(chan)); list_add_tail(&dtc->node, &info->channels); info->nr_channels++; return 0; } static bool filter(struct dma_chan *chan, void *param) { return dmatest_match_channel(param, chan) && dmatest_match_device(param, chan->device); } static void request_channels(struct dmatest_info *info, enum dma_transaction_type type) { dma_cap_mask_t mask; dma_cap_zero(mask); dma_cap_set(type, mask); for (;;) { struct dmatest_params *params = &info->params; struct dma_chan *chan; chan = dma_request_channel(mask, filter, params); if (chan) { if (dmatest_add_channel(info, chan)) { dma_release_channel(chan); break; /* add_channel failed, punt */ } } else break; /* no more channels available */ if (params->max_channels && info->nr_channels >= params->max_channels) break; /* we have all we need */ } } static void add_threaded_test(struct dmatest_info *info) { struct dmatest_params *params = &info->params; /* Copy test parameters */ params->nobounce = nobounce; params->buf_size = test_buf_size; strscpy(params->channel, strim(test_channel), sizeof(params->channel)); strscpy(params->device, strim(test_device), sizeof(params->device)); params->threads_per_chan = threads_per_chan; params->max_channels = max_channels; params->iterations = iterations; params->xor_sources = xor_sources; params->pq_sources = pq_sources; params->timeout = timeout; params->noverify = noverify; params->norandom = norandom; params->alignment = alignment; params->transfer_size = transfer_size; params->polled = polled; request_channels(info, DMA_MEMCPY); request_channels(info, DMA_MEMSET); request_channels(info, DMA_XOR); request_channels(info, DMA_PQ); } static void run_pending_tests(struct dmatest_info *info) { struct dmatest_chan *dtc; unsigned int thread_count = 0; list_for_each_entry(dtc, &info->channels, node) { struct dmatest_thread *thread; thread_count = 0; list_for_each_entry(thread, &dtc->threads, node) { wake_up_process(thread->task); thread_count++; } pr_info("Started %u threads using %s\n", thread_count, dma_chan_name(dtc->chan)); } } static void stop_threaded_test(struct dmatest_info *info) { struct dmatest_chan *dtc, *_dtc; struct dma_chan *chan; list_for_each_entry_safe(dtc, _dtc, &info->channels, node) { list_del(&dtc->node); chan = dtc->chan; dmatest_cleanup_channel(dtc); pr_debug("dropped channel %s\n", dma_chan_name(chan)); dma_release_channel(chan); } info->nr_channels = 0; } static void start_threaded_tests(struct dmatest_info *info) { /* we might be called early to set run=, defer running until all * parameters have been evaluated */ if (!info->did_init) return; run_pending_tests(info); } static int dmatest_run_get(char *val, const struct kernel_param *kp) { struct dmatest_info *info = &test_info; mutex_lock(&info->lock); if (is_threaded_test_run(info)) { dmatest_run = true; } else { if (!is_threaded_test_pending(info)) stop_threaded_test(info); dmatest_run = false; } mutex_unlock(&info->lock); return param_get_bool(val, kp); } static int dmatest_run_set(const char *val, const struct kernel_param *kp) { struct dmatest_info *info = &test_info; int ret; mutex_lock(&info->lock); ret = param_set_bool(val, kp); if (ret) { mutex_unlock(&info->lock); return ret; } else if (dmatest_run) { if (!is_threaded_test_pending(info)) { /* * We have nothing to run. This can be due to: */ ret = info->last_error; if (ret) { /* 1) Misconfiguration */ pr_err("Channel misconfigured, can't continue\n"); mutex_unlock(&info->lock); return ret; } else { /* 2) We rely on defaults */ pr_info("No channels configured, continue with any\n"); if (!is_threaded_test_run(info)) stop_threaded_test(info); add_threaded_test(info); } } start_threaded_tests(info); } else { stop_threaded_test(info); } mutex_unlock(&info->lock); return ret; } static int dmatest_chan_set(const char *val, const struct kernel_param *kp) { struct dmatest_info *info = &test_info; struct dmatest_chan *dtc; char chan_reset_val[20]; int ret; mutex_lock(&info->lock); ret = param_set_copystring(val, kp); if (ret) { mutex_unlock(&info->lock); return ret; } /*Clear any previously run threads */ if (!is_threaded_test_run(info) && !is_threaded_test_pending(info)) stop_threaded_test(info); /* Reject channels that are already registered */ if (is_threaded_test_pending(info)) { list_for_each_entry(dtc, &info->channels, node) { if (strcmp(dma_chan_name(dtc->chan), strim(test_channel)) == 0) { dtc = list_last_entry(&info->channels, struct dmatest_chan, node); strscpy(chan_reset_val, dma_chan_name(dtc->chan), sizeof(chan_reset_val)); ret = -EBUSY; goto add_chan_err; } } } add_threaded_test(info); /* Check if channel was added successfully */ if (!list_empty(&info->channels)) { /* * if new channel was not successfully added, revert the * "test_channel" string to the name of the last successfully * added channel. exception for when users issues empty string * to channel parameter. */ dtc = list_last_entry(&info->channels, struct dmatest_chan, node); if ((strcmp(dma_chan_name(dtc->chan), strim(test_channel)) != 0) && (strcmp("", strim(test_channel)) != 0)) { ret = -EINVAL; strscpy(chan_reset_val, dma_chan_name(dtc->chan), sizeof(chan_reset_val)); goto add_chan_err; } } else { /* Clear test_channel if no channels were added successfully */ strscpy(chan_reset_val, "", sizeof(chan_reset_val)); ret = -EBUSY; goto add_chan_err; } info->last_error = ret; mutex_unlock(&info->lock); return ret; add_chan_err: param_set_copystring(chan_reset_val, kp); info->last_error = ret; mutex_unlock(&info->lock); return ret; } static int dmatest_chan_get(char *val, const struct kernel_param *kp) { struct dmatest_info *info = &test_info; mutex_lock(&info->lock); if (!is_threaded_test_run(info) && !is_threaded_test_pending(info)) { stop_threaded_test(info); strscpy(test_channel, "", sizeof(test_channel)); } mutex_unlock(&info->lock); return param_get_string(val, kp); } static int dmatest_test_list_get(char *val, const struct kernel_param *kp) { struct dmatest_info *info = &test_info; struct dmatest_chan *dtc; unsigned int thread_count = 0; list_for_each_entry(dtc, &info->channels, node) { struct dmatest_thread *thread; thread_count = 0; list_for_each_entry(thread, &dtc->threads, node) { thread_count++; } pr_info("%u threads using %s\n", thread_count, dma_chan_name(dtc->chan)); } return 0; } static int __init dmatest_init(void) { struct dmatest_info *info = &test_info; struct dmatest_params *params = &info->params; if (dmatest_run) { mutex_lock(&info->lock); add_threaded_test(info); run_pending_tests(info); mutex_unlock(&info->lock); } if (params->iterations && wait) wait_event(thread_wait, !is_threaded_test_run(info)); /* module parameters are stable, inittime tests are started, * let userspace take over 'run' control */ info->did_init = true; return 0; } /* when compiled-in wait for drivers to load first */ late_initcall(dmatest_init); static void __exit dmatest_exit(void) { struct dmatest_info *info = &test_info; mutex_lock(&info->lock); stop_threaded_test(info); mutex_unlock(&info->lock); } module_exit(dmatest_exit); MODULE_AUTHOR("Haavard Skinnemoen (Atmel)"); MODULE_DESCRIPTION("DMA Engine test module"); MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1