Contributors: 7
Author Tokens Token Proportion Commits Commit Proportion
Qiuxu Zhuo 4350 68.76% 24 68.57%
Youquan Song 1849 29.23% 3 8.57%
Tony Luck 93 1.47% 4 11.43%
Thomas Gleixner 19 0.30% 1 2.86%
Jia He 9 0.14% 1 2.86%
Yang Yingliang 5 0.08% 1 2.86%
Robert Richter 1 0.02% 1 2.86%
Total 6326 35


// SPDX-License-Identifier: GPL-2.0
/*
 * Driver for Intel(R) 10nm server memory controller.
 * Copyright (c) 2019, Intel Corporation.
 *
 */

#include <linux/kernel.h>
#include <linux/io.h>
#include <asm/cpu_device_id.h>
#include <asm/intel-family.h>
#include <asm/mce.h>
#include "edac_module.h"
#include "skx_common.h"

#define I10NM_REVISION	"v0.0.6"
#define EDAC_MOD_STR	"i10nm_edac"

/* Debug macros */
#define i10nm_printk(level, fmt, arg...)	\
	edac_printk(level, "i10nm", fmt, ##arg)

#define I10NM_GET_SCK_BAR(d, reg)	\
	pci_read_config_dword((d)->uracu, 0xd0, &(reg))
#define I10NM_GET_IMC_BAR(d, i, reg)		\
	pci_read_config_dword((d)->uracu,	\
	(res_cfg->type == GNR ? 0xd4 : 0xd8) + (i) * 4, &(reg))
#define I10NM_GET_SAD(d, offset, i, reg)\
	pci_read_config_dword((d)->sad_all, (offset) + (i) * \
	(res_cfg->type == GNR ? 12 : 8), &(reg))
#define I10NM_GET_HBM_IMC_BAR(d, reg)	\
	pci_read_config_dword((d)->uracu, 0xd4, &(reg))
#define I10NM_GET_CAPID3_CFG(d, reg)	\
	pci_read_config_dword((d)->pcu_cr3,	\
	res_cfg->type == GNR ? 0x290 : 0x90, &(reg))
#define I10NM_GET_CAPID5_CFG(d, reg)	\
	pci_read_config_dword((d)->pcu_cr3,	\
	res_cfg->type == GNR ? 0x298 : 0x98, &(reg))
#define I10NM_GET_DIMMMTR(m, i, j)	\
	readl((m)->mbase + ((m)->hbm_mc ? 0x80c :	\
	(res_cfg->type == GNR ? 0xc0c : 0x2080c)) +	\
	(i) * (m)->chan_mmio_sz + (j) * 4)
#define I10NM_GET_MCDDRTCFG(m, i)	\
	readl((m)->mbase + ((m)->hbm_mc ? 0x970 : 0x20970) + \
	(i) * (m)->chan_mmio_sz)
#define I10NM_GET_MCMTR(m, i)		\
	readl((m)->mbase + ((m)->hbm_mc ? 0xef8 :	\
	(res_cfg->type == GNR ? 0xaf8 : 0x20ef8)) +	\
	(i) * (m)->chan_mmio_sz)
#define I10NM_GET_AMAP(m, i)		\
	readl((m)->mbase + ((m)->hbm_mc ? 0x814 :	\
	(res_cfg->type == GNR ? 0xc14 : 0x20814)) +	\
	(i) * (m)->chan_mmio_sz)
#define I10NM_GET_REG32(m, i, offset)	\
	readl((m)->mbase + (i) * (m)->chan_mmio_sz + (offset))
#define I10NM_GET_REG64(m, i, offset)	\
	readq((m)->mbase + (i) * (m)->chan_mmio_sz + (offset))
#define I10NM_SET_REG32(m, i, offset, v)	\
	writel(v, (m)->mbase + (i) * (m)->chan_mmio_sz + (offset))

#define I10NM_GET_SCK_MMIO_BASE(reg)	(GET_BITFIELD(reg, 0, 28) << 23)
#define I10NM_GET_IMC_MMIO_OFFSET(reg)	(GET_BITFIELD(reg, 0, 10) << 12)
#define I10NM_GET_IMC_MMIO_SIZE(reg)	((GET_BITFIELD(reg, 13, 23) - \
					 GET_BITFIELD(reg, 0, 10) + 1) << 12)
#define I10NM_GET_HBM_IMC_MMIO_OFFSET(reg)	\
	((GET_BITFIELD(reg, 0, 10) << 12) + 0x140000)

#define I10NM_GNR_IMC_MMIO_OFFSET	0x24c000
#define I10NM_GNR_IMC_MMIO_SIZE		0x4000
#define I10NM_HBM_IMC_MMIO_SIZE		0x9000
#define I10NM_DDR_IMC_CH_CNT(reg)	GET_BITFIELD(reg, 21, 24)
#define I10NM_IS_HBM_PRESENT(reg)	GET_BITFIELD(reg, 27, 30)
#define I10NM_IS_HBM_IMC(reg)		GET_BITFIELD(reg, 29, 29)

#define I10NM_MAX_SAD			16
#define I10NM_SAD_ENABLE(reg)		GET_BITFIELD(reg, 0, 0)
#define I10NM_SAD_NM_CACHEABLE(reg)	GET_BITFIELD(reg, 5, 5)

#define RETRY_RD_ERR_LOG_UC		BIT(1)
#define RETRY_RD_ERR_LOG_NOOVER		BIT(14)
#define RETRY_RD_ERR_LOG_EN		BIT(15)
#define RETRY_RD_ERR_LOG_NOOVER_UC	(BIT(14) | BIT(1))
#define RETRY_RD_ERR_LOG_OVER_UC_V	(BIT(2) | BIT(1) | BIT(0))

static struct list_head *i10nm_edac_list;

static struct res_config *res_cfg;
static int retry_rd_err_log;
static int decoding_via_mca;
static bool mem_cfg_2lm;

static u32 offsets_scrub_icx[]  = {0x22c60, 0x22c54, 0x22c5c, 0x22c58, 0x22c28, 0x20ed8};
static u32 offsets_scrub_spr[]  = {0x22c60, 0x22c54, 0x22f08, 0x22c58, 0x22c28, 0x20ed8};
static u32 offsets_scrub_spr_hbm0[]  = {0x2860, 0x2854, 0x2b08, 0x2858, 0x2828, 0x0ed8};
static u32 offsets_scrub_spr_hbm1[]  = {0x2c60, 0x2c54, 0x2f08, 0x2c58, 0x2c28, 0x0fa8};
static u32 offsets_demand_icx[] = {0x22e54, 0x22e60, 0x22e64, 0x22e58, 0x22e5c, 0x20ee0};
static u32 offsets_demand_spr[] = {0x22e54, 0x22e60, 0x22f10, 0x22e58, 0x22e5c, 0x20ee0};
static u32 offsets_demand2_spr[] = {0x22c70, 0x22d80, 0x22f18, 0x22d58, 0x22c64, 0x20f10};
static u32 offsets_demand_spr_hbm0[] = {0x2a54, 0x2a60, 0x2b10, 0x2a58, 0x2a5c, 0x0ee0};
static u32 offsets_demand_spr_hbm1[] = {0x2e54, 0x2e60, 0x2f10, 0x2e58, 0x2e5c, 0x0fb0};

static void __enable_retry_rd_err_log(struct skx_imc *imc, int chan, bool enable,
				      u32 *offsets_scrub, u32 *offsets_demand,
				      u32 *offsets_demand2)
{
	u32 s, d, d2;

	s = I10NM_GET_REG32(imc, chan, offsets_scrub[0]);
	d = I10NM_GET_REG32(imc, chan, offsets_demand[0]);
	if (offsets_demand2)
		d2 = I10NM_GET_REG32(imc, chan, offsets_demand2[0]);

	if (enable) {
		/* Save default configurations */
		imc->chan[chan].retry_rd_err_log_s = s;
		imc->chan[chan].retry_rd_err_log_d = d;
		if (offsets_demand2)
			imc->chan[chan].retry_rd_err_log_d2 = d2;

		s &= ~RETRY_RD_ERR_LOG_NOOVER_UC;
		s |=  RETRY_RD_ERR_LOG_EN;
		d &= ~RETRY_RD_ERR_LOG_NOOVER_UC;
		d |=  RETRY_RD_ERR_LOG_EN;

		if (offsets_demand2) {
			d2 &= ~RETRY_RD_ERR_LOG_UC;
			d2 |=  RETRY_RD_ERR_LOG_NOOVER;
			d2 |=  RETRY_RD_ERR_LOG_EN;
		}
	} else {
		/* Restore default configurations */
		if (imc->chan[chan].retry_rd_err_log_s & RETRY_RD_ERR_LOG_UC)
			s |=  RETRY_RD_ERR_LOG_UC;
		if (imc->chan[chan].retry_rd_err_log_s & RETRY_RD_ERR_LOG_NOOVER)
			s |=  RETRY_RD_ERR_LOG_NOOVER;
		if (!(imc->chan[chan].retry_rd_err_log_s & RETRY_RD_ERR_LOG_EN))
			s &= ~RETRY_RD_ERR_LOG_EN;
		if (imc->chan[chan].retry_rd_err_log_d & RETRY_RD_ERR_LOG_UC)
			d |=  RETRY_RD_ERR_LOG_UC;
		if (imc->chan[chan].retry_rd_err_log_d & RETRY_RD_ERR_LOG_NOOVER)
			d |=  RETRY_RD_ERR_LOG_NOOVER;
		if (!(imc->chan[chan].retry_rd_err_log_d & RETRY_RD_ERR_LOG_EN))
			d &= ~RETRY_RD_ERR_LOG_EN;

		if (offsets_demand2) {
			if (imc->chan[chan].retry_rd_err_log_d2 & RETRY_RD_ERR_LOG_UC)
				d2 |=  RETRY_RD_ERR_LOG_UC;
			if (!(imc->chan[chan].retry_rd_err_log_d2 & RETRY_RD_ERR_LOG_NOOVER))
				d2 &=  ~RETRY_RD_ERR_LOG_NOOVER;
			if (!(imc->chan[chan].retry_rd_err_log_d2 & RETRY_RD_ERR_LOG_EN))
				d2 &= ~RETRY_RD_ERR_LOG_EN;
		}
	}

	I10NM_SET_REG32(imc, chan, offsets_scrub[0], s);
	I10NM_SET_REG32(imc, chan, offsets_demand[0], d);
	if (offsets_demand2)
		I10NM_SET_REG32(imc, chan, offsets_demand2[0], d2);
}

static void enable_retry_rd_err_log(bool enable)
{
	int i, j, imc_num, chan_num;
	struct skx_imc *imc;
	struct skx_dev *d;

	edac_dbg(2, "\n");

	list_for_each_entry(d, i10nm_edac_list, list) {
		imc_num  = res_cfg->ddr_imc_num;
		chan_num = res_cfg->ddr_chan_num;

		for (i = 0; i < imc_num; i++) {
			imc = &d->imc[i];
			if (!imc->mbase)
				continue;

			for (j = 0; j < chan_num; j++)
				__enable_retry_rd_err_log(imc, j, enable,
							  res_cfg->offsets_scrub,
							  res_cfg->offsets_demand,
							  res_cfg->offsets_demand2);
		}

		imc_num += res_cfg->hbm_imc_num;
		chan_num = res_cfg->hbm_chan_num;

		for (; i < imc_num; i++) {
			imc = &d->imc[i];
			if (!imc->mbase || !imc->hbm_mc)
				continue;

			for (j = 0; j < chan_num; j++) {
				__enable_retry_rd_err_log(imc, j, enable,
							  res_cfg->offsets_scrub_hbm0,
							  res_cfg->offsets_demand_hbm0,
							  NULL);
				__enable_retry_rd_err_log(imc, j, enable,
							  res_cfg->offsets_scrub_hbm1,
							  res_cfg->offsets_demand_hbm1,
							  NULL);
			}
		}
	}
}

static void show_retry_rd_err_log(struct decoded_addr *res, char *msg,
				  int len, bool scrub_err)
{
	struct skx_imc *imc = &res->dev->imc[res->imc];
	u32 log0, log1, log2, log3, log4;
	u32 corr0, corr1, corr2, corr3;
	u32 lxg0, lxg1, lxg3, lxg4;
	u32 *xffsets = NULL;
	u64 log2a, log5;
	u64 lxg2a, lxg5;
	u32 *offsets;
	int n, pch;

	if (!imc->mbase)
		return;

	if (imc->hbm_mc) {
		pch = res->cs & 1;

		if (pch)
			offsets = scrub_err ? res_cfg->offsets_scrub_hbm1 :
					      res_cfg->offsets_demand_hbm1;
		else
			offsets = scrub_err ? res_cfg->offsets_scrub_hbm0 :
					      res_cfg->offsets_demand_hbm0;
	} else {
		if (scrub_err) {
			offsets = res_cfg->offsets_scrub;
		} else {
			offsets = res_cfg->offsets_demand;
			xffsets = res_cfg->offsets_demand2;
		}
	}

	log0 = I10NM_GET_REG32(imc, res->channel, offsets[0]);
	log1 = I10NM_GET_REG32(imc, res->channel, offsets[1]);
	log3 = I10NM_GET_REG32(imc, res->channel, offsets[3]);
	log4 = I10NM_GET_REG32(imc, res->channel, offsets[4]);
	log5 = I10NM_GET_REG64(imc, res->channel, offsets[5]);

	if (xffsets) {
		lxg0 = I10NM_GET_REG32(imc, res->channel, xffsets[0]);
		lxg1 = I10NM_GET_REG32(imc, res->channel, xffsets[1]);
		lxg3 = I10NM_GET_REG32(imc, res->channel, xffsets[3]);
		lxg4 = I10NM_GET_REG32(imc, res->channel, xffsets[4]);
		lxg5 = I10NM_GET_REG64(imc, res->channel, xffsets[5]);
	}

	if (res_cfg->type == SPR) {
		log2a = I10NM_GET_REG64(imc, res->channel, offsets[2]);
		n = snprintf(msg, len, " retry_rd_err_log[%.8x %.8x %.16llx %.8x %.8x %.16llx",
			     log0, log1, log2a, log3, log4, log5);

		if (len - n > 0) {
			if (xffsets) {
				lxg2a = I10NM_GET_REG64(imc, res->channel, xffsets[2]);
				n += snprintf(msg + n, len - n, " %.8x %.8x %.16llx %.8x %.8x %.16llx]",
					     lxg0, lxg1, lxg2a, lxg3, lxg4, lxg5);
			} else {
				n += snprintf(msg + n, len - n, "]");
			}
		}
	} else {
		log2 = I10NM_GET_REG32(imc, res->channel, offsets[2]);
		n = snprintf(msg, len, " retry_rd_err_log[%.8x %.8x %.8x %.8x %.8x %.16llx]",
			     log0, log1, log2, log3, log4, log5);
	}

	if (imc->hbm_mc) {
		if (pch) {
			corr0 = I10NM_GET_REG32(imc, res->channel, 0x2c18);
			corr1 = I10NM_GET_REG32(imc, res->channel, 0x2c1c);
			corr2 = I10NM_GET_REG32(imc, res->channel, 0x2c20);
			corr3 = I10NM_GET_REG32(imc, res->channel, 0x2c24);
		} else {
			corr0 = I10NM_GET_REG32(imc, res->channel, 0x2818);
			corr1 = I10NM_GET_REG32(imc, res->channel, 0x281c);
			corr2 = I10NM_GET_REG32(imc, res->channel, 0x2820);
			corr3 = I10NM_GET_REG32(imc, res->channel, 0x2824);
		}
	} else {
		corr0 = I10NM_GET_REG32(imc, res->channel, 0x22c18);
		corr1 = I10NM_GET_REG32(imc, res->channel, 0x22c1c);
		corr2 = I10NM_GET_REG32(imc, res->channel, 0x22c20);
		corr3 = I10NM_GET_REG32(imc, res->channel, 0x22c24);
	}

	if (len - n > 0)
		snprintf(msg + n, len - n,
			 " correrrcnt[%.4x %.4x %.4x %.4x %.4x %.4x %.4x %.4x]",
			 corr0 & 0xffff, corr0 >> 16,
			 corr1 & 0xffff, corr1 >> 16,
			 corr2 & 0xffff, corr2 >> 16,
			 corr3 & 0xffff, corr3 >> 16);

	/* Clear status bits */
	if (retry_rd_err_log == 2) {
		if (log0 & RETRY_RD_ERR_LOG_OVER_UC_V) {
			log0 &= ~RETRY_RD_ERR_LOG_OVER_UC_V;
			I10NM_SET_REG32(imc, res->channel, offsets[0], log0);
		}

		if (xffsets && (lxg0 & RETRY_RD_ERR_LOG_OVER_UC_V)) {
			lxg0 &= ~RETRY_RD_ERR_LOG_OVER_UC_V;
			I10NM_SET_REG32(imc, res->channel, xffsets[0], lxg0);
		}
	}
}

static struct pci_dev *pci_get_dev_wrapper(int dom, unsigned int bus,
					   unsigned int dev, unsigned int fun)
{
	struct pci_dev *pdev;

	pdev = pci_get_domain_bus_and_slot(dom, bus, PCI_DEVFN(dev, fun));
	if (!pdev) {
		edac_dbg(2, "No device %02x:%02x.%x\n",
			 bus, dev, fun);
		return NULL;
	}

	if (unlikely(pci_enable_device(pdev) < 0)) {
		edac_dbg(2, "Failed to enable device %02x:%02x.%x\n",
			 bus, dev, fun);
		pci_dev_put(pdev);
		return NULL;
	}

	return pdev;
}

/**
 * i10nm_get_imc_num() - Get the number of present DDR memory controllers.
 *
 * @cfg : The pointer to the structure of EDAC resource configurations.
 *
 * For Granite Rapids CPUs, the number of present DDR memory controllers read
 * at runtime overwrites the value statically configured in @cfg->ddr_imc_num.
 * For other CPUs, the number of present DDR memory controllers is statically
 * configured in @cfg->ddr_imc_num.
 *
 * RETURNS : 0 on success, < 0 on failure.
 */
static int i10nm_get_imc_num(struct res_config *cfg)
{
	int n, imc_num, chan_num = 0;
	struct skx_dev *d;
	u32 reg;

	list_for_each_entry(d, i10nm_edac_list, list) {
		d->pcu_cr3 = pci_get_dev_wrapper(d->seg, d->bus[res_cfg->pcu_cr3_bdf.bus],
						 res_cfg->pcu_cr3_bdf.dev,
						 res_cfg->pcu_cr3_bdf.fun);
		if (!d->pcu_cr3)
			continue;

		if (I10NM_GET_CAPID5_CFG(d, reg))
			continue;

		n = I10NM_DDR_IMC_CH_CNT(reg);

		if (!chan_num) {
			chan_num = n;
			edac_dbg(2, "Get DDR CH number: %d\n", chan_num);
		} else if (chan_num != n) {
			i10nm_printk(KERN_NOTICE, "Get DDR CH numbers: %d, %d\n", chan_num, n);
		}
	}

	switch (cfg->type) {
	case GNR:
		/*
		 * One channel per DDR memory controller for Granite Rapids CPUs.
		 */
		imc_num = chan_num;

		if (!imc_num) {
			i10nm_printk(KERN_ERR, "Invalid DDR MC number\n");
			return -ENODEV;
		}

		if (imc_num > I10NM_NUM_DDR_IMC) {
			i10nm_printk(KERN_ERR, "Need to make I10NM_NUM_DDR_IMC >= %d\n", imc_num);
			return -EINVAL;
		}

		if (cfg->ddr_imc_num != imc_num) {
			/*
			 * Store the number of present DDR memory controllers.
			 */
			cfg->ddr_imc_num = imc_num;
			edac_dbg(2, "Set DDR MC number: %d", imc_num);
		}

		return 0;
	default:
		/*
		 * For other CPUs, the number of present DDR memory controllers
		 * is statically pre-configured in cfg->ddr_imc_num.
		 */
		return 0;
	}
}

static bool i10nm_check_2lm(struct res_config *cfg)
{
	struct skx_dev *d;
	u32 reg;
	int i;

	list_for_each_entry(d, i10nm_edac_list, list) {
		d->sad_all = pci_get_dev_wrapper(d->seg, d->bus[res_cfg->sad_all_bdf.bus],
						 res_cfg->sad_all_bdf.dev,
						 res_cfg->sad_all_bdf.fun);
		if (!d->sad_all)
			continue;

		for (i = 0; i < I10NM_MAX_SAD; i++) {
			I10NM_GET_SAD(d, cfg->sad_all_offset, i, reg);
			if (I10NM_SAD_ENABLE(reg) && I10NM_SAD_NM_CACHEABLE(reg)) {
				edac_dbg(2, "2-level memory configuration.\n");
				return true;
			}
		}
	}

	return false;
}

/*
 * Check whether the error comes from DDRT by ICX/Tremont/SPR model specific error code.
 * Refer to SDM vol3B 17.11.3/17.13.2 Intel IMC MC error codes for IA32_MCi_STATUS.
 */
static bool i10nm_mscod_is_ddrt(u32 mscod)
{
	switch (res_cfg->type) {
	case I10NM:
		switch (mscod) {
		case 0x0106: case 0x0107:
		case 0x0800: case 0x0804:
		case 0x0806 ... 0x0808:
		case 0x080a ... 0x080e:
		case 0x0810: case 0x0811:
		case 0x0816: case 0x081e:
		case 0x081f:
			return true;
		}

		break;
	case SPR:
		switch (mscod) {
		case 0x0800: case 0x0804:
		case 0x0806 ... 0x0808:
		case 0x080a ... 0x080e:
		case 0x0810: case 0x0811:
		case 0x0816: case 0x081e:
		case 0x081f:
			return true;
		}

		break;
	default:
		return false;
	}

	return false;
}

static bool i10nm_mc_decode_available(struct mce *mce)
{
#define ICX_IMCx_CHy		0x06666000
	u8 bank;

	if (!decoding_via_mca || mem_cfg_2lm)
		return false;

	if ((mce->status & (MCI_STATUS_MISCV | MCI_STATUS_ADDRV))
			!= (MCI_STATUS_MISCV | MCI_STATUS_ADDRV))
		return false;

	bank = mce->bank;

	switch (res_cfg->type) {
	case I10NM:
		/* Check whether the bank is one of {13,14,17,18,21,22,25,26} */
		if (!(ICX_IMCx_CHy & (1 << bank)))
			return false;
		break;
	case SPR:
		if (bank < 13 || bank > 20)
			return false;
		break;
	default:
		return false;
	}

	/* DDRT errors can't be decoded from MCA bank registers */
	if (MCI_MISC_ECC_MODE(mce->misc) == MCI_MISC_ECC_DDRT)
		return false;

	if (i10nm_mscod_is_ddrt(MCI_STATUS_MSCOD(mce->status)))
		return false;

	return true;
}

static bool i10nm_mc_decode(struct decoded_addr *res)
{
	struct mce *m = res->mce;
	struct skx_dev *d;
	u8 bank;

	if (!i10nm_mc_decode_available(m))
		return false;

	list_for_each_entry(d, i10nm_edac_list, list) {
		if (d->imc[0].src_id == m->socketid) {
			res->socket = m->socketid;
			res->dev = d;
			break;
		}
	}

	switch (res_cfg->type) {
	case I10NM:
		bank              = m->bank - 13;
		res->imc          = bank / 4;
		res->channel      = bank % 2;
		res->column       = GET_BITFIELD(m->misc, 9, 18) << 2;
		res->row          = GET_BITFIELD(m->misc, 19, 39);
		res->bank_group   = GET_BITFIELD(m->misc, 40, 41);
		res->bank_address = GET_BITFIELD(m->misc, 42, 43);
		res->bank_group  |= GET_BITFIELD(m->misc, 44, 44) << 2;
		res->rank         = GET_BITFIELD(m->misc, 56, 58);
		res->dimm         = res->rank >> 2;
		res->rank         = res->rank % 4;
		break;
	case SPR:
		bank              = m->bank - 13;
		res->imc          = bank / 2;
		res->channel      = bank % 2;
		res->column       = GET_BITFIELD(m->misc, 9, 18) << 2;
		res->row          = GET_BITFIELD(m->misc, 19, 36);
		res->bank_group   = GET_BITFIELD(m->misc, 37, 38);
		res->bank_address = GET_BITFIELD(m->misc, 39, 40);
		res->bank_group  |= GET_BITFIELD(m->misc, 41, 41) << 2;
		res->rank         = GET_BITFIELD(m->misc, 57, 57);
		res->dimm         = GET_BITFIELD(m->misc, 58, 58);
		break;
	default:
		return false;
	}

	if (!res->dev) {
		skx_printk(KERN_ERR, "No device for src_id %d imc %d\n",
			   m->socketid, res->imc);
		return false;
	}

	return true;
}

/**
 * get_gnr_mdev() - Get the PCI device of the @logical_idx-th DDR memory controller.
 *
 * @d            : The pointer to the structure of CPU socket EDAC device.
 * @logical_idx  : The logical index of the present memory controller (0 ~ max present MC# - 1).
 * @physical_idx : To store the corresponding physical index of @logical_idx.
 *
 * RETURNS       : The PCI device of the @logical_idx-th DDR memory controller, NULL on failure.
 */
static struct pci_dev *get_gnr_mdev(struct skx_dev *d, int logical_idx, int *physical_idx)
{
#define GNR_MAX_IMC_PCI_CNT	28

	struct pci_dev *mdev;
	int i, logical = 0;

	/*
	 * Detect present memory controllers from { PCI device: 8-5, function 7-1 }
	 */
	for (i = 0; i < GNR_MAX_IMC_PCI_CNT; i++) {
		mdev = pci_get_dev_wrapper(d->seg,
					   d->bus[res_cfg->ddr_mdev_bdf.bus],
					   res_cfg->ddr_mdev_bdf.dev + i / 7,
					   res_cfg->ddr_mdev_bdf.fun + i % 7);

		if (mdev) {
			if (logical == logical_idx) {
				*physical_idx = i;
				return mdev;
			}

			pci_dev_put(mdev);
			logical++;
		}
	}

	return NULL;
}

/**
 * get_ddr_munit() - Get the resource of the i-th DDR memory controller.
 *
 * @d      : The pointer to the structure of CPU socket EDAC device.
 * @i      : The index of the CPU socket relative DDR memory controller.
 * @offset : To store the MMIO offset of the i-th DDR memory controller.
 * @size   : To store the MMIO size of the i-th DDR memory controller.
 *
 * RETURNS : The PCI device of the i-th DDR memory controller, NULL on failure.
 */
static struct pci_dev *get_ddr_munit(struct skx_dev *d, int i, u32 *offset, unsigned long *size)
{
	struct pci_dev *mdev;
	int physical_idx;
	u32 reg;

	switch (res_cfg->type) {
	case GNR:
		if (I10NM_GET_IMC_BAR(d, 0, reg)) {
			i10nm_printk(KERN_ERR, "Failed to get mc0 bar\n");
			return NULL;
		}

		mdev = get_gnr_mdev(d, i, &physical_idx);
		if (!mdev)
			return NULL;

		*offset = I10NM_GET_IMC_MMIO_OFFSET(reg) +
			  I10NM_GNR_IMC_MMIO_OFFSET +
			  physical_idx * I10NM_GNR_IMC_MMIO_SIZE;
		*size   = I10NM_GNR_IMC_MMIO_SIZE;

		break;
	default:
		if (I10NM_GET_IMC_BAR(d, i, reg)) {
			i10nm_printk(KERN_ERR, "Failed to get mc%d bar\n", i);
			return NULL;
		}

		mdev = pci_get_dev_wrapper(d->seg,
					   d->bus[res_cfg->ddr_mdev_bdf.bus],
					   res_cfg->ddr_mdev_bdf.dev + i,
					   res_cfg->ddr_mdev_bdf.fun);
		if (!mdev)
			return NULL;

		*offset  = I10NM_GET_IMC_MMIO_OFFSET(reg);
		*size    = I10NM_GET_IMC_MMIO_SIZE(reg);
	}

	return mdev;
}

/**
 * i10nm_imc_absent() - Check whether the memory controller @imc is absent
 *
 * @imc    : The pointer to the structure of memory controller EDAC device.
 *
 * RETURNS : true if the memory controller EDAC device is absent, false otherwise.
 */
static bool i10nm_imc_absent(struct skx_imc *imc)
{
	u32 mcmtr;
	int i;

	switch (res_cfg->type) {
	case SPR:
		for (i = 0; i < res_cfg->ddr_chan_num; i++) {
			mcmtr = I10NM_GET_MCMTR(imc, i);
			edac_dbg(1, "ch%d mcmtr reg %x\n", i, mcmtr);
			if (mcmtr != ~0)
				return false;
		}

		/*
		 * Some workstations' absent memory controllers still
		 * appear as PCIe devices, misleading the EDAC driver.
		 * By observing that the MMIO registers of these absent
		 * memory controllers consistently hold the value of ~0.
		 *
		 * We identify a memory controller as absent by checking
		 * if its MMIO register "mcmtr" == ~0 in all its channels.
		 */
		return true;
	default:
		return false;
	}
}

static int i10nm_get_ddr_munits(void)
{
	struct pci_dev *mdev;
	void __iomem *mbase;
	unsigned long size;
	struct skx_dev *d;
	int i, lmc, j = 0;
	u32 reg, off;
	u64 base;

	list_for_each_entry(d, i10nm_edac_list, list) {
		d->util_all = pci_get_dev_wrapper(d->seg, d->bus[res_cfg->util_all_bdf.bus],
						  res_cfg->util_all_bdf.dev,
						  res_cfg->util_all_bdf.fun);
		if (!d->util_all)
			return -ENODEV;

		d->uracu = pci_get_dev_wrapper(d->seg, d->bus[res_cfg->uracu_bdf.bus],
					       res_cfg->uracu_bdf.dev,
					       res_cfg->uracu_bdf.fun);
		if (!d->uracu)
			return -ENODEV;

		if (I10NM_GET_SCK_BAR(d, reg)) {
			i10nm_printk(KERN_ERR, "Failed to socket bar\n");
			return -ENODEV;
		}

		base = I10NM_GET_SCK_MMIO_BASE(reg);
		edac_dbg(2, "socket%d mmio base 0x%llx (reg 0x%x)\n",
			 j++, base, reg);

		for (lmc = 0, i = 0; i < res_cfg->ddr_imc_num; i++) {
			mdev = get_ddr_munit(d, i, &off, &size);

			if (i == 0 && !mdev) {
				i10nm_printk(KERN_ERR, "No IMC found\n");
				return -ENODEV;
			}
			if (!mdev)
				continue;

			edac_dbg(2, "mc%d mmio base 0x%llx size 0x%lx (reg 0x%x)\n",
				 i, base + off, size, reg);

			mbase = ioremap(base + off, size);
			if (!mbase) {
				i10nm_printk(KERN_ERR, "Failed to ioremap 0x%llx\n",
					     base + off);
				return -ENODEV;
			}

			d->imc[lmc].mbase = mbase;
			if (i10nm_imc_absent(&d->imc[lmc])) {
				pci_dev_put(mdev);
				iounmap(mbase);
				d->imc[lmc].mbase = NULL;
				edac_dbg(2, "Skip absent mc%d\n", i);
				continue;
			} else {
				d->imc[lmc].mdev = mdev;
				lmc++;
			}
		}
	}

	return 0;
}

static bool i10nm_check_hbm_imc(struct skx_dev *d)
{
	u32 reg;

	if (I10NM_GET_CAPID3_CFG(d, reg)) {
		i10nm_printk(KERN_ERR, "Failed to get capid3_cfg\n");
		return false;
	}

	return I10NM_IS_HBM_PRESENT(reg) != 0;
}

static int i10nm_get_hbm_munits(void)
{
	struct pci_dev *mdev;
	void __iomem *mbase;
	u32 reg, off, mcmtr;
	struct skx_dev *d;
	int i, lmc;
	u64 base;

	list_for_each_entry(d, i10nm_edac_list, list) {
		if (!d->pcu_cr3)
			return -ENODEV;

		if (!i10nm_check_hbm_imc(d)) {
			i10nm_printk(KERN_DEBUG, "No hbm memory\n");
			return -ENODEV;
		}

		if (I10NM_GET_SCK_BAR(d, reg)) {
			i10nm_printk(KERN_ERR, "Failed to get socket bar\n");
			return -ENODEV;
		}
		base = I10NM_GET_SCK_MMIO_BASE(reg);

		if (I10NM_GET_HBM_IMC_BAR(d, reg)) {
			i10nm_printk(KERN_ERR, "Failed to get hbm mc bar\n");
			return -ENODEV;
		}
		base += I10NM_GET_HBM_IMC_MMIO_OFFSET(reg);

		lmc = res_cfg->ddr_imc_num;

		for (i = 0; i < res_cfg->hbm_imc_num; i++) {
			mdev = pci_get_dev_wrapper(d->seg, d->bus[res_cfg->hbm_mdev_bdf.bus],
						   res_cfg->hbm_mdev_bdf.dev + i / 4,
						   res_cfg->hbm_mdev_bdf.fun + i % 4);

			if (i == 0 && !mdev) {
				i10nm_printk(KERN_ERR, "No hbm mc found\n");
				return -ENODEV;
			}
			if (!mdev)
				continue;

			d->imc[lmc].mdev = mdev;
			off = i * I10NM_HBM_IMC_MMIO_SIZE;

			edac_dbg(2, "hbm mc%d mmio base 0x%llx size 0x%x\n",
				 lmc, base + off, I10NM_HBM_IMC_MMIO_SIZE);

			mbase = ioremap(base + off, I10NM_HBM_IMC_MMIO_SIZE);
			if (!mbase) {
				pci_dev_put(d->imc[lmc].mdev);
				d->imc[lmc].mdev = NULL;

				i10nm_printk(KERN_ERR, "Failed to ioremap for hbm mc 0x%llx\n",
					     base + off);
				return -ENOMEM;
			}

			d->imc[lmc].mbase = mbase;
			d->imc[lmc].hbm_mc = true;

			mcmtr = I10NM_GET_MCMTR(&d->imc[lmc], 0);
			if (!I10NM_IS_HBM_IMC(mcmtr)) {
				iounmap(d->imc[lmc].mbase);
				d->imc[lmc].mbase = NULL;
				d->imc[lmc].hbm_mc = false;
				pci_dev_put(d->imc[lmc].mdev);
				d->imc[lmc].mdev = NULL;

				i10nm_printk(KERN_ERR, "This isn't an hbm mc!\n");
				return -ENODEV;
			}

			lmc++;
		}
	}

	return 0;
}

static struct res_config i10nm_cfg0 = {
	.type			= I10NM,
	.decs_did		= 0x3452,
	.busno_cfg_offset	= 0xcc,
	.ddr_imc_num		= 4,
	.ddr_chan_num		= 2,
	.ddr_dimm_num		= 2,
	.ddr_chan_mmio_sz	= 0x4000,
	.sad_all_bdf		= {1, 29, 0},
	.pcu_cr3_bdf		= {1, 30, 3},
	.util_all_bdf		= {1, 29, 1},
	.uracu_bdf		= {0, 0, 1},
	.ddr_mdev_bdf		= {0, 12, 0},
	.hbm_mdev_bdf		= {0, 12, 1},
	.sad_all_offset		= 0x108,
	.offsets_scrub		= offsets_scrub_icx,
	.offsets_demand		= offsets_demand_icx,
};

static struct res_config i10nm_cfg1 = {
	.type			= I10NM,
	.decs_did		= 0x3452,
	.busno_cfg_offset	= 0xd0,
	.ddr_imc_num		= 4,
	.ddr_chan_num		= 2,
	.ddr_dimm_num		= 2,
	.ddr_chan_mmio_sz	= 0x4000,
	.sad_all_bdf		= {1, 29, 0},
	.pcu_cr3_bdf		= {1, 30, 3},
	.util_all_bdf		= {1, 29, 1},
	.uracu_bdf		= {0, 0, 1},
	.ddr_mdev_bdf		= {0, 12, 0},
	.hbm_mdev_bdf		= {0, 12, 1},
	.sad_all_offset		= 0x108,
	.offsets_scrub		= offsets_scrub_icx,
	.offsets_demand		= offsets_demand_icx,
};

static struct res_config spr_cfg = {
	.type			= SPR,
	.decs_did		= 0x3252,
	.busno_cfg_offset	= 0xd0,
	.ddr_imc_num		= 4,
	.ddr_chan_num		= 2,
	.ddr_dimm_num		= 2,
	.hbm_imc_num		= 16,
	.hbm_chan_num		= 2,
	.hbm_dimm_num		= 1,
	.ddr_chan_mmio_sz	= 0x8000,
	.hbm_chan_mmio_sz	= 0x4000,
	.support_ddr5		= true,
	.sad_all_bdf		= {1, 10, 0},
	.pcu_cr3_bdf		= {1, 30, 3},
	.util_all_bdf		= {1, 29, 1},
	.uracu_bdf		= {0, 0, 1},
	.ddr_mdev_bdf		= {0, 12, 0},
	.hbm_mdev_bdf		= {0, 12, 1},
	.sad_all_offset		= 0x300,
	.offsets_scrub		= offsets_scrub_spr,
	.offsets_scrub_hbm0	= offsets_scrub_spr_hbm0,
	.offsets_scrub_hbm1	= offsets_scrub_spr_hbm1,
	.offsets_demand		= offsets_demand_spr,
	.offsets_demand2	= offsets_demand2_spr,
	.offsets_demand_hbm0	= offsets_demand_spr_hbm0,
	.offsets_demand_hbm1	= offsets_demand_spr_hbm1,
};

static struct res_config gnr_cfg = {
	.type			= GNR,
	.decs_did		= 0x3252,
	.busno_cfg_offset	= 0xd0,
	.ddr_imc_num		= 12,
	.ddr_chan_num		= 1,
	.ddr_dimm_num		= 2,
	.ddr_chan_mmio_sz	= 0x4000,
	.support_ddr5		= true,
	.sad_all_bdf		= {0, 13, 0},
	.pcu_cr3_bdf		= {0, 5, 0},
	.util_all_bdf		= {0, 13, 1},
	.uracu_bdf		= {0, 0, 1},
	.ddr_mdev_bdf		= {0, 5, 1},
	.sad_all_offset		= 0x300,
};

static const struct x86_cpu_id i10nm_cpuids[] = {
	X86_MATCH_VFM_STEPPINGS(INTEL_ATOM_TREMONT_D,	X86_STEPPINGS(0x0, 0x3), &i10nm_cfg0),
	X86_MATCH_VFM_STEPPINGS(INTEL_ATOM_TREMONT_D,	X86_STEPPINGS(0x4, 0xf), &i10nm_cfg1),
	X86_MATCH_VFM_STEPPINGS(INTEL_ICELAKE_X,	X86_STEPPINGS(0x0, 0x3), &i10nm_cfg0),
	X86_MATCH_VFM_STEPPINGS(INTEL_ICELAKE_X,	X86_STEPPINGS(0x4, 0xf), &i10nm_cfg1),
	X86_MATCH_VFM_STEPPINGS(INTEL_ICELAKE_D,	X86_STEPPINGS(0x0, 0xf), &i10nm_cfg1),
	X86_MATCH_VFM_STEPPINGS(INTEL_SAPPHIRERAPIDS_X,	X86_STEPPINGS(0x0, 0xf), &spr_cfg),
	X86_MATCH_VFM_STEPPINGS(INTEL_EMERALDRAPIDS_X,	X86_STEPPINGS(0x0, 0xf), &spr_cfg),
	X86_MATCH_VFM_STEPPINGS(INTEL_GRANITERAPIDS_X,	X86_STEPPINGS(0x0, 0xf), &gnr_cfg),
	X86_MATCH_VFM_STEPPINGS(INTEL_ATOM_CRESTMONT_X,	X86_STEPPINGS(0x0, 0xf), &gnr_cfg),
	X86_MATCH_VFM_STEPPINGS(INTEL_ATOM_CRESTMONT,	X86_STEPPINGS(0x0, 0xf), &gnr_cfg),
	{}
};
MODULE_DEVICE_TABLE(x86cpu, i10nm_cpuids);

static bool i10nm_check_ecc(struct skx_imc *imc, int chan)
{
	u32 mcmtr;

	mcmtr = I10NM_GET_MCMTR(imc, chan);
	edac_dbg(1, "ch%d mcmtr reg %x\n", chan, mcmtr);

	return !!GET_BITFIELD(mcmtr, 2, 2);
}

static int i10nm_get_dimm_config(struct mem_ctl_info *mci,
				 struct res_config *cfg)
{
	struct skx_pvt *pvt = mci->pvt_info;
	struct skx_imc *imc = pvt->imc;
	u32 mtr, amap, mcddrtcfg = 0;
	struct dimm_info *dimm;
	int i, j, ndimms;

	for (i = 0; i < imc->num_channels; i++) {
		if (!imc->mbase)
			continue;

		ndimms = 0;
		amap = I10NM_GET_AMAP(imc, i);

		if (res_cfg->type != GNR)
			mcddrtcfg = I10NM_GET_MCDDRTCFG(imc, i);

		for (j = 0; j < imc->num_dimms; j++) {
			dimm = edac_get_dimm(mci, i, j, 0);
			mtr = I10NM_GET_DIMMMTR(imc, i, j);
			edac_dbg(1, "dimmmtr 0x%x mcddrtcfg 0x%x (mc%d ch%d dimm%d)\n",
				 mtr, mcddrtcfg, imc->mc, i, j);

			if (IS_DIMM_PRESENT(mtr))
				ndimms += skx_get_dimm_info(mtr, 0, amap, dimm,
							    imc, i, j, cfg);
			else if (IS_NVDIMM_PRESENT(mcddrtcfg, j))
				ndimms += skx_get_nvdimm_info(dimm, imc, i, j,
							      EDAC_MOD_STR);
		}
		if (ndimms && !i10nm_check_ecc(imc, i)) {
			i10nm_printk(KERN_ERR, "ECC is disabled on imc %d channel %d\n",
				     imc->mc, i);
			return -ENODEV;
		}
	}

	return 0;
}

static struct notifier_block i10nm_mce_dec = {
	.notifier_call	= skx_mce_check_error,
	.priority	= MCE_PRIO_EDAC,
};

#ifdef CONFIG_EDAC_DEBUG
/*
 * Debug feature.
 * Exercise the address decode logic by writing an address to
 * /sys/kernel/debug/edac/i10nm_test/addr.
 */
static struct dentry *i10nm_test;

static int debugfs_u64_set(void *data, u64 val)
{
	struct mce m;

	pr_warn_once("Fake error to 0x%llx injected via debugfs\n", val);

	memset(&m, 0, sizeof(m));
	/* ADDRV + MemRd + Unknown channel */
	m.status = MCI_STATUS_ADDRV + 0x90;
	/* One corrected error */
	m.status |= BIT_ULL(MCI_STATUS_CEC_SHIFT);
	m.addr = val;
	skx_mce_check_error(NULL, 0, &m);

	return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(fops_u64_wo, NULL, debugfs_u64_set, "%llu\n");

static void setup_i10nm_debug(void)
{
	i10nm_test = edac_debugfs_create_dir("i10nm_test");
	if (!i10nm_test)
		return;

	if (!edac_debugfs_create_file("addr", 0200, i10nm_test,
				      NULL, &fops_u64_wo)) {
		debugfs_remove(i10nm_test);
		i10nm_test = NULL;
	}
}

static void teardown_i10nm_debug(void)
{
	debugfs_remove_recursive(i10nm_test);
}
#else
static inline void setup_i10nm_debug(void) {}
static inline void teardown_i10nm_debug(void) {}
#endif /*CONFIG_EDAC_DEBUG*/

static int __init i10nm_init(void)
{
	u8 mc = 0, src_id = 0, node_id = 0;
	const struct x86_cpu_id *id;
	struct res_config *cfg;
	const char *owner;
	struct skx_dev *d;
	int rc, i, off[3] = {0xd0, 0xc8, 0xcc};
	u64 tolm, tohm;
	int imc_num;

	edac_dbg(2, "\n");

	if (ghes_get_devices())
		return -EBUSY;

	owner = edac_get_owner();
	if (owner && strncmp(owner, EDAC_MOD_STR, sizeof(EDAC_MOD_STR)))
		return -EBUSY;

	if (cpu_feature_enabled(X86_FEATURE_HYPERVISOR))
		return -ENODEV;

	id = x86_match_cpu(i10nm_cpuids);
	if (!id)
		return -ENODEV;

	cfg = (struct res_config *)id->driver_data;
	res_cfg = cfg;

	rc = skx_get_hi_lo(0x09a2, off, &tolm, &tohm);
	if (rc)
		return rc;

	rc = skx_get_all_bus_mappings(cfg, &i10nm_edac_list);
	if (rc < 0)
		goto fail;
	if (rc == 0) {
		i10nm_printk(KERN_ERR, "No memory controllers found\n");
		return -ENODEV;
	}

	rc = i10nm_get_imc_num(cfg);
	if (rc < 0)
		goto fail;

	mem_cfg_2lm = i10nm_check_2lm(cfg);
	skx_set_mem_cfg(mem_cfg_2lm);

	rc = i10nm_get_ddr_munits();

	if (i10nm_get_hbm_munits() && rc)
		goto fail;

	imc_num = res_cfg->ddr_imc_num + res_cfg->hbm_imc_num;

	list_for_each_entry(d, i10nm_edac_list, list) {
		rc = skx_get_src_id(d, 0xf8, &src_id);
		if (rc < 0)
			goto fail;

		rc = skx_get_node_id(d, &node_id);
		if (rc < 0)
			goto fail;

		edac_dbg(2, "src_id = %d node_id = %d\n", src_id, node_id);
		for (i = 0; i < imc_num; i++) {
			if (!d->imc[i].mdev)
				continue;

			d->imc[i].mc  = mc++;
			d->imc[i].lmc = i;
			d->imc[i].src_id  = src_id;
			d->imc[i].node_id = node_id;
			if (d->imc[i].hbm_mc) {
				d->imc[i].chan_mmio_sz = cfg->hbm_chan_mmio_sz;
				d->imc[i].num_channels = cfg->hbm_chan_num;
				d->imc[i].num_dimms    = cfg->hbm_dimm_num;
			} else {
				d->imc[i].chan_mmio_sz = cfg->ddr_chan_mmio_sz;
				d->imc[i].num_channels = cfg->ddr_chan_num;
				d->imc[i].num_dimms    = cfg->ddr_dimm_num;
			}

			rc = skx_register_mci(&d->imc[i], d->imc[i].mdev,
					      "Intel_10nm Socket", EDAC_MOD_STR,
					      i10nm_get_dimm_config, cfg);
			if (rc < 0)
				goto fail;
		}
	}

	rc = skx_adxl_get();
	if (rc)
		goto fail;

	opstate_init();
	mce_register_decode_chain(&i10nm_mce_dec);
	setup_i10nm_debug();

	if (retry_rd_err_log && res_cfg->offsets_scrub && res_cfg->offsets_demand) {
		skx_set_decode(i10nm_mc_decode, show_retry_rd_err_log);
		if (retry_rd_err_log == 2)
			enable_retry_rd_err_log(true);
	} else {
		skx_set_decode(i10nm_mc_decode, NULL);
	}

	i10nm_printk(KERN_INFO, "%s\n", I10NM_REVISION);

	return 0;
fail:
	skx_remove();
	return rc;
}

static void __exit i10nm_exit(void)
{
	edac_dbg(2, "\n");

	if (retry_rd_err_log && res_cfg->offsets_scrub && res_cfg->offsets_demand) {
		skx_set_decode(NULL, NULL);
		if (retry_rd_err_log == 2)
			enable_retry_rd_err_log(false);
	}

	teardown_i10nm_debug();
	mce_unregister_decode_chain(&i10nm_mce_dec);
	skx_adxl_put();
	skx_remove();
}

module_init(i10nm_init);
module_exit(i10nm_exit);

static int set_decoding_via_mca(const char *buf, const struct kernel_param *kp)
{
	unsigned long val;
	int ret;

	ret = kstrtoul(buf, 0, &val);

	if (ret || val > 1)
		return -EINVAL;

	if (val && mem_cfg_2lm) {
		i10nm_printk(KERN_NOTICE, "Decoding errors via MCA banks for 2LM isn't supported yet\n");
		return -EIO;
	}

	ret = param_set_int(buf, kp);

	return ret;
}

static const struct kernel_param_ops decoding_via_mca_param_ops = {
	.set = set_decoding_via_mca,
	.get = param_get_int,
};

module_param_cb(decoding_via_mca, &decoding_via_mca_param_ops, &decoding_via_mca, 0644);
MODULE_PARM_DESC(decoding_via_mca, "decoding_via_mca: 0=off(default), 1=enable");

module_param(retry_rd_err_log, int, 0444);
MODULE_PARM_DESC(retry_rd_err_log, "retry_rd_err_log: 0=off(default), 1=bios(Linux doesn't reset any control bits, but just reports values.), 2=linux(Linux tries to take control and resets mode bits, clear valid/UC bits after reading.)");

MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("MC Driver for Intel 10nm server processors");