Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Zhang Wei | 2046 | 39.68% | 5 | 5.62% |
Ira W. Snyder | 1507 | 29.23% | 24 | 26.97% |
Hongbo Zhang | 1014 | 19.67% | 7 | 7.87% |
Timur Tabi | 250 | 4.85% | 1 | 1.12% |
Vinod Koul | 53 | 1.03% | 2 | 2.25% |
Kevin Hao | 40 | 0.78% | 1 | 1.12% |
Dan J Williams | 38 | 0.74% | 5 | 5.62% |
Maxime Ripard | 36 | 0.70% | 1 | 1.12% |
Li Yang | 24 | 0.47% | 3 | 3.37% |
Russell King | 21 | 0.41% | 4 | 4.49% |
Grant C. Likely | 20 | 0.39% | 5 | 5.62% |
Thomas Breitung | 16 | 0.31% | 1 | 1.12% |
Allen Pais | 13 | 0.25% | 1 | 1.12% |
Wen He | 8 | 0.16% | 1 | 1.12% |
Luis de Bethencourt | 7 | 0.14% | 1 | 1.12% |
Linus Walleij | 7 | 0.14% | 1 | 1.12% |
Peter Korsgaard | 7 | 0.14% | 1 | 1.12% |
Xuelin Shi | 6 | 0.12% | 2 | 2.25% |
Wolfram Sang | 4 | 0.08% | 1 | 1.12% |
Dave Jiang | 4 | 0.08% | 2 | 2.25% |
Christophe Jaillet | 4 | 0.08% | 1 | 1.12% |
Peter Ujfalusi | 3 | 0.06% | 1 | 1.12% |
Arvind Yadav | 3 | 0.06% | 1 | 1.12% |
Linus Torvalds (pre-git) | 2 | 0.04% | 1 | 1.12% |
Michael Ellerman | 2 | 0.04% | 1 | 1.12% |
Gustavo A. R. Silva | 2 | 0.04% | 1 | 1.12% |
Uwe Kleine-König | 2 | 0.04% | 1 | 1.12% |
Kumar Gala | 2 | 0.04% | 1 | 1.12% |
Jingoo Han | 2 | 0.04% | 1 | 1.12% |
Rob Herring | 2 | 0.04% | 2 | 2.25% |
Barry Song | 2 | 0.04% | 1 | 1.12% |
Thomas Gleixner | 2 | 0.04% | 1 | 1.12% |
Márton Németh | 1 | 0.02% | 1 | 1.12% |
Roel Kluin | 1 | 0.02% | 1 | 1.12% |
Julia Lawall | 1 | 0.02% | 1 | 1.12% |
Masanari Iida | 1 | 0.02% | 1 | 1.12% |
Steven J. Magnani | 1 | 0.02% | 1 | 1.12% |
Andy Shevchenko | 1 | 0.02% | 1 | 1.12% |
Linus Torvalds | 1 | 0.02% | 1 | 1.12% |
Total | 5156 | 89 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * Freescale MPC85xx, MPC83xx DMA Engine support * * Copyright (C) 2007-2010 Freescale Semiconductor, Inc. All rights reserved. * * Author: * Zhang Wei <wei.zhang@freescale.com>, Jul 2007 * Ebony Zhu <ebony.zhu@freescale.com>, May 2007 * * Description: * DMA engine driver for Freescale MPC8540 DMA controller, which is * also fit for MPC8560, MPC8555, MPC8548, MPC8641, and etc. * The support for MPC8349 DMA controller is also added. * * This driver instructs the DMA controller to issue the PCI Read Multiple * command for PCI read operations, instead of using the default PCI Read Line * command. Please be aware that this setting may result in read pre-fetching * on some platforms. */ #include <linux/init.h> #include <linux/module.h> #include <linux/pci.h> #include <linux/slab.h> #include <linux/interrupt.h> #include <linux/dmaengine.h> #include <linux/delay.h> #include <linux/dma-mapping.h> #include <linux/dmapool.h> #include <linux/of.h> #include <linux/of_address.h> #include <linux/of_irq.h> #include <linux/platform_device.h> #include <linux/fsldma.h> #include "dmaengine.h" #include "fsldma.h" #define chan_dbg(chan, fmt, arg...) \ dev_dbg(chan->dev, "%s: " fmt, chan->name, ##arg) #define chan_err(chan, fmt, arg...) \ dev_err(chan->dev, "%s: " fmt, chan->name, ##arg) static const char msg_ld_oom[] = "No free memory for link descriptor"; /* * Register Helpers */ static void set_sr(struct fsldma_chan *chan, u32 val) { FSL_DMA_OUT(chan, &chan->regs->sr, val, 32); } static u32 get_sr(struct fsldma_chan *chan) { return FSL_DMA_IN(chan, &chan->regs->sr, 32); } static void set_mr(struct fsldma_chan *chan, u32 val) { FSL_DMA_OUT(chan, &chan->regs->mr, val, 32); } static u32 get_mr(struct fsldma_chan *chan) { return FSL_DMA_IN(chan, &chan->regs->mr, 32); } static void set_cdar(struct fsldma_chan *chan, dma_addr_t addr) { FSL_DMA_OUT(chan, &chan->regs->cdar, addr | FSL_DMA_SNEN, 64); } static dma_addr_t get_cdar(struct fsldma_chan *chan) { return FSL_DMA_IN(chan, &chan->regs->cdar, 64) & ~FSL_DMA_SNEN; } static void set_bcr(struct fsldma_chan *chan, u32 val) { FSL_DMA_OUT(chan, &chan->regs->bcr, val, 32); } static u32 get_bcr(struct fsldma_chan *chan) { return FSL_DMA_IN(chan, &chan->regs->bcr, 32); } /* * Descriptor Helpers */ static void set_desc_cnt(struct fsldma_chan *chan, struct fsl_dma_ld_hw *hw, u32 count) { hw->count = CPU_TO_DMA(chan, count, 32); } static void set_desc_src(struct fsldma_chan *chan, struct fsl_dma_ld_hw *hw, dma_addr_t src) { u64 snoop_bits; snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) ? ((u64)FSL_DMA_SATR_SREADTYPE_SNOOP_READ << 32) : 0; hw->src_addr = CPU_TO_DMA(chan, snoop_bits | src, 64); } static void set_desc_dst(struct fsldma_chan *chan, struct fsl_dma_ld_hw *hw, dma_addr_t dst) { u64 snoop_bits; snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) ? ((u64)FSL_DMA_DATR_DWRITETYPE_SNOOP_WRITE << 32) : 0; hw->dst_addr = CPU_TO_DMA(chan, snoop_bits | dst, 64); } static void set_desc_next(struct fsldma_chan *chan, struct fsl_dma_ld_hw *hw, dma_addr_t next) { u64 snoop_bits; snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX) ? FSL_DMA_SNEN : 0; hw->next_ln_addr = CPU_TO_DMA(chan, snoop_bits | next, 64); } static void set_ld_eol(struct fsldma_chan *chan, struct fsl_desc_sw *desc) { u64 snoop_bits; snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX) ? FSL_DMA_SNEN : 0; desc->hw.next_ln_addr = CPU_TO_DMA(chan, DMA_TO_CPU(chan, desc->hw.next_ln_addr, 64) | FSL_DMA_EOL | snoop_bits, 64); } /* * DMA Engine Hardware Control Helpers */ static void dma_init(struct fsldma_chan *chan) { /* Reset the channel */ set_mr(chan, 0); switch (chan->feature & FSL_DMA_IP_MASK) { case FSL_DMA_IP_85XX: /* Set the channel to below modes: * EIE - Error interrupt enable * EOLNIE - End of links interrupt enable * BWC - Bandwidth sharing among channels */ set_mr(chan, FSL_DMA_MR_BWC | FSL_DMA_MR_EIE | FSL_DMA_MR_EOLNIE); break; case FSL_DMA_IP_83XX: /* Set the channel to below modes: * EOTIE - End-of-transfer interrupt enable * PRC_RM - PCI read multiple */ set_mr(chan, FSL_DMA_MR_EOTIE | FSL_DMA_MR_PRC_RM); break; } } static int dma_is_idle(struct fsldma_chan *chan) { u32 sr = get_sr(chan); return (!(sr & FSL_DMA_SR_CB)) || (sr & FSL_DMA_SR_CH); } /* * Start the DMA controller * * Preconditions: * - the CDAR register must point to the start descriptor * - the MRn[CS] bit must be cleared */ static void dma_start(struct fsldma_chan *chan) { u32 mode; mode = get_mr(chan); if (chan->feature & FSL_DMA_CHAN_PAUSE_EXT) { set_bcr(chan, 0); mode |= FSL_DMA_MR_EMP_EN; } else { mode &= ~FSL_DMA_MR_EMP_EN; } if (chan->feature & FSL_DMA_CHAN_START_EXT) { mode |= FSL_DMA_MR_EMS_EN; } else { mode &= ~FSL_DMA_MR_EMS_EN; mode |= FSL_DMA_MR_CS; } set_mr(chan, mode); } static void dma_halt(struct fsldma_chan *chan) { u32 mode; int i; /* read the mode register */ mode = get_mr(chan); /* * The 85xx controller supports channel abort, which will stop * the current transfer. On 83xx, this bit is the transfer error * mask bit, which should not be changed. */ if ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) { mode |= FSL_DMA_MR_CA; set_mr(chan, mode); mode &= ~FSL_DMA_MR_CA; } /* stop the DMA controller */ mode &= ~(FSL_DMA_MR_CS | FSL_DMA_MR_EMS_EN); set_mr(chan, mode); /* wait for the DMA controller to become idle */ for (i = 0; i < 100; i++) { if (dma_is_idle(chan)) return; udelay(10); } if (!dma_is_idle(chan)) chan_err(chan, "DMA halt timeout!\n"); } /** * fsl_chan_set_src_loop_size - Set source address hold transfer size * @chan : Freescale DMA channel * @size : Address loop size, 0 for disable loop * * The set source address hold transfer size. The source * address hold or loop transfer size is when the DMA transfer * data from source address (SA), if the loop size is 4, the DMA will * read data from SA, SA + 1, SA + 2, SA + 3, then loop back to SA, * SA + 1 ... and so on. */ static void fsl_chan_set_src_loop_size(struct fsldma_chan *chan, int size) { u32 mode; mode = get_mr(chan); switch (size) { case 0: mode &= ~FSL_DMA_MR_SAHE; break; case 1: case 2: case 4: case 8: mode &= ~FSL_DMA_MR_SAHTS_MASK; mode |= FSL_DMA_MR_SAHE | (__ilog2(size) << 14); break; } set_mr(chan, mode); } /** * fsl_chan_set_dst_loop_size - Set destination address hold transfer size * @chan : Freescale DMA channel * @size : Address loop size, 0 for disable loop * * The set destination address hold transfer size. The destination * address hold or loop transfer size is when the DMA transfer * data to destination address (TA), if the loop size is 4, the DMA will * write data to TA, TA + 1, TA + 2, TA + 3, then loop back to TA, * TA + 1 ... and so on. */ static void fsl_chan_set_dst_loop_size(struct fsldma_chan *chan, int size) { u32 mode; mode = get_mr(chan); switch (size) { case 0: mode &= ~FSL_DMA_MR_DAHE; break; case 1: case 2: case 4: case 8: mode &= ~FSL_DMA_MR_DAHTS_MASK; mode |= FSL_DMA_MR_DAHE | (__ilog2(size) << 16); break; } set_mr(chan, mode); } /** * fsl_chan_set_request_count - Set DMA Request Count for external control * @chan : Freescale DMA channel * @size : Number of bytes to transfer in a single request * * The Freescale DMA channel can be controlled by the external signal DREQ#. * The DMA request count is how many bytes are allowed to transfer before * pausing the channel, after which a new assertion of DREQ# resumes channel * operation. * * A size of 0 disables external pause control. The maximum size is 1024. */ static void fsl_chan_set_request_count(struct fsldma_chan *chan, int size) { u32 mode; BUG_ON(size > 1024); mode = get_mr(chan); mode &= ~FSL_DMA_MR_BWC_MASK; mode |= (__ilog2(size) << 24) & FSL_DMA_MR_BWC_MASK; set_mr(chan, mode); } /** * fsl_chan_toggle_ext_pause - Toggle channel external pause status * @chan : Freescale DMA channel * @enable : 0 is disabled, 1 is enabled. * * The Freescale DMA channel can be controlled by the external signal DREQ#. * The DMA Request Count feature should be used in addition to this feature * to set the number of bytes to transfer before pausing the channel. */ static void fsl_chan_toggle_ext_pause(struct fsldma_chan *chan, int enable) { if (enable) chan->feature |= FSL_DMA_CHAN_PAUSE_EXT; else chan->feature &= ~FSL_DMA_CHAN_PAUSE_EXT; } /** * fsl_chan_toggle_ext_start - Toggle channel external start status * @chan : Freescale DMA channel * @enable : 0 is disabled, 1 is enabled. * * If enable the external start, the channel can be started by an * external DMA start pin. So the dma_start() does not start the * transfer immediately. The DMA channel will wait for the * control pin asserted. */ static void fsl_chan_toggle_ext_start(struct fsldma_chan *chan, int enable) { if (enable) chan->feature |= FSL_DMA_CHAN_START_EXT; else chan->feature &= ~FSL_DMA_CHAN_START_EXT; } int fsl_dma_external_start(struct dma_chan *dchan, int enable) { struct fsldma_chan *chan; if (!dchan) return -EINVAL; chan = to_fsl_chan(dchan); fsl_chan_toggle_ext_start(chan, enable); return 0; } EXPORT_SYMBOL_GPL(fsl_dma_external_start); static void append_ld_queue(struct fsldma_chan *chan, struct fsl_desc_sw *desc) { struct fsl_desc_sw *tail = to_fsl_desc(chan->ld_pending.prev); if (list_empty(&chan->ld_pending)) goto out_splice; /* * Add the hardware descriptor to the chain of hardware descriptors * that already exists in memory. * * This will un-set the EOL bit of the existing transaction, and the * last link in this transaction will become the EOL descriptor. */ set_desc_next(chan, &tail->hw, desc->async_tx.phys); /* * Add the software descriptor and all children to the list * of pending transactions */ out_splice: list_splice_tail_init(&desc->tx_list, &chan->ld_pending); } static dma_cookie_t fsl_dma_tx_submit(struct dma_async_tx_descriptor *tx) { struct fsldma_chan *chan = to_fsl_chan(tx->chan); struct fsl_desc_sw *desc = tx_to_fsl_desc(tx); struct fsl_desc_sw *child; dma_cookie_t cookie = -EINVAL; spin_lock_bh(&chan->desc_lock); #ifdef CONFIG_PM if (unlikely(chan->pm_state != RUNNING)) { chan_dbg(chan, "cannot submit due to suspend\n"); spin_unlock_bh(&chan->desc_lock); return -1; } #endif /* * assign cookies to all of the software descriptors * that make up this transaction */ list_for_each_entry(child, &desc->tx_list, node) { cookie = dma_cookie_assign(&child->async_tx); } /* put this transaction onto the tail of the pending queue */ append_ld_queue(chan, desc); spin_unlock_bh(&chan->desc_lock); return cookie; } /** * fsl_dma_free_descriptor - Free descriptor from channel's DMA pool. * @chan : Freescale DMA channel * @desc: descriptor to be freed */ static void fsl_dma_free_descriptor(struct fsldma_chan *chan, struct fsl_desc_sw *desc) { list_del(&desc->node); chan_dbg(chan, "LD %p free\n", desc); dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys); } /** * fsl_dma_alloc_descriptor - Allocate descriptor from channel's DMA pool. * @chan : Freescale DMA channel * * Return - The descriptor allocated. NULL for failed. */ static struct fsl_desc_sw *fsl_dma_alloc_descriptor(struct fsldma_chan *chan) { struct fsl_desc_sw *desc; dma_addr_t pdesc; desc = dma_pool_zalloc(chan->desc_pool, GFP_ATOMIC, &pdesc); if (!desc) { chan_dbg(chan, "out of memory for link descriptor\n"); return NULL; } INIT_LIST_HEAD(&desc->tx_list); dma_async_tx_descriptor_init(&desc->async_tx, &chan->common); desc->async_tx.tx_submit = fsl_dma_tx_submit; desc->async_tx.phys = pdesc; chan_dbg(chan, "LD %p allocated\n", desc); return desc; } /** * fsldma_clean_completed_descriptor - free all descriptors which * has been completed and acked * @chan: Freescale DMA channel * * This function is used on all completed and acked descriptors. * All descriptors should only be freed in this function. */ static void fsldma_clean_completed_descriptor(struct fsldma_chan *chan) { struct fsl_desc_sw *desc, *_desc; /* Run the callback for each descriptor, in order */ list_for_each_entry_safe(desc, _desc, &chan->ld_completed, node) if (async_tx_test_ack(&desc->async_tx)) fsl_dma_free_descriptor(chan, desc); } /** * fsldma_run_tx_complete_actions - cleanup a single link descriptor * @chan: Freescale DMA channel * @desc: descriptor to cleanup and free * @cookie: Freescale DMA transaction identifier * * This function is used on a descriptor which has been executed by the DMA * controller. It will run any callbacks, submit any dependencies. */ static dma_cookie_t fsldma_run_tx_complete_actions(struct fsldma_chan *chan, struct fsl_desc_sw *desc, dma_cookie_t cookie) { struct dma_async_tx_descriptor *txd = &desc->async_tx; dma_cookie_t ret = cookie; BUG_ON(txd->cookie < 0); if (txd->cookie > 0) { ret = txd->cookie; dma_descriptor_unmap(txd); /* Run the link descriptor callback function */ dmaengine_desc_get_callback_invoke(txd, NULL); } /* Run any dependencies */ dma_run_dependencies(txd); return ret; } /** * fsldma_clean_running_descriptor - move the completed descriptor from * ld_running to ld_completed * @chan: Freescale DMA channel * @desc: the descriptor which is completed * * Free the descriptor directly if acked by async_tx api, or move it to * queue ld_completed. */ static void fsldma_clean_running_descriptor(struct fsldma_chan *chan, struct fsl_desc_sw *desc) { /* Remove from the list of transactions */ list_del(&desc->node); /* * the client is allowed to attach dependent operations * until 'ack' is set */ if (!async_tx_test_ack(&desc->async_tx)) { /* * Move this descriptor to the list of descriptors which is * completed, but still awaiting the 'ack' bit to be set. */ list_add_tail(&desc->node, &chan->ld_completed); return; } dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys); } /** * fsl_chan_xfer_ld_queue - transfer any pending transactions * @chan : Freescale DMA channel * * HARDWARE STATE: idle * LOCKING: must hold chan->desc_lock */ static void fsl_chan_xfer_ld_queue(struct fsldma_chan *chan) { struct fsl_desc_sw *desc; /* * If the list of pending descriptors is empty, then we * don't need to do any work at all */ if (list_empty(&chan->ld_pending)) { chan_dbg(chan, "no pending LDs\n"); return; } /* * The DMA controller is not idle, which means that the interrupt * handler will start any queued transactions when it runs after * this transaction finishes */ if (!chan->idle) { chan_dbg(chan, "DMA controller still busy\n"); return; } /* * If there are some link descriptors which have not been * transferred, we need to start the controller */ /* * Move all elements from the queue of pending transactions * onto the list of running transactions */ chan_dbg(chan, "idle, starting controller\n"); desc = list_first_entry(&chan->ld_pending, struct fsl_desc_sw, node); list_splice_tail_init(&chan->ld_pending, &chan->ld_running); /* * The 85xx DMA controller doesn't clear the channel start bit * automatically at the end of a transfer. Therefore we must clear * it in software before starting the transfer. */ if ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) { u32 mode; mode = get_mr(chan); mode &= ~FSL_DMA_MR_CS; set_mr(chan, mode); } /* * Program the descriptor's address into the DMA controller, * then start the DMA transaction */ set_cdar(chan, desc->async_tx.phys); get_cdar(chan); dma_start(chan); chan->idle = false; } /** * fsldma_cleanup_descriptors - cleanup link descriptors which are completed * and move them to ld_completed to free until flag 'ack' is set * @chan: Freescale DMA channel * * This function is used on descriptors which have been executed by the DMA * controller. It will run any callbacks, submit any dependencies, then * free these descriptors if flag 'ack' is set. */ static void fsldma_cleanup_descriptors(struct fsldma_chan *chan) { struct fsl_desc_sw *desc, *_desc; dma_cookie_t cookie = 0; dma_addr_t curr_phys = get_cdar(chan); int seen_current = 0; fsldma_clean_completed_descriptor(chan); /* Run the callback for each descriptor, in order */ list_for_each_entry_safe(desc, _desc, &chan->ld_running, node) { /* * do not advance past the current descriptor loaded into the * hardware channel, subsequent descriptors are either in * process or have not been submitted */ if (seen_current) break; /* * stop the search if we reach the current descriptor and the * channel is busy */ if (desc->async_tx.phys == curr_phys) { seen_current = 1; if (!dma_is_idle(chan)) break; } cookie = fsldma_run_tx_complete_actions(chan, desc, cookie); fsldma_clean_running_descriptor(chan, desc); } /* * Start any pending transactions automatically * * In the ideal case, we keep the DMA controller busy while we go * ahead and free the descriptors below. */ fsl_chan_xfer_ld_queue(chan); if (cookie > 0) chan->common.completed_cookie = cookie; } /** * fsl_dma_alloc_chan_resources - Allocate resources for DMA channel. * @chan : Freescale DMA channel * * This function will create a dma pool for descriptor allocation. * * Return - The number of descriptors allocated. */ static int fsl_dma_alloc_chan_resources(struct dma_chan *dchan) { struct fsldma_chan *chan = to_fsl_chan(dchan); /* Has this channel already been allocated? */ if (chan->desc_pool) return 1; /* * We need the descriptor to be aligned to 32bytes * for meeting FSL DMA specification requirement. */ chan->desc_pool = dma_pool_create(chan->name, chan->dev, sizeof(struct fsl_desc_sw), __alignof__(struct fsl_desc_sw), 0); if (!chan->desc_pool) { chan_err(chan, "unable to allocate descriptor pool\n"); return -ENOMEM; } /* there is at least one descriptor free to be allocated */ return 1; } /** * fsldma_free_desc_list - Free all descriptors in a queue * @chan: Freescae DMA channel * @list: the list to free * * LOCKING: must hold chan->desc_lock */ static void fsldma_free_desc_list(struct fsldma_chan *chan, struct list_head *list) { struct fsl_desc_sw *desc, *_desc; list_for_each_entry_safe(desc, _desc, list, node) fsl_dma_free_descriptor(chan, desc); } static void fsldma_free_desc_list_reverse(struct fsldma_chan *chan, struct list_head *list) { struct fsl_desc_sw *desc, *_desc; list_for_each_entry_safe_reverse(desc, _desc, list, node) fsl_dma_free_descriptor(chan, desc); } /** * fsl_dma_free_chan_resources - Free all resources of the channel. * @chan : Freescale DMA channel */ static void fsl_dma_free_chan_resources(struct dma_chan *dchan) { struct fsldma_chan *chan = to_fsl_chan(dchan); chan_dbg(chan, "free all channel resources\n"); spin_lock_bh(&chan->desc_lock); fsldma_cleanup_descriptors(chan); fsldma_free_desc_list(chan, &chan->ld_pending); fsldma_free_desc_list(chan, &chan->ld_running); fsldma_free_desc_list(chan, &chan->ld_completed); spin_unlock_bh(&chan->desc_lock); dma_pool_destroy(chan->desc_pool); chan->desc_pool = NULL; } static struct dma_async_tx_descriptor * fsl_dma_prep_memcpy(struct dma_chan *dchan, dma_addr_t dma_dst, dma_addr_t dma_src, size_t len, unsigned long flags) { struct fsldma_chan *chan; struct fsl_desc_sw *first = NULL, *prev = NULL, *new; size_t copy; if (!dchan) return NULL; if (!len) return NULL; chan = to_fsl_chan(dchan); do { /* Allocate the link descriptor from DMA pool */ new = fsl_dma_alloc_descriptor(chan); if (!new) { chan_err(chan, "%s\n", msg_ld_oom); goto fail; } copy = min(len, (size_t)FSL_DMA_BCR_MAX_CNT); set_desc_cnt(chan, &new->hw, copy); set_desc_src(chan, &new->hw, dma_src); set_desc_dst(chan, &new->hw, dma_dst); if (!first) first = new; else set_desc_next(chan, &prev->hw, new->async_tx.phys); new->async_tx.cookie = 0; async_tx_ack(&new->async_tx); prev = new; len -= copy; dma_src += copy; dma_dst += copy; /* Insert the link descriptor to the LD ring */ list_add_tail(&new->node, &first->tx_list); } while (len); new->async_tx.flags = flags; /* client is in control of this ack */ new->async_tx.cookie = -EBUSY; /* Set End-of-link to the last link descriptor of new list */ set_ld_eol(chan, new); return &first->async_tx; fail: if (!first) return NULL; fsldma_free_desc_list_reverse(chan, &first->tx_list); return NULL; } static int fsl_dma_device_terminate_all(struct dma_chan *dchan) { struct fsldma_chan *chan; if (!dchan) return -EINVAL; chan = to_fsl_chan(dchan); spin_lock_bh(&chan->desc_lock); /* Halt the DMA engine */ dma_halt(chan); /* Remove and free all of the descriptors in the LD queue */ fsldma_free_desc_list(chan, &chan->ld_pending); fsldma_free_desc_list(chan, &chan->ld_running); fsldma_free_desc_list(chan, &chan->ld_completed); chan->idle = true; spin_unlock_bh(&chan->desc_lock); return 0; } static int fsl_dma_device_config(struct dma_chan *dchan, struct dma_slave_config *config) { struct fsldma_chan *chan; int size; if (!dchan) return -EINVAL; chan = to_fsl_chan(dchan); /* make sure the channel supports setting burst size */ if (!chan->set_request_count) return -ENXIO; /* we set the controller burst size depending on direction */ if (config->direction == DMA_MEM_TO_DEV) size = config->dst_addr_width * config->dst_maxburst; else size = config->src_addr_width * config->src_maxburst; chan->set_request_count(chan, size); return 0; } /** * fsl_dma_memcpy_issue_pending - Issue the DMA start command * @chan : Freescale DMA channel */ static void fsl_dma_memcpy_issue_pending(struct dma_chan *dchan) { struct fsldma_chan *chan = to_fsl_chan(dchan); spin_lock_bh(&chan->desc_lock); fsl_chan_xfer_ld_queue(chan); spin_unlock_bh(&chan->desc_lock); } /** * fsl_tx_status - Determine the DMA status * @chan : Freescale DMA channel */ static enum dma_status fsl_tx_status(struct dma_chan *dchan, dma_cookie_t cookie, struct dma_tx_state *txstate) { struct fsldma_chan *chan = to_fsl_chan(dchan); enum dma_status ret; ret = dma_cookie_status(dchan, cookie, txstate); if (ret == DMA_COMPLETE) return ret; spin_lock_bh(&chan->desc_lock); fsldma_cleanup_descriptors(chan); spin_unlock_bh(&chan->desc_lock); return dma_cookie_status(dchan, cookie, txstate); } /*----------------------------------------------------------------------------*/ /* Interrupt Handling */ /*----------------------------------------------------------------------------*/ static irqreturn_t fsldma_chan_irq(int irq, void *data) { struct fsldma_chan *chan = data; u32 stat; /* save and clear the status register */ stat = get_sr(chan); set_sr(chan, stat); chan_dbg(chan, "irq: stat = 0x%x\n", stat); /* check that this was really our device */ stat &= ~(FSL_DMA_SR_CB | FSL_DMA_SR_CH); if (!stat) return IRQ_NONE; if (stat & FSL_DMA_SR_TE) chan_err(chan, "Transfer Error!\n"); /* * Programming Error * The DMA_INTERRUPT async_tx is a NULL transfer, which will * trigger a PE interrupt. */ if (stat & FSL_DMA_SR_PE) { chan_dbg(chan, "irq: Programming Error INT\n"); stat &= ~FSL_DMA_SR_PE; if (get_bcr(chan) != 0) chan_err(chan, "Programming Error!\n"); } /* * For MPC8349, EOCDI event need to update cookie * and start the next transfer if it exist. */ if (stat & FSL_DMA_SR_EOCDI) { chan_dbg(chan, "irq: End-of-Chain link INT\n"); stat &= ~FSL_DMA_SR_EOCDI; } /* * If it current transfer is the end-of-transfer, * we should clear the Channel Start bit for * prepare next transfer. */ if (stat & FSL_DMA_SR_EOLNI) { chan_dbg(chan, "irq: End-of-link INT\n"); stat &= ~FSL_DMA_SR_EOLNI; } /* check that the DMA controller is really idle */ if (!dma_is_idle(chan)) chan_err(chan, "irq: controller not idle!\n"); /* check that we handled all of the bits */ if (stat) chan_err(chan, "irq: unhandled sr 0x%08x\n", stat); /* * Schedule the tasklet to handle all cleanup of the current * transaction. It will start a new transaction if there is * one pending. */ tasklet_schedule(&chan->tasklet); chan_dbg(chan, "irq: Exit\n"); return IRQ_HANDLED; } static void dma_do_tasklet(struct tasklet_struct *t) { struct fsldma_chan *chan = from_tasklet(chan, t, tasklet); chan_dbg(chan, "tasklet entry\n"); spin_lock(&chan->desc_lock); /* the hardware is now idle and ready for more */ chan->idle = true; /* Run all cleanup for descriptors which have been completed */ fsldma_cleanup_descriptors(chan); spin_unlock(&chan->desc_lock); chan_dbg(chan, "tasklet exit\n"); } static irqreturn_t fsldma_ctrl_irq(int irq, void *data) { struct fsldma_device *fdev = data; struct fsldma_chan *chan; unsigned int handled = 0; u32 gsr, mask; int i; gsr = (fdev->feature & FSL_DMA_BIG_ENDIAN) ? in_be32(fdev->regs) : in_le32(fdev->regs); mask = 0xff000000; dev_dbg(fdev->dev, "IRQ: gsr 0x%.8x\n", gsr); for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) { chan = fdev->chan[i]; if (!chan) continue; if (gsr & mask) { dev_dbg(fdev->dev, "IRQ: chan %d\n", chan->id); fsldma_chan_irq(irq, chan); handled++; } gsr &= ~mask; mask >>= 8; } return IRQ_RETVAL(handled); } static void fsldma_free_irqs(struct fsldma_device *fdev) { struct fsldma_chan *chan; int i; if (fdev->irq) { dev_dbg(fdev->dev, "free per-controller IRQ\n"); free_irq(fdev->irq, fdev); return; } for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) { chan = fdev->chan[i]; if (chan && chan->irq) { chan_dbg(chan, "free per-channel IRQ\n"); free_irq(chan->irq, chan); } } } static int fsldma_request_irqs(struct fsldma_device *fdev) { struct fsldma_chan *chan; int ret; int i; /* if we have a per-controller IRQ, use that */ if (fdev->irq) { dev_dbg(fdev->dev, "request per-controller IRQ\n"); ret = request_irq(fdev->irq, fsldma_ctrl_irq, IRQF_SHARED, "fsldma-controller", fdev); return ret; } /* no per-controller IRQ, use the per-channel IRQs */ for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) { chan = fdev->chan[i]; if (!chan) continue; if (!chan->irq) { chan_err(chan, "interrupts property missing in device tree\n"); ret = -ENODEV; goto out_unwind; } chan_dbg(chan, "request per-channel IRQ\n"); ret = request_irq(chan->irq, fsldma_chan_irq, IRQF_SHARED, "fsldma-chan", chan); if (ret) { chan_err(chan, "unable to request per-channel IRQ\n"); goto out_unwind; } } return 0; out_unwind: for (/* none */; i >= 0; i--) { chan = fdev->chan[i]; if (!chan) continue; if (!chan->irq) continue; free_irq(chan->irq, chan); } return ret; } /*----------------------------------------------------------------------------*/ /* OpenFirmware Subsystem */ /*----------------------------------------------------------------------------*/ static int fsl_dma_chan_probe(struct fsldma_device *fdev, struct device_node *node, u32 feature, const char *compatible) { struct fsldma_chan *chan; struct resource res; int err; /* alloc channel */ chan = kzalloc(sizeof(*chan), GFP_KERNEL); if (!chan) { err = -ENOMEM; goto out_return; } /* ioremap registers for use */ chan->regs = of_iomap(node, 0); if (!chan->regs) { dev_err(fdev->dev, "unable to ioremap registers\n"); err = -ENOMEM; goto out_free_chan; } err = of_address_to_resource(node, 0, &res); if (err) { dev_err(fdev->dev, "unable to find 'reg' property\n"); goto out_iounmap_regs; } chan->feature = feature; if (!fdev->feature) fdev->feature = chan->feature; /* * If the DMA device's feature is different than the feature * of its channels, report the bug */ WARN_ON(fdev->feature != chan->feature); chan->dev = fdev->dev; chan->id = (res.start & 0xfff) < 0x300 ? ((res.start - 0x100) & 0xfff) >> 7 : ((res.start - 0x200) & 0xfff) >> 7; if (chan->id >= FSL_DMA_MAX_CHANS_PER_DEVICE) { dev_err(fdev->dev, "too many channels for device\n"); err = -EINVAL; goto out_iounmap_regs; } fdev->chan[chan->id] = chan; tasklet_setup(&chan->tasklet, dma_do_tasklet); snprintf(chan->name, sizeof(chan->name), "chan%d", chan->id); /* Initialize the channel */ dma_init(chan); /* Clear cdar registers */ set_cdar(chan, 0); switch (chan->feature & FSL_DMA_IP_MASK) { case FSL_DMA_IP_85XX: chan->toggle_ext_pause = fsl_chan_toggle_ext_pause; fallthrough; case FSL_DMA_IP_83XX: chan->toggle_ext_start = fsl_chan_toggle_ext_start; chan->set_src_loop_size = fsl_chan_set_src_loop_size; chan->set_dst_loop_size = fsl_chan_set_dst_loop_size; chan->set_request_count = fsl_chan_set_request_count; } spin_lock_init(&chan->desc_lock); INIT_LIST_HEAD(&chan->ld_pending); INIT_LIST_HEAD(&chan->ld_running); INIT_LIST_HEAD(&chan->ld_completed); chan->idle = true; #ifdef CONFIG_PM chan->pm_state = RUNNING; #endif chan->common.device = &fdev->common; dma_cookie_init(&chan->common); /* find the IRQ line, if it exists in the device tree */ chan->irq = irq_of_parse_and_map(node, 0); /* Add the channel to DMA device channel list */ list_add_tail(&chan->common.device_node, &fdev->common.channels); dev_info(fdev->dev, "#%d (%s), irq %d\n", chan->id, compatible, chan->irq ? chan->irq : fdev->irq); return 0; out_iounmap_regs: iounmap(chan->regs); out_free_chan: kfree(chan); out_return: return err; } static void fsl_dma_chan_remove(struct fsldma_chan *chan) { irq_dispose_mapping(chan->irq); list_del(&chan->common.device_node); iounmap(chan->regs); kfree(chan); } static int fsldma_of_probe(struct platform_device *op) { struct fsldma_device *fdev; struct device_node *child; unsigned int i; int err; fdev = kzalloc(sizeof(*fdev), GFP_KERNEL); if (!fdev) { err = -ENOMEM; goto out_return; } fdev->dev = &op->dev; INIT_LIST_HEAD(&fdev->common.channels); /* ioremap the registers for use */ fdev->regs = of_iomap(op->dev.of_node, 0); if (!fdev->regs) { dev_err(&op->dev, "unable to ioremap registers\n"); err = -ENOMEM; goto out_free; } /* map the channel IRQ if it exists, but don't hookup the handler yet */ fdev->irq = irq_of_parse_and_map(op->dev.of_node, 0); dma_cap_set(DMA_MEMCPY, fdev->common.cap_mask); dma_cap_set(DMA_SLAVE, fdev->common.cap_mask); fdev->common.device_alloc_chan_resources = fsl_dma_alloc_chan_resources; fdev->common.device_free_chan_resources = fsl_dma_free_chan_resources; fdev->common.device_prep_dma_memcpy = fsl_dma_prep_memcpy; fdev->common.device_tx_status = fsl_tx_status; fdev->common.device_issue_pending = fsl_dma_memcpy_issue_pending; fdev->common.device_config = fsl_dma_device_config; fdev->common.device_terminate_all = fsl_dma_device_terminate_all; fdev->common.dev = &op->dev; fdev->common.src_addr_widths = FSL_DMA_BUSWIDTHS; fdev->common.dst_addr_widths = FSL_DMA_BUSWIDTHS; fdev->common.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV); fdev->common.residue_granularity = DMA_RESIDUE_GRANULARITY_DESCRIPTOR; dma_set_mask(&(op->dev), DMA_BIT_MASK(36)); platform_set_drvdata(op, fdev); /* * We cannot use of_platform_bus_probe() because there is no * of_platform_bus_remove(). Instead, we manually instantiate every DMA * channel object. */ for_each_child_of_node(op->dev.of_node, child) { if (of_device_is_compatible(child, "fsl,eloplus-dma-channel")) { fsl_dma_chan_probe(fdev, child, FSL_DMA_IP_85XX | FSL_DMA_BIG_ENDIAN, "fsl,eloplus-dma-channel"); } if (of_device_is_compatible(child, "fsl,elo-dma-channel")) { fsl_dma_chan_probe(fdev, child, FSL_DMA_IP_83XX | FSL_DMA_LITTLE_ENDIAN, "fsl,elo-dma-channel"); } } /* * Hookup the IRQ handler(s) * * If we have a per-controller interrupt, we prefer that to the * per-channel interrupts to reduce the number of shared interrupt * handlers on the same IRQ line */ err = fsldma_request_irqs(fdev); if (err) { dev_err(fdev->dev, "unable to request IRQs\n"); goto out_free_fdev; } dma_async_device_register(&fdev->common); return 0; out_free_fdev: for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) { if (fdev->chan[i]) fsl_dma_chan_remove(fdev->chan[i]); } irq_dispose_mapping(fdev->irq); iounmap(fdev->regs); out_free: kfree(fdev); out_return: return err; } static void fsldma_of_remove(struct platform_device *op) { struct fsldma_device *fdev; unsigned int i; fdev = platform_get_drvdata(op); dma_async_device_unregister(&fdev->common); fsldma_free_irqs(fdev); for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) { if (fdev->chan[i]) fsl_dma_chan_remove(fdev->chan[i]); } irq_dispose_mapping(fdev->irq); iounmap(fdev->regs); kfree(fdev); } #ifdef CONFIG_PM static int fsldma_suspend_late(struct device *dev) { struct fsldma_device *fdev = dev_get_drvdata(dev); struct fsldma_chan *chan; int i; for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) { chan = fdev->chan[i]; if (!chan) continue; spin_lock_bh(&chan->desc_lock); if (unlikely(!chan->idle)) goto out; chan->regs_save.mr = get_mr(chan); chan->pm_state = SUSPENDED; spin_unlock_bh(&chan->desc_lock); } return 0; out: for (; i >= 0; i--) { chan = fdev->chan[i]; if (!chan) continue; chan->pm_state = RUNNING; spin_unlock_bh(&chan->desc_lock); } return -EBUSY; } static int fsldma_resume_early(struct device *dev) { struct fsldma_device *fdev = dev_get_drvdata(dev); struct fsldma_chan *chan; u32 mode; int i; for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) { chan = fdev->chan[i]; if (!chan) continue; spin_lock_bh(&chan->desc_lock); mode = chan->regs_save.mr & ~FSL_DMA_MR_CS & ~FSL_DMA_MR_CC & ~FSL_DMA_MR_CA; set_mr(chan, mode); chan->pm_state = RUNNING; spin_unlock_bh(&chan->desc_lock); } return 0; } static const struct dev_pm_ops fsldma_pm_ops = { .suspend_late = fsldma_suspend_late, .resume_early = fsldma_resume_early, }; #endif static const struct of_device_id fsldma_of_ids[] = { { .compatible = "fsl,elo3-dma", }, { .compatible = "fsl,eloplus-dma", }, { .compatible = "fsl,elo-dma", }, {} }; MODULE_DEVICE_TABLE(of, fsldma_of_ids); static struct platform_driver fsldma_of_driver = { .driver = { .name = "fsl-elo-dma", .of_match_table = fsldma_of_ids, #ifdef CONFIG_PM .pm = &fsldma_pm_ops, #endif }, .probe = fsldma_of_probe, .remove_new = fsldma_of_remove, }; /*----------------------------------------------------------------------------*/ /* Module Init / Exit */ /*----------------------------------------------------------------------------*/ static __init int fsldma_init(void) { pr_info("Freescale Elo series DMA driver\n"); return platform_driver_register(&fsldma_of_driver); } static void __exit fsldma_exit(void) { platform_driver_unregister(&fsldma_of_driver); } subsys_initcall(fsldma_init); module_exit(fsldma_exit); MODULE_DESCRIPTION("Freescale Elo series DMA driver"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1