Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Lizhi Hou | 4020 | 70.64% | 2 | 8.00% |
Jan Kuliga | 840 | 14.76% | 6 | 24.00% |
Miquel Raynal | 695 | 12.21% | 8 | 32.00% |
Louis Chauvet | 115 | 2.02% | 2 | 8.00% |
Krzysztof Kozlowski | 7 | 0.12% | 1 | 4.00% |
Nathan Chancellor | 4 | 0.07% | 1 | 4.00% |
Minjie Du | 3 | 0.05% | 1 | 4.00% |
Li Zetao | 3 | 0.05% | 1 | 4.00% |
Uwe Kleine-König | 2 | 0.04% | 1 | 4.00% |
Li Yang | 1 | 0.02% | 1 | 4.00% |
Vinod Koul | 1 | 0.02% | 1 | 4.00% |
Total | 5691 | 25 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * DMA driver for Xilinx DMA/Bridge Subsystem * * Copyright (C) 2017-2020 Xilinx, Inc. All rights reserved. * Copyright (C) 2022, Advanced Micro Devices, Inc. */ /* * The DMA/Bridge Subsystem for PCI Express allows for the movement of data * between Host memory and the DMA subsystem. It does this by operating on * 'descriptors' that contain information about the source, destination and * amount of data to transfer. These direct memory transfers can be both in * the Host to Card (H2C) and Card to Host (C2H) transfers. The DMA can be * configured to have a single AXI4 Master interface shared by all channels * or one AXI4-Stream interface for each channel enabled. Memory transfers are * specified on a per-channel basis in descriptor linked lists, which the DMA * fetches from host memory and processes. Events such as descriptor completion * and errors are signaled using interrupts. The core also provides up to 16 * user interrupt wires that generate interrupts to the host. */ #include <linux/mod_devicetable.h> #include <linux/bitfield.h> #include <linux/dmapool.h> #include <linux/regmap.h> #include <linux/dmaengine.h> #include <linux/dma/amd_xdma.h> #include <linux/platform_device.h> #include <linux/platform_data/amd_xdma.h> #include <linux/dma-mapping.h> #include <linux/pci.h> #include "../virt-dma.h" #include "xdma-regs.h" /* mmio regmap config for all XDMA registers */ static const struct regmap_config xdma_regmap_config = { .reg_bits = 32, .val_bits = 32, .reg_stride = 4, .max_register = XDMA_REG_SPACE_LEN, }; /** * struct xdma_desc_block - Descriptor block * @virt_addr: Virtual address of block start * @dma_addr: DMA address of block start */ struct xdma_desc_block { void *virt_addr; dma_addr_t dma_addr; }; /** * struct xdma_chan - Driver specific DMA channel structure * @vchan: Virtual channel * @xdev_hdl: Pointer to DMA device structure * @base: Offset of channel registers * @desc_pool: Descriptor pool * @busy: Busy flag of the channel * @dir: Transferring direction of the channel * @cfg: Transferring config of the channel * @irq: IRQ assigned to the channel */ struct xdma_chan { struct virt_dma_chan vchan; void *xdev_hdl; u32 base; struct dma_pool *desc_pool; bool busy; enum dma_transfer_direction dir; struct dma_slave_config cfg; u32 irq; struct completion last_interrupt; bool stop_requested; }; /** * struct xdma_desc - DMA desc structure * @vdesc: Virtual DMA descriptor * @chan: DMA channel pointer * @dir: Transferring direction of the request * @desc_blocks: Hardware descriptor blocks * @dblk_num: Number of hardware descriptor blocks * @desc_num: Number of hardware descriptors * @completed_desc_num: Completed hardware descriptors * @cyclic: Cyclic transfer vs. scatter-gather * @interleaved_dma: Interleaved DMA transfer * @periods: Number of periods in the cyclic transfer * @period_size: Size of a period in bytes in cyclic transfers * @frames_left: Number of frames left in interleaved DMA transfer * @error: tx error flag */ struct xdma_desc { struct virt_dma_desc vdesc; struct xdma_chan *chan; enum dma_transfer_direction dir; struct xdma_desc_block *desc_blocks; u32 dblk_num; u32 desc_num; u32 completed_desc_num; bool cyclic; bool interleaved_dma; u32 periods; u32 period_size; u32 frames_left; bool error; }; #define XDMA_DEV_STATUS_REG_DMA BIT(0) #define XDMA_DEV_STATUS_INIT_MSIX BIT(1) /** * struct xdma_device - DMA device structure * @pdev: Platform device pointer * @dma_dev: DMA device structure * @rmap: MMIO regmap for DMA registers * @h2c_chans: Host to Card channels * @c2h_chans: Card to Host channels * @h2c_chan_num: Number of H2C channels * @c2h_chan_num: Number of C2H channels * @irq_start: Start IRQ assigned to device * @irq_num: Number of IRQ assigned to device * @status: Initialization status */ struct xdma_device { struct platform_device *pdev; struct dma_device dma_dev; struct regmap *rmap; struct xdma_chan *h2c_chans; struct xdma_chan *c2h_chans; u32 h2c_chan_num; u32 c2h_chan_num; u32 irq_start; u32 irq_num; u32 status; }; #define xdma_err(xdev, fmt, args...) \ dev_err(&(xdev)->pdev->dev, fmt, ##args) #define XDMA_CHAN_NUM(_xd) ({ \ typeof(_xd) (xd) = (_xd); \ ((xd)->h2c_chan_num + (xd)->c2h_chan_num); }) /* Get the last desc in a desc block */ static inline void *xdma_blk_last_desc(struct xdma_desc_block *block) { return block->virt_addr + (XDMA_DESC_ADJACENT - 1) * XDMA_DESC_SIZE; } /** * xdma_link_sg_desc_blocks - Link SG descriptor blocks for DMA transfer * @sw_desc: Tx descriptor pointer */ static void xdma_link_sg_desc_blocks(struct xdma_desc *sw_desc) { struct xdma_desc_block *block; u32 last_blk_desc, desc_control; struct xdma_hw_desc *desc; int i; desc_control = XDMA_DESC_CONTROL(XDMA_DESC_ADJACENT, 0); for (i = 1; i < sw_desc->dblk_num; i++) { block = &sw_desc->desc_blocks[i - 1]; desc = xdma_blk_last_desc(block); if (!(i & XDMA_DESC_BLOCK_MASK)) { desc->control = cpu_to_le32(XDMA_DESC_CONTROL_LAST); continue; } desc->control = cpu_to_le32(desc_control); desc->next_desc = cpu_to_le64(block[1].dma_addr); } /* update the last block */ last_blk_desc = (sw_desc->desc_num - 1) & XDMA_DESC_ADJACENT_MASK; if (((sw_desc->dblk_num - 1) & XDMA_DESC_BLOCK_MASK) > 0) { block = &sw_desc->desc_blocks[sw_desc->dblk_num - 2]; desc = xdma_blk_last_desc(block); desc_control = XDMA_DESC_CONTROL(last_blk_desc + 1, 0); desc->control = cpu_to_le32(desc_control); } block = &sw_desc->desc_blocks[sw_desc->dblk_num - 1]; desc = block->virt_addr + last_blk_desc * XDMA_DESC_SIZE; desc->control = cpu_to_le32(XDMA_DESC_CONTROL_LAST); } /** * xdma_link_cyclic_desc_blocks - Link cyclic descriptor blocks for DMA transfer * @sw_desc: Tx descriptor pointer */ static void xdma_link_cyclic_desc_blocks(struct xdma_desc *sw_desc) { struct xdma_desc_block *block; struct xdma_hw_desc *desc; int i; block = sw_desc->desc_blocks; for (i = 0; i < sw_desc->desc_num - 1; i++) { desc = block->virt_addr + i * XDMA_DESC_SIZE; desc->next_desc = cpu_to_le64(block->dma_addr + ((i + 1) * XDMA_DESC_SIZE)); } desc = block->virt_addr + i * XDMA_DESC_SIZE; desc->next_desc = cpu_to_le64(block->dma_addr); } static inline struct xdma_chan *to_xdma_chan(struct dma_chan *chan) { return container_of(chan, struct xdma_chan, vchan.chan); } static inline struct xdma_desc *to_xdma_desc(struct virt_dma_desc *vdesc) { return container_of(vdesc, struct xdma_desc, vdesc); } /** * xdma_channel_init - Initialize DMA channel registers * @chan: DMA channel pointer */ static int xdma_channel_init(struct xdma_chan *chan) { struct xdma_device *xdev = chan->xdev_hdl; int ret; ret = regmap_write(xdev->rmap, chan->base + XDMA_CHAN_CONTROL_W1C, CHAN_CTRL_NON_INCR_ADDR); if (ret) return ret; ret = regmap_write(xdev->rmap, chan->base + XDMA_CHAN_INTR_ENABLE, CHAN_IM_ALL); if (ret) return ret; return 0; } /** * xdma_free_desc - Free descriptor * @vdesc: Virtual DMA descriptor */ static void xdma_free_desc(struct virt_dma_desc *vdesc) { struct xdma_desc *sw_desc; int i; sw_desc = to_xdma_desc(vdesc); for (i = 0; i < sw_desc->dblk_num; i++) { if (!sw_desc->desc_blocks[i].virt_addr) break; dma_pool_free(sw_desc->chan->desc_pool, sw_desc->desc_blocks[i].virt_addr, sw_desc->desc_blocks[i].dma_addr); } kfree(sw_desc->desc_blocks); kfree(sw_desc); } /** * xdma_alloc_desc - Allocate descriptor * @chan: DMA channel pointer * @desc_num: Number of hardware descriptors * @cyclic: Whether this is a cyclic transfer */ static struct xdma_desc * xdma_alloc_desc(struct xdma_chan *chan, u32 desc_num, bool cyclic) { struct xdma_desc *sw_desc; struct xdma_hw_desc *desc; dma_addr_t dma_addr; u32 dblk_num; u32 control; void *addr; int i, j; sw_desc = kzalloc(sizeof(*sw_desc), GFP_NOWAIT); if (!sw_desc) return NULL; sw_desc->chan = chan; sw_desc->desc_num = desc_num; sw_desc->cyclic = cyclic; sw_desc->error = false; dblk_num = DIV_ROUND_UP(desc_num, XDMA_DESC_ADJACENT); sw_desc->desc_blocks = kcalloc(dblk_num, sizeof(*sw_desc->desc_blocks), GFP_NOWAIT); if (!sw_desc->desc_blocks) goto failed; if (cyclic) control = XDMA_DESC_CONTROL_CYCLIC; else control = XDMA_DESC_CONTROL(1, 0); sw_desc->dblk_num = dblk_num; for (i = 0; i < sw_desc->dblk_num; i++) { addr = dma_pool_alloc(chan->desc_pool, GFP_NOWAIT, &dma_addr); if (!addr) goto failed; sw_desc->desc_blocks[i].virt_addr = addr; sw_desc->desc_blocks[i].dma_addr = dma_addr; for (j = 0, desc = addr; j < XDMA_DESC_ADJACENT; j++) desc[j].control = cpu_to_le32(control); } if (cyclic) xdma_link_cyclic_desc_blocks(sw_desc); else xdma_link_sg_desc_blocks(sw_desc); return sw_desc; failed: xdma_free_desc(&sw_desc->vdesc); return NULL; } /** * xdma_xfer_start - Start DMA transfer * @xchan: DMA channel pointer */ static int xdma_xfer_start(struct xdma_chan *xchan) { struct virt_dma_desc *vd = vchan_next_desc(&xchan->vchan); struct xdma_device *xdev = xchan->xdev_hdl; struct xdma_desc_block *block; u32 val, completed_blocks; struct xdma_desc *desc; int ret; /* * check if there is not any submitted descriptor or channel is busy. * vchan lock should be held where this function is called. */ if (!vd || xchan->busy) return -EINVAL; /* clear run stop bit to get ready for transfer */ ret = regmap_write(xdev->rmap, xchan->base + XDMA_CHAN_CONTROL_W1C, CHAN_CTRL_RUN_STOP); if (ret) return ret; desc = to_xdma_desc(vd); if (desc->dir != xchan->dir) { xdma_err(xdev, "incorrect request direction"); return -EINVAL; } /* set DMA engine to the first descriptor block */ completed_blocks = desc->completed_desc_num / XDMA_DESC_ADJACENT; block = &desc->desc_blocks[completed_blocks]; val = lower_32_bits(block->dma_addr); ret = regmap_write(xdev->rmap, xchan->base + XDMA_SGDMA_DESC_LO, val); if (ret) return ret; val = upper_32_bits(block->dma_addr); ret = regmap_write(xdev->rmap, xchan->base + XDMA_SGDMA_DESC_HI, val); if (ret) return ret; if (completed_blocks + 1 == desc->dblk_num) val = (desc->desc_num - 1) & XDMA_DESC_ADJACENT_MASK; else val = XDMA_DESC_ADJACENT - 1; ret = regmap_write(xdev->rmap, xchan->base + XDMA_SGDMA_DESC_ADJ, val); if (ret) return ret; /* kick off DMA transfer */ ret = regmap_write(xdev->rmap, xchan->base + XDMA_CHAN_CONTROL, CHAN_CTRL_START); if (ret) return ret; xchan->busy = true; xchan->stop_requested = false; reinit_completion(&xchan->last_interrupt); return 0; } /** * xdma_xfer_stop - Stop DMA transfer * @xchan: DMA channel pointer */ static int xdma_xfer_stop(struct xdma_chan *xchan) { int ret; struct xdma_device *xdev = xchan->xdev_hdl; /* clear run stop bit to prevent any further auto-triggering */ ret = regmap_write(xdev->rmap, xchan->base + XDMA_CHAN_CONTROL_W1C, CHAN_CTRL_RUN_STOP); if (ret) return ret; return ret; } /** * xdma_alloc_channels - Detect and allocate DMA channels * @xdev: DMA device pointer * @dir: Channel direction */ static int xdma_alloc_channels(struct xdma_device *xdev, enum dma_transfer_direction dir) { struct xdma_platdata *pdata = dev_get_platdata(&xdev->pdev->dev); struct xdma_chan **chans, *xchan; u32 base, identifier, target; u32 *chan_num; int i, j, ret; if (dir == DMA_MEM_TO_DEV) { base = XDMA_CHAN_H2C_OFFSET; target = XDMA_CHAN_H2C_TARGET; chans = &xdev->h2c_chans; chan_num = &xdev->h2c_chan_num; } else if (dir == DMA_DEV_TO_MEM) { base = XDMA_CHAN_C2H_OFFSET; target = XDMA_CHAN_C2H_TARGET; chans = &xdev->c2h_chans; chan_num = &xdev->c2h_chan_num; } else { xdma_err(xdev, "invalid direction specified"); return -EINVAL; } /* detect number of available DMA channels */ for (i = 0, *chan_num = 0; i < pdata->max_dma_channels; i++) { ret = regmap_read(xdev->rmap, base + i * XDMA_CHAN_STRIDE, &identifier); if (ret) return ret; /* check if it is available DMA channel */ if (XDMA_CHAN_CHECK_TARGET(identifier, target)) (*chan_num)++; } if (!*chan_num) { xdma_err(xdev, "does not probe any channel"); return -EINVAL; } *chans = devm_kcalloc(&xdev->pdev->dev, *chan_num, sizeof(**chans), GFP_KERNEL); if (!*chans) return -ENOMEM; for (i = 0, j = 0; i < pdata->max_dma_channels; i++) { ret = regmap_read(xdev->rmap, base + i * XDMA_CHAN_STRIDE, &identifier); if (ret) return ret; if (!XDMA_CHAN_CHECK_TARGET(identifier, target)) continue; if (j == *chan_num) { xdma_err(xdev, "invalid channel number"); return -EIO; } /* init channel structure and hardware */ xchan = &(*chans)[j]; xchan->xdev_hdl = xdev; xchan->base = base + i * XDMA_CHAN_STRIDE; xchan->dir = dir; xchan->stop_requested = false; init_completion(&xchan->last_interrupt); ret = xdma_channel_init(xchan); if (ret) return ret; xchan->vchan.desc_free = xdma_free_desc; vchan_init(&xchan->vchan, &xdev->dma_dev); j++; } dev_info(&xdev->pdev->dev, "configured %d %s channels", j, (dir == DMA_MEM_TO_DEV) ? "H2C" : "C2H"); return 0; } /** * xdma_issue_pending - Issue pending transactions * @chan: DMA channel pointer */ static void xdma_issue_pending(struct dma_chan *chan) { struct xdma_chan *xdma_chan = to_xdma_chan(chan); unsigned long flags; spin_lock_irqsave(&xdma_chan->vchan.lock, flags); if (vchan_issue_pending(&xdma_chan->vchan)) xdma_xfer_start(xdma_chan); spin_unlock_irqrestore(&xdma_chan->vchan.lock, flags); } /** * xdma_terminate_all - Terminate all transactions * @chan: DMA channel pointer */ static int xdma_terminate_all(struct dma_chan *chan) { struct xdma_chan *xdma_chan = to_xdma_chan(chan); struct virt_dma_desc *vd; unsigned long flags; LIST_HEAD(head); xdma_xfer_stop(xdma_chan); spin_lock_irqsave(&xdma_chan->vchan.lock, flags); xdma_chan->busy = false; xdma_chan->stop_requested = true; vd = vchan_next_desc(&xdma_chan->vchan); if (vd) { list_del(&vd->node); dma_cookie_complete(&vd->tx); vchan_terminate_vdesc(vd); } vchan_get_all_descriptors(&xdma_chan->vchan, &head); list_splice_tail(&head, &xdma_chan->vchan.desc_terminated); spin_unlock_irqrestore(&xdma_chan->vchan.lock, flags); return 0; } /** * xdma_synchronize - Synchronize terminated transactions * @chan: DMA channel pointer */ static void xdma_synchronize(struct dma_chan *chan) { struct xdma_chan *xdma_chan = to_xdma_chan(chan); struct xdma_device *xdev = xdma_chan->xdev_hdl; int st = 0; /* If the engine continues running, wait for the last interrupt */ regmap_read(xdev->rmap, xdma_chan->base + XDMA_CHAN_STATUS, &st); if (st & XDMA_CHAN_STATUS_BUSY) wait_for_completion_timeout(&xdma_chan->last_interrupt, msecs_to_jiffies(1000)); vchan_synchronize(&xdma_chan->vchan); } /** * xdma_fill_descs() - Fill hardware descriptors for one contiguous memory chunk. * More than one descriptor will be used if the size is bigger * than XDMA_DESC_BLEN_MAX. * @sw_desc: Descriptor container * @src_addr: First value for the ->src_addr field * @dst_addr: First value for the ->dst_addr field * @size: Size of the contiguous memory block * @filled_descs_num: Index of the first descriptor to take care of in @sw_desc */ static inline u32 xdma_fill_descs(struct xdma_desc *sw_desc, u64 src_addr, u64 dst_addr, u32 size, u32 filled_descs_num) { u32 left = size, len, desc_num = filled_descs_num; struct xdma_desc_block *dblk; struct xdma_hw_desc *desc; dblk = sw_desc->desc_blocks + (desc_num / XDMA_DESC_ADJACENT); desc = dblk->virt_addr; desc += desc_num & XDMA_DESC_ADJACENT_MASK; do { len = min_t(u32, left, XDMA_DESC_BLEN_MAX); /* set hardware descriptor */ desc->bytes = cpu_to_le32(len); desc->src_addr = cpu_to_le64(src_addr); desc->dst_addr = cpu_to_le64(dst_addr); if (!(++desc_num & XDMA_DESC_ADJACENT_MASK)) desc = (++dblk)->virt_addr; else desc++; src_addr += len; dst_addr += len; left -= len; } while (left); return desc_num - filled_descs_num; } /** * xdma_prep_device_sg - prepare a descriptor for a DMA transaction * @chan: DMA channel pointer * @sgl: Transfer scatter gather list * @sg_len: Length of scatter gather list * @dir: Transfer direction * @flags: transfer ack flags * @context: APP words of the descriptor */ static struct dma_async_tx_descriptor * xdma_prep_device_sg(struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len, enum dma_transfer_direction dir, unsigned long flags, void *context) { struct xdma_chan *xdma_chan = to_xdma_chan(chan); struct dma_async_tx_descriptor *tx_desc; struct xdma_desc *sw_desc; u32 desc_num = 0, i; u64 addr, dev_addr, *src, *dst; struct scatterlist *sg; for_each_sg(sgl, sg, sg_len, i) desc_num += DIV_ROUND_UP(sg_dma_len(sg), XDMA_DESC_BLEN_MAX); sw_desc = xdma_alloc_desc(xdma_chan, desc_num, false); if (!sw_desc) return NULL; sw_desc->dir = dir; sw_desc->cyclic = false; sw_desc->interleaved_dma = false; if (dir == DMA_MEM_TO_DEV) { dev_addr = xdma_chan->cfg.dst_addr; src = &addr; dst = &dev_addr; } else { dev_addr = xdma_chan->cfg.src_addr; src = &dev_addr; dst = &addr; } desc_num = 0; for_each_sg(sgl, sg, sg_len, i) { addr = sg_dma_address(sg); desc_num += xdma_fill_descs(sw_desc, *src, *dst, sg_dma_len(sg), desc_num); dev_addr += sg_dma_len(sg); } tx_desc = vchan_tx_prep(&xdma_chan->vchan, &sw_desc->vdesc, flags); if (!tx_desc) goto failed; return tx_desc; failed: xdma_free_desc(&sw_desc->vdesc); return NULL; } /** * xdma_prep_dma_cyclic - prepare for cyclic DMA transactions * @chan: DMA channel pointer * @address: Device DMA address to access * @size: Total length to transfer * @period_size: Period size to use for each transfer * @dir: Transfer direction * @flags: Transfer ack flags */ static struct dma_async_tx_descriptor * xdma_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t address, size_t size, size_t period_size, enum dma_transfer_direction dir, unsigned long flags) { struct xdma_chan *xdma_chan = to_xdma_chan(chan); struct xdma_device *xdev = xdma_chan->xdev_hdl; unsigned int periods = size / period_size; struct dma_async_tx_descriptor *tx_desc; struct xdma_desc *sw_desc; u64 addr, dev_addr, *src, *dst; u32 desc_num; unsigned int i; /* * Simplify the whole logic by preventing an abnormally high number of * periods and periods size. */ if (period_size > XDMA_DESC_BLEN_MAX) { xdma_err(xdev, "period size limited to %lu bytes\n", XDMA_DESC_BLEN_MAX); return NULL; } if (periods > XDMA_DESC_ADJACENT) { xdma_err(xdev, "number of periods limited to %u\n", XDMA_DESC_ADJACENT); return NULL; } sw_desc = xdma_alloc_desc(xdma_chan, periods, true); if (!sw_desc) return NULL; sw_desc->periods = periods; sw_desc->period_size = period_size; sw_desc->dir = dir; sw_desc->interleaved_dma = false; addr = address; if (dir == DMA_MEM_TO_DEV) { dev_addr = xdma_chan->cfg.dst_addr; src = &addr; dst = &dev_addr; } else { dev_addr = xdma_chan->cfg.src_addr; src = &dev_addr; dst = &addr; } desc_num = 0; for (i = 0; i < periods; i++) { desc_num += xdma_fill_descs(sw_desc, *src, *dst, period_size, desc_num); addr += period_size; } tx_desc = vchan_tx_prep(&xdma_chan->vchan, &sw_desc->vdesc, flags); if (!tx_desc) goto failed; return tx_desc; failed: xdma_free_desc(&sw_desc->vdesc); return NULL; } /** * xdma_prep_interleaved_dma - Prepare virtual descriptor for interleaved DMA transfers * @chan: DMA channel * @xt: DMA transfer template * @flags: tx flags */ static struct dma_async_tx_descriptor * xdma_prep_interleaved_dma(struct dma_chan *chan, struct dma_interleaved_template *xt, unsigned long flags) { int i; u32 desc_num = 0, period_size = 0; struct dma_async_tx_descriptor *tx_desc; struct xdma_chan *xchan = to_xdma_chan(chan); struct xdma_desc *sw_desc; u64 src_addr, dst_addr; for (i = 0; i < xt->frame_size; ++i) desc_num += DIV_ROUND_UP(xt->sgl[i].size, XDMA_DESC_BLEN_MAX); sw_desc = xdma_alloc_desc(xchan, desc_num, false); if (!sw_desc) return NULL; sw_desc->dir = xt->dir; sw_desc->interleaved_dma = true; sw_desc->cyclic = flags & DMA_PREP_REPEAT; sw_desc->frames_left = xt->numf; sw_desc->periods = xt->numf; desc_num = 0; src_addr = xt->src_start; dst_addr = xt->dst_start; for (i = 0; i < xt->frame_size; ++i) { desc_num += xdma_fill_descs(sw_desc, src_addr, dst_addr, xt->sgl[i].size, desc_num); src_addr += dmaengine_get_src_icg(xt, &xt->sgl[i]) + (xt->src_inc ? xt->sgl[i].size : 0); dst_addr += dmaengine_get_dst_icg(xt, &xt->sgl[i]) + (xt->dst_inc ? xt->sgl[i].size : 0); period_size += xt->sgl[i].size; } sw_desc->period_size = period_size; tx_desc = vchan_tx_prep(&xchan->vchan, &sw_desc->vdesc, flags); if (tx_desc) return tx_desc; xdma_free_desc(&sw_desc->vdesc); return NULL; } /** * xdma_device_config - Configure the DMA channel * @chan: DMA channel * @cfg: channel configuration */ static int xdma_device_config(struct dma_chan *chan, struct dma_slave_config *cfg) { struct xdma_chan *xdma_chan = to_xdma_chan(chan); memcpy(&xdma_chan->cfg, cfg, sizeof(*cfg)); return 0; } /** * xdma_free_chan_resources - Free channel resources * @chan: DMA channel */ static void xdma_free_chan_resources(struct dma_chan *chan) { struct xdma_chan *xdma_chan = to_xdma_chan(chan); vchan_free_chan_resources(&xdma_chan->vchan); dma_pool_destroy(xdma_chan->desc_pool); xdma_chan->desc_pool = NULL; } /** * xdma_alloc_chan_resources - Allocate channel resources * @chan: DMA channel */ static int xdma_alloc_chan_resources(struct dma_chan *chan) { struct xdma_chan *xdma_chan = to_xdma_chan(chan); struct xdma_device *xdev = xdma_chan->xdev_hdl; struct device *dev = xdev->dma_dev.dev; while (dev && !dev_is_pci(dev)) dev = dev->parent; if (!dev) { xdma_err(xdev, "unable to find pci device"); return -EINVAL; } xdma_chan->desc_pool = dma_pool_create(dma_chan_name(chan), dev, XDMA_DESC_BLOCK_SIZE, XDMA_DESC_BLOCK_ALIGN, XDMA_DESC_BLOCK_BOUNDARY); if (!xdma_chan->desc_pool) { xdma_err(xdev, "unable to allocate descriptor pool"); return -ENOMEM; } return 0; } static enum dma_status xdma_tx_status(struct dma_chan *chan, dma_cookie_t cookie, struct dma_tx_state *state) { struct xdma_chan *xdma_chan = to_xdma_chan(chan); struct xdma_desc *desc = NULL; struct virt_dma_desc *vd; enum dma_status ret; unsigned long flags; unsigned int period_idx; u32 residue = 0; ret = dma_cookie_status(chan, cookie, state); if (ret == DMA_COMPLETE) return ret; spin_lock_irqsave(&xdma_chan->vchan.lock, flags); vd = vchan_find_desc(&xdma_chan->vchan, cookie); if (!vd) goto out; desc = to_xdma_desc(vd); if (desc->error) { ret = DMA_ERROR; } else if (desc->cyclic) { period_idx = desc->completed_desc_num % desc->periods; residue = (desc->periods - period_idx) * desc->period_size; dma_set_residue(state, residue); } out: spin_unlock_irqrestore(&xdma_chan->vchan.lock, flags); return ret; } /** * xdma_channel_isr - XDMA channel interrupt handler * @irq: IRQ number * @dev_id: Pointer to the DMA channel structure */ static irqreturn_t xdma_channel_isr(int irq, void *dev_id) { struct xdma_chan *xchan = dev_id; u32 complete_desc_num = 0; struct xdma_device *xdev = xchan->xdev_hdl; struct virt_dma_desc *vd, *next_vd; struct xdma_desc *desc; int ret; u32 st; bool repeat_tx; spin_lock(&xchan->vchan.lock); if (xchan->stop_requested) complete(&xchan->last_interrupt); /* get submitted request */ vd = vchan_next_desc(&xchan->vchan); if (!vd) goto out; /* Clear-on-read the status register */ ret = regmap_read(xdev->rmap, xchan->base + XDMA_CHAN_STATUS_RC, &st); if (ret) goto out; desc = to_xdma_desc(vd); st &= XDMA_CHAN_STATUS_MASK; if ((st & XDMA_CHAN_ERROR_MASK) || !(st & (CHAN_CTRL_IE_DESC_COMPLETED | CHAN_CTRL_IE_DESC_STOPPED))) { desc->error = true; xdma_err(xdev, "channel error, status register value: 0x%x", st); goto out; } ret = regmap_read(xdev->rmap, xchan->base + XDMA_CHAN_COMPLETED_DESC, &complete_desc_num); if (ret) goto out; if (desc->interleaved_dma) { xchan->busy = false; desc->completed_desc_num += complete_desc_num; if (complete_desc_num == XDMA_DESC_BLOCK_NUM * XDMA_DESC_ADJACENT) { xdma_xfer_start(xchan); goto out; } /* last desc of any frame */ desc->frames_left--; if (desc->frames_left) goto out; /* last desc of the last frame */ repeat_tx = vd->tx.flags & DMA_PREP_REPEAT; next_vd = list_first_entry_or_null(&vd->node, struct virt_dma_desc, node); if (next_vd) repeat_tx = repeat_tx && !(next_vd->tx.flags & DMA_PREP_LOAD_EOT); if (repeat_tx) { desc->frames_left = desc->periods; desc->completed_desc_num = 0; vchan_cyclic_callback(vd); } else { list_del(&vd->node); vchan_cookie_complete(vd); } /* start (or continue) the tx of a first desc on the vc.desc_issued list, if any */ xdma_xfer_start(xchan); } else if (!desc->cyclic) { xchan->busy = false; desc->completed_desc_num += complete_desc_num; /* if all data blocks are transferred, remove and complete the request */ if (desc->completed_desc_num == desc->desc_num) { list_del(&vd->node); vchan_cookie_complete(vd); goto out; } if (desc->completed_desc_num > desc->desc_num || complete_desc_num != XDMA_DESC_BLOCK_NUM * XDMA_DESC_ADJACENT) goto out; /* transfer the rest of data */ xdma_xfer_start(xchan); } else { desc->completed_desc_num = complete_desc_num; vchan_cyclic_callback(vd); } out: spin_unlock(&xchan->vchan.lock); return IRQ_HANDLED; } /** * xdma_irq_fini - Uninitialize IRQ * @xdev: DMA device pointer */ static void xdma_irq_fini(struct xdma_device *xdev) { int i; /* disable interrupt */ regmap_write(xdev->rmap, XDMA_IRQ_CHAN_INT_EN_W1C, ~0); /* free irq handler */ for (i = 0; i < xdev->h2c_chan_num; i++) free_irq(xdev->h2c_chans[i].irq, &xdev->h2c_chans[i]); for (i = 0; i < xdev->c2h_chan_num; i++) free_irq(xdev->c2h_chans[i].irq, &xdev->c2h_chans[i]); } /** * xdma_set_vector_reg - configure hardware IRQ registers * @xdev: DMA device pointer * @vec_tbl_start: Start of IRQ registers * @irq_start: Start of IRQ * @irq_num: Number of IRQ */ static int xdma_set_vector_reg(struct xdma_device *xdev, u32 vec_tbl_start, u32 irq_start, u32 irq_num) { u32 shift, i, val = 0; int ret; /* Each IRQ register is 32 bit and contains 4 IRQs */ while (irq_num > 0) { for (i = 0; i < 4; i++) { shift = XDMA_IRQ_VEC_SHIFT * i; val |= irq_start << shift; irq_start++; irq_num--; if (!irq_num) break; } /* write IRQ register */ ret = regmap_write(xdev->rmap, vec_tbl_start, val); if (ret) return ret; vec_tbl_start += sizeof(u32); val = 0; } return 0; } /** * xdma_irq_init - initialize IRQs * @xdev: DMA device pointer */ static int xdma_irq_init(struct xdma_device *xdev) { u32 irq = xdev->irq_start; u32 user_irq_start; int i, j, ret; /* return failure if there are not enough IRQs */ if (xdev->irq_num < XDMA_CHAN_NUM(xdev)) { xdma_err(xdev, "not enough irq"); return -EINVAL; } /* setup H2C interrupt handler */ for (i = 0; i < xdev->h2c_chan_num; i++) { ret = request_irq(irq, xdma_channel_isr, 0, "xdma-h2c-channel", &xdev->h2c_chans[i]); if (ret) { xdma_err(xdev, "H2C channel%d request irq%d failed: %d", i, irq, ret); goto failed_init_h2c; } xdev->h2c_chans[i].irq = irq; irq++; } /* setup C2H interrupt handler */ for (j = 0; j < xdev->c2h_chan_num; j++) { ret = request_irq(irq, xdma_channel_isr, 0, "xdma-c2h-channel", &xdev->c2h_chans[j]); if (ret) { xdma_err(xdev, "C2H channel%d request irq%d failed: %d", j, irq, ret); goto failed_init_c2h; } xdev->c2h_chans[j].irq = irq; irq++; } /* config hardware IRQ registers */ ret = xdma_set_vector_reg(xdev, XDMA_IRQ_CHAN_VEC_NUM, 0, XDMA_CHAN_NUM(xdev)); if (ret) { xdma_err(xdev, "failed to set channel vectors: %d", ret); goto failed_init_c2h; } /* config user IRQ registers if needed */ user_irq_start = XDMA_CHAN_NUM(xdev); if (xdev->irq_num > user_irq_start) { ret = xdma_set_vector_reg(xdev, XDMA_IRQ_USER_VEC_NUM, user_irq_start, xdev->irq_num - user_irq_start); if (ret) { xdma_err(xdev, "failed to set user vectors: %d", ret); goto failed_init_c2h; } } /* enable interrupt */ ret = regmap_write(xdev->rmap, XDMA_IRQ_CHAN_INT_EN_W1S, ~0); if (ret) goto failed_init_c2h; return 0; failed_init_c2h: while (j--) free_irq(xdev->c2h_chans[j].irq, &xdev->c2h_chans[j]); failed_init_h2c: while (i--) free_irq(xdev->h2c_chans[i].irq, &xdev->h2c_chans[i]); return ret; } static bool xdma_filter_fn(struct dma_chan *chan, void *param) { struct xdma_chan *xdma_chan = to_xdma_chan(chan); struct xdma_chan_info *chan_info = param; return chan_info->dir == xdma_chan->dir; } /** * xdma_disable_user_irq - Disable user interrupt * @pdev: Pointer to the platform_device structure * @irq_num: System IRQ number */ void xdma_disable_user_irq(struct platform_device *pdev, u32 irq_num) { struct xdma_device *xdev = platform_get_drvdata(pdev); u32 index; index = irq_num - xdev->irq_start; if (index < XDMA_CHAN_NUM(xdev) || index >= xdev->irq_num) { xdma_err(xdev, "invalid user irq number"); return; } index -= XDMA_CHAN_NUM(xdev); regmap_write(xdev->rmap, XDMA_IRQ_USER_INT_EN_W1C, 1 << index); } EXPORT_SYMBOL(xdma_disable_user_irq); /** * xdma_enable_user_irq - Enable user logic interrupt * @pdev: Pointer to the platform_device structure * @irq_num: System IRQ number */ int xdma_enable_user_irq(struct platform_device *pdev, u32 irq_num) { struct xdma_device *xdev = platform_get_drvdata(pdev); u32 index; int ret; index = irq_num - xdev->irq_start; if (index < XDMA_CHAN_NUM(xdev) || index >= xdev->irq_num) { xdma_err(xdev, "invalid user irq number"); return -EINVAL; } index -= XDMA_CHAN_NUM(xdev); ret = regmap_write(xdev->rmap, XDMA_IRQ_USER_INT_EN_W1S, 1 << index); if (ret) return ret; return 0; } EXPORT_SYMBOL(xdma_enable_user_irq); /** * xdma_get_user_irq - Get system IRQ number * @pdev: Pointer to the platform_device structure * @user_irq_index: User logic IRQ wire index * * Return: The system IRQ number allocated for the given wire index. */ int xdma_get_user_irq(struct platform_device *pdev, u32 user_irq_index) { struct xdma_device *xdev = platform_get_drvdata(pdev); if (XDMA_CHAN_NUM(xdev) + user_irq_index >= xdev->irq_num) { xdma_err(xdev, "invalid user irq index"); return -EINVAL; } return xdev->irq_start + XDMA_CHAN_NUM(xdev) + user_irq_index; } EXPORT_SYMBOL(xdma_get_user_irq); /** * xdma_remove - Driver remove function * @pdev: Pointer to the platform_device structure */ static void xdma_remove(struct platform_device *pdev) { struct xdma_device *xdev = platform_get_drvdata(pdev); if (xdev->status & XDMA_DEV_STATUS_INIT_MSIX) xdma_irq_fini(xdev); if (xdev->status & XDMA_DEV_STATUS_REG_DMA) dma_async_device_unregister(&xdev->dma_dev); } /** * xdma_probe - Driver probe function * @pdev: Pointer to the platform_device structure */ static int xdma_probe(struct platform_device *pdev) { struct xdma_platdata *pdata = dev_get_platdata(&pdev->dev); struct xdma_device *xdev; void __iomem *reg_base; struct resource *res; int ret = -ENODEV; if (pdata->max_dma_channels > XDMA_MAX_CHANNELS) { dev_err(&pdev->dev, "invalid max dma channels %d", pdata->max_dma_channels); return -EINVAL; } xdev = devm_kzalloc(&pdev->dev, sizeof(*xdev), GFP_KERNEL); if (!xdev) return -ENOMEM; platform_set_drvdata(pdev, xdev); xdev->pdev = pdev; res = platform_get_resource(pdev, IORESOURCE_IRQ, 0); if (!res) { xdma_err(xdev, "failed to get irq resource"); goto failed; } xdev->irq_start = res->start; xdev->irq_num = resource_size(res); res = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (!res) { xdma_err(xdev, "failed to get io resource"); goto failed; } reg_base = devm_ioremap_resource(&pdev->dev, res); if (IS_ERR(reg_base)) { xdma_err(xdev, "ioremap failed"); goto failed; } xdev->rmap = devm_regmap_init_mmio(&pdev->dev, reg_base, &xdma_regmap_config); if (!xdev->rmap) { xdma_err(xdev, "config regmap failed: %d", ret); goto failed; } INIT_LIST_HEAD(&xdev->dma_dev.channels); ret = xdma_alloc_channels(xdev, DMA_MEM_TO_DEV); if (ret) { xdma_err(xdev, "config H2C channels failed: %d", ret); goto failed; } ret = xdma_alloc_channels(xdev, DMA_DEV_TO_MEM); if (ret) { xdma_err(xdev, "config C2H channels failed: %d", ret); goto failed; } dma_cap_set(DMA_SLAVE, xdev->dma_dev.cap_mask); dma_cap_set(DMA_PRIVATE, xdev->dma_dev.cap_mask); dma_cap_set(DMA_CYCLIC, xdev->dma_dev.cap_mask); dma_cap_set(DMA_INTERLEAVE, xdev->dma_dev.cap_mask); dma_cap_set(DMA_REPEAT, xdev->dma_dev.cap_mask); dma_cap_set(DMA_LOAD_EOT, xdev->dma_dev.cap_mask); xdev->dma_dev.dev = &pdev->dev; xdev->dma_dev.residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT; xdev->dma_dev.device_free_chan_resources = xdma_free_chan_resources; xdev->dma_dev.device_alloc_chan_resources = xdma_alloc_chan_resources; xdev->dma_dev.device_tx_status = xdma_tx_status; xdev->dma_dev.device_prep_slave_sg = xdma_prep_device_sg; xdev->dma_dev.device_config = xdma_device_config; xdev->dma_dev.device_issue_pending = xdma_issue_pending; xdev->dma_dev.device_terminate_all = xdma_terminate_all; xdev->dma_dev.device_synchronize = xdma_synchronize; xdev->dma_dev.filter.map = pdata->device_map; xdev->dma_dev.filter.mapcnt = pdata->device_map_cnt; xdev->dma_dev.filter.fn = xdma_filter_fn; xdev->dma_dev.device_prep_dma_cyclic = xdma_prep_dma_cyclic; xdev->dma_dev.device_prep_interleaved_dma = xdma_prep_interleaved_dma; ret = dma_async_device_register(&xdev->dma_dev); if (ret) { xdma_err(xdev, "failed to register Xilinx XDMA: %d", ret); goto failed; } xdev->status |= XDMA_DEV_STATUS_REG_DMA; ret = xdma_irq_init(xdev); if (ret) { xdma_err(xdev, "failed to init msix: %d", ret); goto failed; } xdev->status |= XDMA_DEV_STATUS_INIT_MSIX; return 0; failed: xdma_remove(pdev); return ret; } static const struct platform_device_id xdma_id_table[] = { { "xdma", 0}, { }, }; MODULE_DEVICE_TABLE(platform, xdma_id_table); static struct platform_driver xdma_driver = { .driver = { .name = "xdma", }, .id_table = xdma_id_table, .probe = xdma_probe, .remove_new = xdma_remove, }; module_platform_driver(xdma_driver); MODULE_DESCRIPTION("AMD XDMA driver"); MODULE_AUTHOR("XRT Team <runtimeca39d@amd.com>"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1