Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Andy Shevchenko | 1015 | 84.94% | 14 | 63.64% |
Håvard Skinnemoen | 85 | 7.11% | 1 | 4.55% |
Viresh Kumar | 48 | 4.02% | 3 | 13.64% |
Serge Semin | 47 | 3.93% | 4 | 18.18% |
Total | 1195 | 22 |
// SPDX-License-Identifier: GPL-2.0 // Copyright (C) 2013,2018,2020-2021 Intel Corporation #include <linux/bitops.h> #include <linux/dmaengine.h> #include <linux/errno.h> #include <linux/io.h> #include <linux/pci.h> #include <linux/slab.h> #include <linux/types.h> #include "internal.h" #define DMA_CTL_CH(x) (0x1000 + (x) * 4) #define DMA_SRC_ADDR_FILLIN(x) (0x1100 + (x) * 4) #define DMA_DST_ADDR_FILLIN(x) (0x1200 + (x) * 4) #define DMA_XBAR_SEL(x) (0x1300 + (x) * 4) #define DMA_REGACCESS_CHID_CFG (0x1400) #define CTL_CH_TRANSFER_MODE_MASK GENMASK(1, 0) #define CTL_CH_TRANSFER_MODE_S2S 0 #define CTL_CH_TRANSFER_MODE_S2D 1 #define CTL_CH_TRANSFER_MODE_D2S 2 #define CTL_CH_TRANSFER_MODE_D2D 3 #define CTL_CH_RD_RS_MASK GENMASK(4, 3) #define CTL_CH_WR_RS_MASK GENMASK(6, 5) #define CTL_CH_RD_NON_SNOOP_BIT BIT(8) #define CTL_CH_WR_NON_SNOOP_BIT BIT(9) #define XBAR_SEL_DEVID_MASK GENMASK(15, 0) #define XBAR_SEL_RX_TX_BIT BIT(16) #define XBAR_SEL_RX_TX_SHIFT 16 #define REGACCESS_CHID_MASK GENMASK(2, 0) static unsigned int idma32_get_slave_devfn(struct dw_dma_chan *dwc) { struct device *slave = dwc->chan.slave; if (!slave || !dev_is_pci(slave)) return 0; return to_pci_dev(slave)->devfn; } static void idma32_initialize_chan_xbar(struct dw_dma_chan *dwc) { struct dw_dma *dw = to_dw_dma(dwc->chan.device); void __iomem *misc = __dw_regs(dw); u32 cfghi = 0, cfglo = 0; u8 dst_id, src_id; u32 value; /* DMA Channel ID Configuration register must be programmed first */ value = readl(misc + DMA_REGACCESS_CHID_CFG); value &= ~REGACCESS_CHID_MASK; value |= dwc->chan.chan_id; writel(value, misc + DMA_REGACCESS_CHID_CFG); /* Configure channel attributes */ value = readl(misc + DMA_CTL_CH(dwc->chan.chan_id)); value &= ~(CTL_CH_RD_NON_SNOOP_BIT | CTL_CH_WR_NON_SNOOP_BIT); value &= ~(CTL_CH_RD_RS_MASK | CTL_CH_WR_RS_MASK); value &= ~CTL_CH_TRANSFER_MODE_MASK; switch (dwc->direction) { case DMA_MEM_TO_DEV: value |= CTL_CH_TRANSFER_MODE_D2S; value |= CTL_CH_WR_NON_SNOOP_BIT; break; case DMA_DEV_TO_MEM: value |= CTL_CH_TRANSFER_MODE_S2D; value |= CTL_CH_RD_NON_SNOOP_BIT; break; default: /* * Memory-to-Memory and Device-to-Device are ignored for now. * * For Memory-to-Memory transfers we would need to set mode * and disable snooping on both sides. */ return; } writel(value, misc + DMA_CTL_CH(dwc->chan.chan_id)); /* Configure crossbar selection */ value = readl(misc + DMA_XBAR_SEL(dwc->chan.chan_id)); /* DEVFN selection */ value &= ~XBAR_SEL_DEVID_MASK; value |= idma32_get_slave_devfn(dwc); switch (dwc->direction) { case DMA_MEM_TO_DEV: value |= XBAR_SEL_RX_TX_BIT; break; case DMA_DEV_TO_MEM: value &= ~XBAR_SEL_RX_TX_BIT; break; default: /* Memory-to-Memory and Device-to-Device are ignored for now */ return; } writel(value, misc + DMA_XBAR_SEL(dwc->chan.chan_id)); /* Configure DMA channel low and high registers */ switch (dwc->direction) { case DMA_MEM_TO_DEV: dst_id = dwc->chan.chan_id; src_id = dwc->dws.src_id; break; case DMA_DEV_TO_MEM: dst_id = dwc->dws.dst_id; src_id = dwc->chan.chan_id; break; default: /* Memory-to-Memory and Device-to-Device are ignored for now */ return; } /* Set default burst alignment */ cfglo |= IDMA32C_CFGL_DST_BURST_ALIGN | IDMA32C_CFGL_SRC_BURST_ALIGN; /* Low 4 bits of the request lines */ cfghi |= IDMA32C_CFGH_DST_PER(dst_id & 0xf); cfghi |= IDMA32C_CFGH_SRC_PER(src_id & 0xf); /* Request line extension (2 bits) */ cfghi |= IDMA32C_CFGH_DST_PER_EXT(dst_id >> 4 & 0x3); cfghi |= IDMA32C_CFGH_SRC_PER_EXT(src_id >> 4 & 0x3); channel_writel(dwc, CFG_LO, cfglo); channel_writel(dwc, CFG_HI, cfghi); } static void idma32_initialize_chan_generic(struct dw_dma_chan *dwc) { u32 cfghi = 0; u32 cfglo = 0; /* Set default burst alignment */ cfglo |= IDMA32C_CFGL_DST_BURST_ALIGN | IDMA32C_CFGL_SRC_BURST_ALIGN; /* Low 4 bits of the request lines */ cfghi |= IDMA32C_CFGH_DST_PER(dwc->dws.dst_id & 0xf); cfghi |= IDMA32C_CFGH_SRC_PER(dwc->dws.src_id & 0xf); /* Request line extension (2 bits) */ cfghi |= IDMA32C_CFGH_DST_PER_EXT(dwc->dws.dst_id >> 4 & 0x3); cfghi |= IDMA32C_CFGH_SRC_PER_EXT(dwc->dws.src_id >> 4 & 0x3); channel_writel(dwc, CFG_LO, cfglo); channel_writel(dwc, CFG_HI, cfghi); } static void idma32_suspend_chan(struct dw_dma_chan *dwc, bool drain) { u32 cfglo = channel_readl(dwc, CFG_LO); if (drain) cfglo |= IDMA32C_CFGL_CH_DRAIN; channel_writel(dwc, CFG_LO, cfglo | DWC_CFGL_CH_SUSP); } static void idma32_resume_chan(struct dw_dma_chan *dwc, bool drain) { u32 cfglo = channel_readl(dwc, CFG_LO); if (drain) cfglo &= ~IDMA32C_CFGL_CH_DRAIN; channel_writel(dwc, CFG_LO, cfglo & ~DWC_CFGL_CH_SUSP); } static u32 idma32_bytes2block(struct dw_dma_chan *dwc, size_t bytes, unsigned int width, size_t *len) { u32 block; if (bytes > dwc->block_size) { block = dwc->block_size; *len = dwc->block_size; } else { block = bytes; *len = bytes; } return block; } static size_t idma32_block2bytes(struct dw_dma_chan *dwc, u32 block, u32 width) { return IDMA32C_CTLH_BLOCK_TS(block); } static inline u8 idma32_encode_maxburst(u32 maxburst) { return maxburst > 1 ? fls(maxburst) - 1 : 0; } static u32 idma32_prepare_ctllo(struct dw_dma_chan *dwc) { struct dma_slave_config *sconfig = &dwc->dma_sconfig; u8 smsize = 0, dmsize = 0; if (dwc->direction == DMA_MEM_TO_DEV) dmsize = idma32_encode_maxburst(sconfig->dst_maxburst); else if (dwc->direction == DMA_DEV_TO_MEM) smsize = idma32_encode_maxburst(sconfig->src_maxburst); return DWC_CTLL_LLP_D_EN | DWC_CTLL_LLP_S_EN | DWC_CTLL_DST_MSIZE(dmsize) | DWC_CTLL_SRC_MSIZE(smsize); } static void idma32_set_device_name(struct dw_dma *dw, int id) { snprintf(dw->name, sizeof(dw->name), "idma32:dmac%d", id); } /* * Program FIFO size of channels. * * By default full FIFO (512 bytes) is assigned to channel 0. Here we * slice FIFO on equal parts between channels. */ static void idma32_fifo_partition(struct dw_dma *dw) { u64 value = IDMA32C_FP_PSIZE_CH0(64) | IDMA32C_FP_PSIZE_CH1(64) | IDMA32C_FP_UPDATE; u64 fifo_partition = 0; /* Fill FIFO_PARTITION low bits (Channels 0..1, 4..5) */ fifo_partition |= value << 0; /* Fill FIFO_PARTITION high bits (Channels 2..3, 6..7) */ fifo_partition |= value << 32; /* Program FIFO Partition registers - 64 bytes per channel */ idma32_writeq(dw, FIFO_PARTITION1, fifo_partition); idma32_writeq(dw, FIFO_PARTITION0, fifo_partition); } static void idma32_disable(struct dw_dma *dw) { do_dw_dma_off(dw); idma32_fifo_partition(dw); } static void idma32_enable(struct dw_dma *dw) { idma32_fifo_partition(dw); do_dw_dma_on(dw); } int idma32_dma_probe(struct dw_dma_chip *chip) { struct dw_dma *dw; dw = devm_kzalloc(chip->dev, sizeof(*dw), GFP_KERNEL); if (!dw) return -ENOMEM; /* Channel operations */ if (chip->pdata->quirks & DW_DMA_QUIRK_XBAR_PRESENT) dw->initialize_chan = idma32_initialize_chan_xbar; else dw->initialize_chan = idma32_initialize_chan_generic; dw->suspend_chan = idma32_suspend_chan; dw->resume_chan = idma32_resume_chan; dw->prepare_ctllo = idma32_prepare_ctllo; dw->bytes2block = idma32_bytes2block; dw->block2bytes = idma32_block2bytes; /* Device operations */ dw->set_device_name = idma32_set_device_name; dw->disable = idma32_disable; dw->enable = idma32_enable; chip->dw = dw; return do_dma_probe(chip); } EXPORT_SYMBOL_GPL(idma32_dma_probe); int idma32_dma_remove(struct dw_dma_chip *chip) { return do_dma_remove(chip); } EXPORT_SYMBOL_GPL(idma32_dma_remove);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1