Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Jay Fenlason | 4190 | 56.42% | 1 | 1.25% |
Stefan Richter | 2165 | 29.15% | 29 | 36.25% |
Hideaki Yoshifuji / 吉藤英明 | 633 | 8.52% | 16 | 20.00% |
Kristian Högsberg | 208 | 2.80% | 8 | 10.00% |
Maxim Levitsky | 106 | 1.43% | 3 | 3.75% |
Stephan Gatzka | 31 | 0.42% | 2 | 2.50% |
Jakub Kiciński | 17 | 0.23% | 1 | 1.25% |
Takashi Sakamoto | 14 | 0.19% | 1 | 1.25% |
Andy Shevchenko | 8 | 0.11% | 1 | 1.25% |
Shurong Zhang | 8 | 0.11% | 1 | 1.25% |
Jay Fenlason, Stefan Richter | 6 | 0.08% | 1 | 1.25% |
Eric Dumazet | 6 | 0.08% | 1 | 1.25% |
Jarod Wilson | 6 | 0.08% | 1 | 1.25% |
David S. Miller | 5 | 0.07% | 1 | 1.25% |
August Lilleaas | 3 | 0.04% | 1 | 1.25% |
Kees Cook | 3 | 0.04% | 1 | 1.25% |
Clemens Ladisch | 3 | 0.04% | 1 | 1.25% |
Florian Westphal | 3 | 0.04% | 1 | 1.25% |
Linus Torvalds (pre-git) | 2 | 0.03% | 1 | 1.25% |
Tom Gundersen | 2 | 0.03% | 1 | 1.25% |
DaeSeok Youn | 2 | 0.03% | 1 | 1.25% |
Linus Torvalds | 1 | 0.01% | 1 | 1.25% |
Thomas Gleixner | 1 | 0.01% | 1 | 1.25% |
Stephen Hemminger | 1 | 0.01% | 1 | 1.25% |
Simon Horman | 1 | 0.01% | 1 | 1.25% |
Johannes Berg | 1 | 0.01% | 1 | 1.25% |
Lucas De Marchi | 1 | 0.01% | 1 | 1.25% |
Total | 7427 | 80 |
// SPDX-License-Identifier: GPL-2.0-only /* * IPv4 over IEEE 1394, per RFC 2734 * IPv6 over IEEE 1394, per RFC 3146 * * Copyright (C) 2009 Jay Fenlason <fenlason@redhat.com> * * based on eth1394 by Ben Collins et al */ #include <linux/bug.h> #include <linux/compiler.h> #include <linux/delay.h> #include <linux/device.h> #include <linux/ethtool.h> #include <linux/firewire.h> #include <linux/firewire-constants.h> #include <linux/highmem.h> #include <linux/in.h> #include <linux/ip.h> #include <linux/jiffies.h> #include <linux/mod_devicetable.h> #include <linux/module.h> #include <linux/moduleparam.h> #include <linux/mutex.h> #include <linux/netdevice.h> #include <linux/skbuff.h> #include <linux/slab.h> #include <linux/spinlock.h> #include <asm/unaligned.h> #include <net/arp.h> #include <net/firewire.h> /* rx limits */ #define FWNET_MAX_FRAGMENTS 30 /* arbitrary, > TX queue depth */ #define FWNET_ISO_PAGE_COUNT (PAGE_SIZE < 16*1024 ? 4 : 2) /* tx limits */ #define FWNET_MAX_QUEUED_DATAGRAMS 20 /* < 64 = number of tlabels */ #define FWNET_MIN_QUEUED_DATAGRAMS 10 /* should keep AT DMA busy enough */ #define FWNET_TX_QUEUE_LEN FWNET_MAX_QUEUED_DATAGRAMS /* ? */ #define IEEE1394_BROADCAST_CHANNEL 31 #define IEEE1394_ALL_NODES (0xffc0 | 0x003f) #define IEEE1394_MAX_PAYLOAD_S100 512 #define FWNET_NO_FIFO_ADDR (~0ULL) #define IANA_SPECIFIER_ID 0x00005eU #define RFC2734_SW_VERSION 0x000001U #define RFC3146_SW_VERSION 0x000002U #define IEEE1394_GASP_HDR_SIZE 8 #define RFC2374_UNFRAG_HDR_SIZE 4 #define RFC2374_FRAG_HDR_SIZE 8 #define RFC2374_FRAG_OVERHEAD 4 #define RFC2374_HDR_UNFRAG 0 /* unfragmented */ #define RFC2374_HDR_FIRSTFRAG 1 /* first fragment */ #define RFC2374_HDR_LASTFRAG 2 /* last fragment */ #define RFC2374_HDR_INTFRAG 3 /* interior fragment */ static bool fwnet_hwaddr_is_multicast(u8 *ha) { return !!(*ha & 1); } /* IPv4 and IPv6 encapsulation header */ struct rfc2734_header { u32 w0; u32 w1; }; #define fwnet_get_hdr_lf(h) (((h)->w0 & 0xc0000000) >> 30) #define fwnet_get_hdr_ether_type(h) (((h)->w0 & 0x0000ffff)) #define fwnet_get_hdr_dg_size(h) ((((h)->w0 & 0x0fff0000) >> 16) + 1) #define fwnet_get_hdr_fg_off(h) (((h)->w0 & 0x00000fff)) #define fwnet_get_hdr_dgl(h) (((h)->w1 & 0xffff0000) >> 16) #define fwnet_set_hdr_lf(lf) ((lf) << 30) #define fwnet_set_hdr_ether_type(et) (et) #define fwnet_set_hdr_dg_size(dgs) (((dgs) - 1) << 16) #define fwnet_set_hdr_fg_off(fgo) (fgo) #define fwnet_set_hdr_dgl(dgl) ((dgl) << 16) static inline void fwnet_make_uf_hdr(struct rfc2734_header *hdr, unsigned ether_type) { hdr->w0 = fwnet_set_hdr_lf(RFC2374_HDR_UNFRAG) | fwnet_set_hdr_ether_type(ether_type); } static inline void fwnet_make_ff_hdr(struct rfc2734_header *hdr, unsigned ether_type, unsigned dg_size, unsigned dgl) { hdr->w0 = fwnet_set_hdr_lf(RFC2374_HDR_FIRSTFRAG) | fwnet_set_hdr_dg_size(dg_size) | fwnet_set_hdr_ether_type(ether_type); hdr->w1 = fwnet_set_hdr_dgl(dgl); } static inline void fwnet_make_sf_hdr(struct rfc2734_header *hdr, unsigned lf, unsigned dg_size, unsigned fg_off, unsigned dgl) { hdr->w0 = fwnet_set_hdr_lf(lf) | fwnet_set_hdr_dg_size(dg_size) | fwnet_set_hdr_fg_off(fg_off); hdr->w1 = fwnet_set_hdr_dgl(dgl); } /* This list keeps track of what parts of the datagram have been filled in */ struct fwnet_fragment_info { struct list_head fi_link; u16 offset; u16 len; }; struct fwnet_partial_datagram { struct list_head pd_link; struct list_head fi_list; struct sk_buff *skb; /* FIXME Why not use skb->data? */ char *pbuf; u16 datagram_label; u16 ether_type; u16 datagram_size; }; static DEFINE_MUTEX(fwnet_device_mutex); static LIST_HEAD(fwnet_device_list); struct fwnet_device { struct list_head dev_link; spinlock_t lock; enum { FWNET_BROADCAST_ERROR, FWNET_BROADCAST_RUNNING, FWNET_BROADCAST_STOPPED, } broadcast_state; struct fw_iso_context *broadcast_rcv_context; struct fw_iso_buffer broadcast_rcv_buffer; void **broadcast_rcv_buffer_ptrs; unsigned broadcast_rcv_next_ptr; unsigned num_broadcast_rcv_ptrs; unsigned rcv_buffer_size; /* * This value is the maximum unfragmented datagram size that can be * sent by the hardware. It already has the GASP overhead and the * unfragmented datagram header overhead calculated into it. */ unsigned broadcast_xmt_max_payload; u16 broadcast_xmt_datagramlabel; /* * The CSR address that remote nodes must send datagrams to for us to * receive them. */ struct fw_address_handler handler; u64 local_fifo; /* Number of tx datagrams that have been queued but not yet acked */ int queued_datagrams; int peer_count; struct list_head peer_list; struct fw_card *card; struct net_device *netdev; }; struct fwnet_peer { struct list_head peer_link; struct fwnet_device *dev; u64 guid; /* guarded by dev->lock */ struct list_head pd_list; /* received partial datagrams */ unsigned pdg_size; /* pd_list size */ u16 datagram_label; /* outgoing datagram label */ u16 max_payload; /* includes RFC2374_FRAG_HDR_SIZE overhead */ int node_id; int generation; unsigned speed; }; /* This is our task struct. It's used for the packet complete callback. */ struct fwnet_packet_task { struct fw_transaction transaction; struct rfc2734_header hdr; struct sk_buff *skb; struct fwnet_device *dev; int outstanding_pkts; u64 fifo_addr; u16 dest_node; u16 max_payload; u8 generation; u8 speed; u8 enqueued; }; /* * saddr == NULL means use device source address. * daddr == NULL means leave destination address (eg unresolved arp). */ static int fwnet_header_create(struct sk_buff *skb, struct net_device *net, unsigned short type, const void *daddr, const void *saddr, unsigned len) { struct fwnet_header *h; h = skb_push(skb, sizeof(*h)); put_unaligned_be16(type, &h->h_proto); if (net->flags & (IFF_LOOPBACK | IFF_NOARP)) { memset(h->h_dest, 0, net->addr_len); return net->hard_header_len; } if (daddr) { memcpy(h->h_dest, daddr, net->addr_len); return net->hard_header_len; } return -net->hard_header_len; } static int fwnet_header_cache(const struct neighbour *neigh, struct hh_cache *hh, __be16 type) { struct net_device *net; struct fwnet_header *h; if (type == cpu_to_be16(ETH_P_802_3)) return -1; net = neigh->dev; h = (struct fwnet_header *)((u8 *)hh->hh_data + HH_DATA_OFF(sizeof(*h))); h->h_proto = type; memcpy(h->h_dest, neigh->ha, net->addr_len); /* Pairs with the READ_ONCE() in neigh_resolve_output(), * neigh_hh_output() and neigh_update_hhs(). */ smp_store_release(&hh->hh_len, FWNET_HLEN); return 0; } /* Called by Address Resolution module to notify changes in address. */ static void fwnet_header_cache_update(struct hh_cache *hh, const struct net_device *net, const unsigned char *haddr) { memcpy((u8 *)hh->hh_data + HH_DATA_OFF(FWNET_HLEN), haddr, net->addr_len); } static int fwnet_header_parse(const struct sk_buff *skb, unsigned char *haddr) { memcpy(haddr, skb->dev->dev_addr, FWNET_ALEN); return FWNET_ALEN; } static const struct header_ops fwnet_header_ops = { .create = fwnet_header_create, .cache = fwnet_header_cache, .cache_update = fwnet_header_cache_update, .parse = fwnet_header_parse, }; /* FIXME: is this correct for all cases? */ static bool fwnet_frag_overlap(struct fwnet_partial_datagram *pd, unsigned offset, unsigned len) { struct fwnet_fragment_info *fi; unsigned end = offset + len; list_for_each_entry(fi, &pd->fi_list, fi_link) if (offset < fi->offset + fi->len && end > fi->offset) return true; return false; } /* Assumes that new fragment does not overlap any existing fragments */ static struct fwnet_fragment_info *fwnet_frag_new( struct fwnet_partial_datagram *pd, unsigned offset, unsigned len) { struct fwnet_fragment_info *fi, *fi2, *new; struct list_head *list; list = &pd->fi_list; list_for_each_entry(fi, &pd->fi_list, fi_link) { if (fi->offset + fi->len == offset) { /* The new fragment can be tacked on to the end */ /* Did the new fragment plug a hole? */ fi2 = list_entry(fi->fi_link.next, struct fwnet_fragment_info, fi_link); if (fi->offset + fi->len == fi2->offset) { /* glue fragments together */ fi->len += len + fi2->len; list_del(&fi2->fi_link); kfree(fi2); } else { fi->len += len; } return fi; } if (offset + len == fi->offset) { /* The new fragment can be tacked on to the beginning */ /* Did the new fragment plug a hole? */ fi2 = list_entry(fi->fi_link.prev, struct fwnet_fragment_info, fi_link); if (fi2->offset + fi2->len == fi->offset) { /* glue fragments together */ fi2->len += fi->len + len; list_del(&fi->fi_link); kfree(fi); return fi2; } fi->offset = offset; fi->len += len; return fi; } if (offset > fi->offset + fi->len) { list = &fi->fi_link; break; } if (offset + len < fi->offset) { list = fi->fi_link.prev; break; } } new = kmalloc(sizeof(*new), GFP_ATOMIC); if (!new) return NULL; new->offset = offset; new->len = len; list_add(&new->fi_link, list); return new; } static struct fwnet_partial_datagram *fwnet_pd_new(struct net_device *net, struct fwnet_peer *peer, u16 datagram_label, unsigned dg_size, void *frag_buf, unsigned frag_off, unsigned frag_len) { struct fwnet_partial_datagram *new; struct fwnet_fragment_info *fi; new = kmalloc(sizeof(*new), GFP_ATOMIC); if (!new) goto fail; INIT_LIST_HEAD(&new->fi_list); fi = fwnet_frag_new(new, frag_off, frag_len); if (fi == NULL) goto fail_w_new; new->datagram_label = datagram_label; new->datagram_size = dg_size; new->skb = dev_alloc_skb(dg_size + LL_RESERVED_SPACE(net)); if (new->skb == NULL) goto fail_w_fi; skb_reserve(new->skb, LL_RESERVED_SPACE(net)); new->pbuf = skb_put(new->skb, dg_size); memcpy(new->pbuf + frag_off, frag_buf, frag_len); list_add_tail(&new->pd_link, &peer->pd_list); return new; fail_w_fi: kfree(fi); fail_w_new: kfree(new); fail: return NULL; } static struct fwnet_partial_datagram *fwnet_pd_find(struct fwnet_peer *peer, u16 datagram_label) { struct fwnet_partial_datagram *pd; list_for_each_entry(pd, &peer->pd_list, pd_link) if (pd->datagram_label == datagram_label) return pd; return NULL; } static void fwnet_pd_delete(struct fwnet_partial_datagram *old) { struct fwnet_fragment_info *fi, *n; list_for_each_entry_safe(fi, n, &old->fi_list, fi_link) kfree(fi); list_del(&old->pd_link); dev_kfree_skb_any(old->skb); kfree(old); } static bool fwnet_pd_update(struct fwnet_peer *peer, struct fwnet_partial_datagram *pd, void *frag_buf, unsigned frag_off, unsigned frag_len) { if (fwnet_frag_new(pd, frag_off, frag_len) == NULL) return false; memcpy(pd->pbuf + frag_off, frag_buf, frag_len); /* * Move list entry to beginning of list so that oldest partial * datagrams percolate to the end of the list */ list_move_tail(&pd->pd_link, &peer->pd_list); return true; } static bool fwnet_pd_is_complete(struct fwnet_partial_datagram *pd) { struct fwnet_fragment_info *fi; fi = list_entry(pd->fi_list.next, struct fwnet_fragment_info, fi_link); return fi->len == pd->datagram_size; } /* caller must hold dev->lock */ static struct fwnet_peer *fwnet_peer_find_by_guid(struct fwnet_device *dev, u64 guid) { struct fwnet_peer *peer; list_for_each_entry(peer, &dev->peer_list, peer_link) if (peer->guid == guid) return peer; return NULL; } /* caller must hold dev->lock */ static struct fwnet_peer *fwnet_peer_find_by_node_id(struct fwnet_device *dev, int node_id, int generation) { struct fwnet_peer *peer; list_for_each_entry(peer, &dev->peer_list, peer_link) if (peer->node_id == node_id && peer->generation == generation) return peer; return NULL; } /* See IEEE 1394-2008 table 6-4, table 8-8, table 16-18. */ static unsigned fwnet_max_payload(unsigned max_rec, unsigned speed) { max_rec = min(max_rec, speed + 8); max_rec = clamp(max_rec, 8U, 11U); /* 512...4096 */ return (1 << (max_rec + 1)) - RFC2374_FRAG_HDR_SIZE; } static int fwnet_finish_incoming_packet(struct net_device *net, struct sk_buff *skb, u16 source_node_id, bool is_broadcast, u16 ether_type) { int status, len; switch (ether_type) { case ETH_P_ARP: case ETH_P_IP: #if IS_ENABLED(CONFIG_IPV6) case ETH_P_IPV6: #endif break; default: goto err; } /* Write metadata, and then pass to the receive level */ skb->dev = net; skb->ip_summed = CHECKSUM_NONE; /* * Parse the encapsulation header. This actually does the job of * converting to an ethernet-like pseudo frame header. */ if (dev_hard_header(skb, net, ether_type, is_broadcast ? net->broadcast : net->dev_addr, NULL, skb->len) >= 0) { struct fwnet_header *eth; u16 *rawp; __be16 protocol; skb_reset_mac_header(skb); skb_pull(skb, sizeof(*eth)); eth = (struct fwnet_header *)skb_mac_header(skb); if (fwnet_hwaddr_is_multicast(eth->h_dest)) { if (memcmp(eth->h_dest, net->broadcast, net->addr_len) == 0) skb->pkt_type = PACKET_BROADCAST; #if 0 else skb->pkt_type = PACKET_MULTICAST; #endif } else { if (memcmp(eth->h_dest, net->dev_addr, net->addr_len)) skb->pkt_type = PACKET_OTHERHOST; } if (ntohs(eth->h_proto) >= ETH_P_802_3_MIN) { protocol = eth->h_proto; } else { rawp = (u16 *)skb->data; if (*rawp == 0xffff) protocol = htons(ETH_P_802_3); else protocol = htons(ETH_P_802_2); } skb->protocol = protocol; } len = skb->len; status = netif_rx(skb); if (status == NET_RX_DROP) { net->stats.rx_errors++; net->stats.rx_dropped++; } else { net->stats.rx_packets++; net->stats.rx_bytes += len; } return 0; err: net->stats.rx_errors++; net->stats.rx_dropped++; dev_kfree_skb_any(skb); return -ENOENT; } static int fwnet_incoming_packet(struct fwnet_device *dev, __be32 *buf, int len, int source_node_id, int generation, bool is_broadcast) { struct sk_buff *skb; struct net_device *net = dev->netdev; struct rfc2734_header hdr; unsigned lf; unsigned long flags; struct fwnet_peer *peer; struct fwnet_partial_datagram *pd; int fg_off; int dg_size; u16 datagram_label; int retval; u16 ether_type; if (len <= RFC2374_UNFRAG_HDR_SIZE) return 0; hdr.w0 = be32_to_cpu(buf[0]); lf = fwnet_get_hdr_lf(&hdr); if (lf == RFC2374_HDR_UNFRAG) { /* * An unfragmented datagram has been received by the ieee1394 * bus. Build an skbuff around it so we can pass it to the * high level network layer. */ ether_type = fwnet_get_hdr_ether_type(&hdr); buf++; len -= RFC2374_UNFRAG_HDR_SIZE; skb = dev_alloc_skb(len + LL_RESERVED_SPACE(net)); if (unlikely(!skb)) { net->stats.rx_dropped++; return -ENOMEM; } skb_reserve(skb, LL_RESERVED_SPACE(net)); skb_put_data(skb, buf, len); return fwnet_finish_incoming_packet(net, skb, source_node_id, is_broadcast, ether_type); } /* A datagram fragment has been received, now the fun begins. */ if (len <= RFC2374_FRAG_HDR_SIZE) return 0; hdr.w1 = ntohl(buf[1]); buf += 2; len -= RFC2374_FRAG_HDR_SIZE; if (lf == RFC2374_HDR_FIRSTFRAG) { ether_type = fwnet_get_hdr_ether_type(&hdr); fg_off = 0; } else { ether_type = 0; fg_off = fwnet_get_hdr_fg_off(&hdr); } datagram_label = fwnet_get_hdr_dgl(&hdr); dg_size = fwnet_get_hdr_dg_size(&hdr); if (fg_off + len > dg_size) return 0; spin_lock_irqsave(&dev->lock, flags); peer = fwnet_peer_find_by_node_id(dev, source_node_id, generation); if (!peer) { retval = -ENOENT; goto fail; } pd = fwnet_pd_find(peer, datagram_label); if (pd == NULL) { while (peer->pdg_size >= FWNET_MAX_FRAGMENTS) { /* remove the oldest */ fwnet_pd_delete(list_first_entry(&peer->pd_list, struct fwnet_partial_datagram, pd_link)); peer->pdg_size--; } pd = fwnet_pd_new(net, peer, datagram_label, dg_size, buf, fg_off, len); if (pd == NULL) { retval = -ENOMEM; goto fail; } peer->pdg_size++; } else { if (fwnet_frag_overlap(pd, fg_off, len) || pd->datagram_size != dg_size) { /* * Differing datagram sizes or overlapping fragments, * discard old datagram and start a new one. */ fwnet_pd_delete(pd); pd = fwnet_pd_new(net, peer, datagram_label, dg_size, buf, fg_off, len); if (pd == NULL) { peer->pdg_size--; retval = -ENOMEM; goto fail; } } else { if (!fwnet_pd_update(peer, pd, buf, fg_off, len)) { /* * Couldn't save off fragment anyway * so might as well obliterate the * datagram now. */ fwnet_pd_delete(pd); peer->pdg_size--; retval = -ENOMEM; goto fail; } } } /* new datagram or add to existing one */ if (lf == RFC2374_HDR_FIRSTFRAG) pd->ether_type = ether_type; if (fwnet_pd_is_complete(pd)) { ether_type = pd->ether_type; peer->pdg_size--; skb = skb_get(pd->skb); fwnet_pd_delete(pd); spin_unlock_irqrestore(&dev->lock, flags); return fwnet_finish_incoming_packet(net, skb, source_node_id, false, ether_type); } /* * Datagram is not complete, we're done for the * moment. */ retval = 0; fail: spin_unlock_irqrestore(&dev->lock, flags); return retval; } static void fwnet_receive_packet(struct fw_card *card, struct fw_request *r, int tcode, int destination, int source, int generation, unsigned long long offset, void *payload, size_t length, void *callback_data) { struct fwnet_device *dev = callback_data; int rcode; if (destination == IEEE1394_ALL_NODES) { // Although the response to the broadcast packet is not necessarily required, the // fw_send_response() function should still be called to maintain the reference // counting of the object. In the case, the call of function just releases the // object as a result to decrease the reference counting. rcode = RCODE_COMPLETE; } else if (offset != dev->handler.offset) { rcode = RCODE_ADDRESS_ERROR; } else if (tcode != TCODE_WRITE_BLOCK_REQUEST) { rcode = RCODE_TYPE_ERROR; } else if (fwnet_incoming_packet(dev, payload, length, source, generation, false) != 0) { dev_err(&dev->netdev->dev, "incoming packet failure\n"); rcode = RCODE_CONFLICT_ERROR; } else { rcode = RCODE_COMPLETE; } fw_send_response(card, r, rcode); } static int gasp_source_id(__be32 *p) { return be32_to_cpu(p[0]) >> 16; } static u32 gasp_specifier_id(__be32 *p) { return (be32_to_cpu(p[0]) & 0xffff) << 8 | (be32_to_cpu(p[1]) & 0xff000000) >> 24; } static u32 gasp_version(__be32 *p) { return be32_to_cpu(p[1]) & 0xffffff; } static void fwnet_receive_broadcast(struct fw_iso_context *context, u32 cycle, size_t header_length, void *header, void *data) { struct fwnet_device *dev; struct fw_iso_packet packet; __be16 *hdr_ptr; __be32 *buf_ptr; int retval; u32 length; unsigned long offset; unsigned long flags; dev = data; hdr_ptr = header; length = be16_to_cpup(hdr_ptr); spin_lock_irqsave(&dev->lock, flags); offset = dev->rcv_buffer_size * dev->broadcast_rcv_next_ptr; buf_ptr = dev->broadcast_rcv_buffer_ptrs[dev->broadcast_rcv_next_ptr++]; if (dev->broadcast_rcv_next_ptr == dev->num_broadcast_rcv_ptrs) dev->broadcast_rcv_next_ptr = 0; spin_unlock_irqrestore(&dev->lock, flags); if (length > IEEE1394_GASP_HDR_SIZE && gasp_specifier_id(buf_ptr) == IANA_SPECIFIER_ID && (gasp_version(buf_ptr) == RFC2734_SW_VERSION #if IS_ENABLED(CONFIG_IPV6) || gasp_version(buf_ptr) == RFC3146_SW_VERSION #endif )) fwnet_incoming_packet(dev, buf_ptr + 2, length - IEEE1394_GASP_HDR_SIZE, gasp_source_id(buf_ptr), context->card->generation, true); packet.payload_length = dev->rcv_buffer_size; packet.interrupt = 1; packet.skip = 0; packet.tag = 3; packet.sy = 0; packet.header_length = IEEE1394_GASP_HDR_SIZE; spin_lock_irqsave(&dev->lock, flags); retval = fw_iso_context_queue(dev->broadcast_rcv_context, &packet, &dev->broadcast_rcv_buffer, offset); spin_unlock_irqrestore(&dev->lock, flags); if (retval >= 0) fw_iso_context_queue_flush(dev->broadcast_rcv_context); else dev_err(&dev->netdev->dev, "requeue failed\n"); } static struct kmem_cache *fwnet_packet_task_cache; static void fwnet_free_ptask(struct fwnet_packet_task *ptask) { dev_kfree_skb_any(ptask->skb); kmem_cache_free(fwnet_packet_task_cache, ptask); } /* Caller must hold dev->lock. */ static void dec_queued_datagrams(struct fwnet_device *dev) { if (--dev->queued_datagrams == FWNET_MIN_QUEUED_DATAGRAMS) netif_wake_queue(dev->netdev); } static int fwnet_send_packet(struct fwnet_packet_task *ptask); static void fwnet_transmit_packet_done(struct fwnet_packet_task *ptask) { struct fwnet_device *dev = ptask->dev; struct sk_buff *skb = ptask->skb; unsigned long flags; bool free; spin_lock_irqsave(&dev->lock, flags); ptask->outstanding_pkts--; /* Check whether we or the networking TX soft-IRQ is last user. */ free = (ptask->outstanding_pkts == 0 && ptask->enqueued); if (free) dec_queued_datagrams(dev); if (ptask->outstanding_pkts == 0) { dev->netdev->stats.tx_packets++; dev->netdev->stats.tx_bytes += skb->len; } spin_unlock_irqrestore(&dev->lock, flags); if (ptask->outstanding_pkts > 0) { u16 dg_size; u16 fg_off; u16 datagram_label; u16 lf; /* Update the ptask to point to the next fragment and send it */ lf = fwnet_get_hdr_lf(&ptask->hdr); switch (lf) { case RFC2374_HDR_LASTFRAG: case RFC2374_HDR_UNFRAG: default: dev_err(&dev->netdev->dev, "outstanding packet %x lf %x, header %x,%x\n", ptask->outstanding_pkts, lf, ptask->hdr.w0, ptask->hdr.w1); BUG(); case RFC2374_HDR_FIRSTFRAG: /* Set frag type here for future interior fragments */ dg_size = fwnet_get_hdr_dg_size(&ptask->hdr); fg_off = ptask->max_payload - RFC2374_FRAG_HDR_SIZE; datagram_label = fwnet_get_hdr_dgl(&ptask->hdr); break; case RFC2374_HDR_INTFRAG: dg_size = fwnet_get_hdr_dg_size(&ptask->hdr); fg_off = fwnet_get_hdr_fg_off(&ptask->hdr) + ptask->max_payload - RFC2374_FRAG_HDR_SIZE; datagram_label = fwnet_get_hdr_dgl(&ptask->hdr); break; } if (ptask->dest_node == IEEE1394_ALL_NODES) { skb_pull(skb, ptask->max_payload + IEEE1394_GASP_HDR_SIZE); } else { skb_pull(skb, ptask->max_payload); } if (ptask->outstanding_pkts > 1) { fwnet_make_sf_hdr(&ptask->hdr, RFC2374_HDR_INTFRAG, dg_size, fg_off, datagram_label); } else { fwnet_make_sf_hdr(&ptask->hdr, RFC2374_HDR_LASTFRAG, dg_size, fg_off, datagram_label); ptask->max_payload = skb->len + RFC2374_FRAG_HDR_SIZE; } fwnet_send_packet(ptask); } if (free) fwnet_free_ptask(ptask); } static void fwnet_transmit_packet_failed(struct fwnet_packet_task *ptask) { struct fwnet_device *dev = ptask->dev; unsigned long flags; bool free; spin_lock_irqsave(&dev->lock, flags); /* One fragment failed; don't try to send remaining fragments. */ ptask->outstanding_pkts = 0; /* Check whether we or the networking TX soft-IRQ is last user. */ free = ptask->enqueued; if (free) dec_queued_datagrams(dev); dev->netdev->stats.tx_dropped++; dev->netdev->stats.tx_errors++; spin_unlock_irqrestore(&dev->lock, flags); if (free) fwnet_free_ptask(ptask); } static void fwnet_write_complete(struct fw_card *card, int rcode, void *payload, size_t length, void *data) { struct fwnet_packet_task *ptask = data; static unsigned long j; static int last_rcode, errors_skipped; if (rcode == RCODE_COMPLETE) { fwnet_transmit_packet_done(ptask); } else { if (printk_timed_ratelimit(&j, 1000) || rcode != last_rcode) { dev_err(&ptask->dev->netdev->dev, "fwnet_write_complete failed: %x (skipped %d)\n", rcode, errors_skipped); errors_skipped = 0; last_rcode = rcode; } else { errors_skipped++; } fwnet_transmit_packet_failed(ptask); } } static int fwnet_send_packet(struct fwnet_packet_task *ptask) { struct fwnet_device *dev; unsigned tx_len; struct rfc2734_header *bufhdr; unsigned long flags; bool free; dev = ptask->dev; tx_len = ptask->max_payload; switch (fwnet_get_hdr_lf(&ptask->hdr)) { case RFC2374_HDR_UNFRAG: bufhdr = skb_push(ptask->skb, RFC2374_UNFRAG_HDR_SIZE); put_unaligned_be32(ptask->hdr.w0, &bufhdr->w0); break; case RFC2374_HDR_FIRSTFRAG: case RFC2374_HDR_INTFRAG: case RFC2374_HDR_LASTFRAG: bufhdr = skb_push(ptask->skb, RFC2374_FRAG_HDR_SIZE); put_unaligned_be32(ptask->hdr.w0, &bufhdr->w0); put_unaligned_be32(ptask->hdr.w1, &bufhdr->w1); break; default: BUG(); } if (ptask->dest_node == IEEE1394_ALL_NODES) { u8 *p; int generation; int node_id; unsigned int sw_version; /* ptask->generation may not have been set yet */ generation = dev->card->generation; smp_rmb(); node_id = dev->card->node_id; switch (ptask->skb->protocol) { default: sw_version = RFC2734_SW_VERSION; break; #if IS_ENABLED(CONFIG_IPV6) case htons(ETH_P_IPV6): sw_version = RFC3146_SW_VERSION; #endif } p = skb_push(ptask->skb, IEEE1394_GASP_HDR_SIZE); put_unaligned_be32(node_id << 16 | IANA_SPECIFIER_ID >> 8, p); put_unaligned_be32((IANA_SPECIFIER_ID & 0xff) << 24 | sw_version, &p[4]); /* We should not transmit if broadcast_channel.valid == 0. */ fw_send_request(dev->card, &ptask->transaction, TCODE_STREAM_DATA, fw_stream_packet_destination_id(3, IEEE1394_BROADCAST_CHANNEL, 0), generation, SCODE_100, 0ULL, ptask->skb->data, tx_len + 8, fwnet_write_complete, ptask); spin_lock_irqsave(&dev->lock, flags); /* If the AT tasklet already ran, we may be last user. */ free = (ptask->outstanding_pkts == 0 && !ptask->enqueued); if (!free) ptask->enqueued = true; else dec_queued_datagrams(dev); spin_unlock_irqrestore(&dev->lock, flags); goto out; } fw_send_request(dev->card, &ptask->transaction, TCODE_WRITE_BLOCK_REQUEST, ptask->dest_node, ptask->generation, ptask->speed, ptask->fifo_addr, ptask->skb->data, tx_len, fwnet_write_complete, ptask); spin_lock_irqsave(&dev->lock, flags); /* If the AT tasklet already ran, we may be last user. */ free = (ptask->outstanding_pkts == 0 && !ptask->enqueued); if (!free) ptask->enqueued = true; else dec_queued_datagrams(dev); spin_unlock_irqrestore(&dev->lock, flags); netif_trans_update(dev->netdev); out: if (free) fwnet_free_ptask(ptask); return 0; } static void fwnet_fifo_stop(struct fwnet_device *dev) { if (dev->local_fifo == FWNET_NO_FIFO_ADDR) return; fw_core_remove_address_handler(&dev->handler); dev->local_fifo = FWNET_NO_FIFO_ADDR; } static int fwnet_fifo_start(struct fwnet_device *dev) { int retval; if (dev->local_fifo != FWNET_NO_FIFO_ADDR) return 0; dev->handler.length = 4096; dev->handler.address_callback = fwnet_receive_packet; dev->handler.callback_data = dev; retval = fw_core_add_address_handler(&dev->handler, &fw_high_memory_region); if (retval < 0) return retval; dev->local_fifo = dev->handler.offset; return 0; } static void __fwnet_broadcast_stop(struct fwnet_device *dev) { unsigned u; if (dev->broadcast_state != FWNET_BROADCAST_ERROR) { for (u = 0; u < FWNET_ISO_PAGE_COUNT; u++) kunmap(dev->broadcast_rcv_buffer.pages[u]); fw_iso_buffer_destroy(&dev->broadcast_rcv_buffer, dev->card); } if (dev->broadcast_rcv_context) { fw_iso_context_destroy(dev->broadcast_rcv_context); dev->broadcast_rcv_context = NULL; } kfree(dev->broadcast_rcv_buffer_ptrs); dev->broadcast_rcv_buffer_ptrs = NULL; dev->broadcast_state = FWNET_BROADCAST_ERROR; } static void fwnet_broadcast_stop(struct fwnet_device *dev) { if (dev->broadcast_state == FWNET_BROADCAST_ERROR) return; fw_iso_context_stop(dev->broadcast_rcv_context); __fwnet_broadcast_stop(dev); } static int fwnet_broadcast_start(struct fwnet_device *dev) { struct fw_iso_context *context; int retval; unsigned num_packets; unsigned max_receive; struct fw_iso_packet packet; unsigned long offset; void **ptrptr; unsigned u; if (dev->broadcast_state != FWNET_BROADCAST_ERROR) return 0; max_receive = 1U << (dev->card->max_receive + 1); num_packets = (FWNET_ISO_PAGE_COUNT * PAGE_SIZE) / max_receive; ptrptr = kmalloc_array(num_packets, sizeof(void *), GFP_KERNEL); if (!ptrptr) { retval = -ENOMEM; goto failed; } dev->broadcast_rcv_buffer_ptrs = ptrptr; context = fw_iso_context_create(dev->card, FW_ISO_CONTEXT_RECEIVE, IEEE1394_BROADCAST_CHANNEL, dev->card->link_speed, 8, fwnet_receive_broadcast, dev); if (IS_ERR(context)) { retval = PTR_ERR(context); goto failed; } retval = fw_iso_buffer_init(&dev->broadcast_rcv_buffer, dev->card, FWNET_ISO_PAGE_COUNT, DMA_FROM_DEVICE); if (retval < 0) goto failed; dev->broadcast_state = FWNET_BROADCAST_STOPPED; for (u = 0; u < FWNET_ISO_PAGE_COUNT; u++) { void *ptr; unsigned v; ptr = kmap(dev->broadcast_rcv_buffer.pages[u]); for (v = 0; v < num_packets / FWNET_ISO_PAGE_COUNT; v++) *ptrptr++ = (void *) ((char *)ptr + v * max_receive); } dev->broadcast_rcv_context = context; packet.payload_length = max_receive; packet.interrupt = 1; packet.skip = 0; packet.tag = 3; packet.sy = 0; packet.header_length = IEEE1394_GASP_HDR_SIZE; offset = 0; for (u = 0; u < num_packets; u++) { retval = fw_iso_context_queue(context, &packet, &dev->broadcast_rcv_buffer, offset); if (retval < 0) goto failed; offset += max_receive; } dev->num_broadcast_rcv_ptrs = num_packets; dev->rcv_buffer_size = max_receive; dev->broadcast_rcv_next_ptr = 0U; retval = fw_iso_context_start(context, -1, 0, FW_ISO_CONTEXT_MATCH_ALL_TAGS); /* ??? sync */ if (retval < 0) goto failed; /* FIXME: adjust it according to the min. speed of all known peers? */ dev->broadcast_xmt_max_payload = IEEE1394_MAX_PAYLOAD_S100 - IEEE1394_GASP_HDR_SIZE - RFC2374_UNFRAG_HDR_SIZE; dev->broadcast_state = FWNET_BROADCAST_RUNNING; return 0; failed: __fwnet_broadcast_stop(dev); return retval; } static void set_carrier_state(struct fwnet_device *dev) { if (dev->peer_count > 1) netif_carrier_on(dev->netdev); else netif_carrier_off(dev->netdev); } /* ifup */ static int fwnet_open(struct net_device *net) { struct fwnet_device *dev = netdev_priv(net); int ret; ret = fwnet_broadcast_start(dev); if (ret) return ret; netif_start_queue(net); spin_lock_irq(&dev->lock); set_carrier_state(dev); spin_unlock_irq(&dev->lock); return 0; } /* ifdown */ static int fwnet_stop(struct net_device *net) { struct fwnet_device *dev = netdev_priv(net); netif_stop_queue(net); fwnet_broadcast_stop(dev); return 0; } static netdev_tx_t fwnet_tx(struct sk_buff *skb, struct net_device *net) { struct fwnet_header hdr_buf; struct fwnet_device *dev = netdev_priv(net); __be16 proto; u16 dest_node; unsigned max_payload; u16 dg_size; u16 *datagram_label_ptr; struct fwnet_packet_task *ptask; struct fwnet_peer *peer; unsigned long flags; spin_lock_irqsave(&dev->lock, flags); /* Can this happen? */ if (netif_queue_stopped(dev->netdev)) { spin_unlock_irqrestore(&dev->lock, flags); return NETDEV_TX_BUSY; } ptask = kmem_cache_alloc(fwnet_packet_task_cache, GFP_ATOMIC); if (ptask == NULL) goto fail; skb = skb_share_check(skb, GFP_ATOMIC); if (!skb) goto fail; /* * Make a copy of the driver-specific header. * We might need to rebuild the header on tx failure. */ memcpy(&hdr_buf, skb->data, sizeof(hdr_buf)); proto = hdr_buf.h_proto; switch (proto) { case htons(ETH_P_ARP): case htons(ETH_P_IP): #if IS_ENABLED(CONFIG_IPV6) case htons(ETH_P_IPV6): #endif break; default: goto fail; } skb_pull(skb, sizeof(hdr_buf)); dg_size = skb->len; /* * Set the transmission type for the packet. ARP packets and IP * broadcast packets are sent via GASP. */ if (fwnet_hwaddr_is_multicast(hdr_buf.h_dest)) { max_payload = dev->broadcast_xmt_max_payload; datagram_label_ptr = &dev->broadcast_xmt_datagramlabel; ptask->fifo_addr = FWNET_NO_FIFO_ADDR; ptask->generation = 0; ptask->dest_node = IEEE1394_ALL_NODES; ptask->speed = SCODE_100; } else { union fwnet_hwaddr *ha = (union fwnet_hwaddr *)hdr_buf.h_dest; __be64 guid = get_unaligned(&ha->uc.uniq_id); u8 generation; peer = fwnet_peer_find_by_guid(dev, be64_to_cpu(guid)); if (!peer) goto fail; generation = peer->generation; dest_node = peer->node_id; max_payload = peer->max_payload; datagram_label_ptr = &peer->datagram_label; ptask->fifo_addr = get_unaligned_be48(ha->uc.fifo); ptask->generation = generation; ptask->dest_node = dest_node; ptask->speed = peer->speed; } ptask->hdr.w0 = 0; ptask->hdr.w1 = 0; ptask->skb = skb; ptask->dev = dev; /* Does it all fit in one packet? */ if (dg_size <= max_payload) { fwnet_make_uf_hdr(&ptask->hdr, ntohs(proto)); ptask->outstanding_pkts = 1; max_payload = dg_size + RFC2374_UNFRAG_HDR_SIZE; } else { u16 datagram_label; max_payload -= RFC2374_FRAG_OVERHEAD; datagram_label = (*datagram_label_ptr)++; fwnet_make_ff_hdr(&ptask->hdr, ntohs(proto), dg_size, datagram_label); ptask->outstanding_pkts = DIV_ROUND_UP(dg_size, max_payload); max_payload += RFC2374_FRAG_HDR_SIZE; } if (++dev->queued_datagrams == FWNET_MAX_QUEUED_DATAGRAMS) netif_stop_queue(dev->netdev); spin_unlock_irqrestore(&dev->lock, flags); ptask->max_payload = max_payload; ptask->enqueued = 0; fwnet_send_packet(ptask); return NETDEV_TX_OK; fail: spin_unlock_irqrestore(&dev->lock, flags); if (ptask) kmem_cache_free(fwnet_packet_task_cache, ptask); if (skb != NULL) dev_kfree_skb(skb); net->stats.tx_dropped++; net->stats.tx_errors++; /* * FIXME: According to a patch from 2003-02-26, "returning non-zero * causes serious problems" here, allegedly. Before that patch, * -ERRNO was returned which is not appropriate under Linux 2.6. * Perhaps more needs to be done? Stop the queue in serious * conditions and restart it elsewhere? */ return NETDEV_TX_OK; } static const struct ethtool_ops fwnet_ethtool_ops = { .get_link = ethtool_op_get_link, }; static const struct net_device_ops fwnet_netdev_ops = { .ndo_open = fwnet_open, .ndo_stop = fwnet_stop, .ndo_start_xmit = fwnet_tx, }; static void fwnet_init_dev(struct net_device *net) { net->header_ops = &fwnet_header_ops; net->netdev_ops = &fwnet_netdev_ops; net->watchdog_timeo = 2 * HZ; net->flags = IFF_BROADCAST | IFF_MULTICAST; net->features = NETIF_F_HIGHDMA; net->addr_len = FWNET_ALEN; net->hard_header_len = FWNET_HLEN; net->type = ARPHRD_IEEE1394; net->tx_queue_len = FWNET_TX_QUEUE_LEN; net->ethtool_ops = &fwnet_ethtool_ops; } /* caller must hold fwnet_device_mutex */ static struct fwnet_device *fwnet_dev_find(struct fw_card *card) { struct fwnet_device *dev; list_for_each_entry(dev, &fwnet_device_list, dev_link) if (dev->card == card) return dev; return NULL; } static int fwnet_add_peer(struct fwnet_device *dev, struct fw_unit *unit, struct fw_device *device) { struct fwnet_peer *peer; peer = kmalloc(sizeof(*peer), GFP_KERNEL); if (!peer) return -ENOMEM; dev_set_drvdata(&unit->device, peer); peer->dev = dev; peer->guid = (u64)device->config_rom[3] << 32 | device->config_rom[4]; INIT_LIST_HEAD(&peer->pd_list); peer->pdg_size = 0; peer->datagram_label = 0; peer->speed = device->max_speed; peer->max_payload = fwnet_max_payload(device->max_rec, peer->speed); peer->generation = device->generation; smp_rmb(); peer->node_id = device->node_id; spin_lock_irq(&dev->lock); list_add_tail(&peer->peer_link, &dev->peer_list); dev->peer_count++; set_carrier_state(dev); spin_unlock_irq(&dev->lock); return 0; } static int fwnet_probe(struct fw_unit *unit, const struct ieee1394_device_id *id) { struct fw_device *device = fw_parent_device(unit); struct fw_card *card = device->card; struct net_device *net; bool allocated_netdev = false; struct fwnet_device *dev; union fwnet_hwaddr ha; int ret; mutex_lock(&fwnet_device_mutex); dev = fwnet_dev_find(card); if (dev) { net = dev->netdev; goto have_dev; } net = alloc_netdev(sizeof(*dev), "firewire%d", NET_NAME_UNKNOWN, fwnet_init_dev); if (net == NULL) { mutex_unlock(&fwnet_device_mutex); return -ENOMEM; } allocated_netdev = true; SET_NETDEV_DEV(net, card->device); dev = netdev_priv(net); spin_lock_init(&dev->lock); dev->broadcast_state = FWNET_BROADCAST_ERROR; dev->broadcast_rcv_context = NULL; dev->broadcast_xmt_max_payload = 0; dev->broadcast_xmt_datagramlabel = 0; dev->local_fifo = FWNET_NO_FIFO_ADDR; dev->queued_datagrams = 0; INIT_LIST_HEAD(&dev->peer_list); dev->card = card; dev->netdev = net; ret = fwnet_fifo_start(dev); if (ret < 0) goto out; dev->local_fifo = dev->handler.offset; /* * default MTU: RFC 2734 cl. 4, RFC 3146 cl. 4 * maximum MTU: RFC 2734 cl. 4.2, fragment encapsulation header's * maximum possible datagram_size + 1 = 0xfff + 1 */ net->mtu = 1500U; net->min_mtu = ETH_MIN_MTU; net->max_mtu = 4096U; /* Set our hardware address while we're at it */ ha.uc.uniq_id = cpu_to_be64(card->guid); ha.uc.max_rec = dev->card->max_receive; ha.uc.sspd = dev->card->link_speed; put_unaligned_be48(dev->local_fifo, ha.uc.fifo); dev_addr_set(net, ha.u); memset(net->broadcast, -1, net->addr_len); ret = register_netdev(net); if (ret) goto out; list_add_tail(&dev->dev_link, &fwnet_device_list); dev_notice(&net->dev, "IP over IEEE 1394 on card %s\n", dev_name(card->device)); have_dev: ret = fwnet_add_peer(dev, unit, device); if (ret && allocated_netdev) { unregister_netdev(net); list_del(&dev->dev_link); out: fwnet_fifo_stop(dev); free_netdev(net); } mutex_unlock(&fwnet_device_mutex); return ret; } /* * FIXME abort partially sent fragmented datagrams, * discard partially received fragmented datagrams */ static void fwnet_update(struct fw_unit *unit) { struct fw_device *device = fw_parent_device(unit); struct fwnet_peer *peer = dev_get_drvdata(&unit->device); int generation; generation = device->generation; spin_lock_irq(&peer->dev->lock); peer->node_id = device->node_id; peer->generation = generation; spin_unlock_irq(&peer->dev->lock); } static void fwnet_remove_peer(struct fwnet_peer *peer, struct fwnet_device *dev) { struct fwnet_partial_datagram *pd, *pd_next; spin_lock_irq(&dev->lock); list_del(&peer->peer_link); dev->peer_count--; set_carrier_state(dev); spin_unlock_irq(&dev->lock); list_for_each_entry_safe(pd, pd_next, &peer->pd_list, pd_link) fwnet_pd_delete(pd); kfree(peer); } static void fwnet_remove(struct fw_unit *unit) { struct fwnet_peer *peer = dev_get_drvdata(&unit->device); struct fwnet_device *dev = peer->dev; struct net_device *net; int i; mutex_lock(&fwnet_device_mutex); net = dev->netdev; fwnet_remove_peer(peer, dev); if (list_empty(&dev->peer_list)) { unregister_netdev(net); fwnet_fifo_stop(dev); for (i = 0; dev->queued_datagrams && i < 5; i++) ssleep(1); WARN_ON(dev->queued_datagrams); list_del(&dev->dev_link); free_netdev(net); } mutex_unlock(&fwnet_device_mutex); } static const struct ieee1394_device_id fwnet_id_table[] = { { .match_flags = IEEE1394_MATCH_SPECIFIER_ID | IEEE1394_MATCH_VERSION, .specifier_id = IANA_SPECIFIER_ID, .version = RFC2734_SW_VERSION, }, #if IS_ENABLED(CONFIG_IPV6) { .match_flags = IEEE1394_MATCH_SPECIFIER_ID | IEEE1394_MATCH_VERSION, .specifier_id = IANA_SPECIFIER_ID, .version = RFC3146_SW_VERSION, }, #endif { } }; static struct fw_driver fwnet_driver = { .driver = { .owner = THIS_MODULE, .name = KBUILD_MODNAME, .bus = &fw_bus_type, }, .probe = fwnet_probe, .update = fwnet_update, .remove = fwnet_remove, .id_table = fwnet_id_table, }; static const u32 rfc2374_unit_directory_data[] = { 0x00040000, /* directory_length */ 0x1200005e, /* unit_specifier_id: IANA */ 0x81000003, /* textual descriptor offset */ 0x13000001, /* unit_sw_version: RFC 2734 */ 0x81000005, /* textual descriptor offset */ 0x00030000, /* descriptor_length */ 0x00000000, /* text */ 0x00000000, /* minimal ASCII, en */ 0x49414e41, /* I A N A */ 0x00030000, /* descriptor_length */ 0x00000000, /* text */ 0x00000000, /* minimal ASCII, en */ 0x49507634, /* I P v 4 */ }; static struct fw_descriptor rfc2374_unit_directory = { .length = ARRAY_SIZE(rfc2374_unit_directory_data), .key = (CSR_DIRECTORY | CSR_UNIT) << 24, .data = rfc2374_unit_directory_data }; #if IS_ENABLED(CONFIG_IPV6) static const u32 rfc3146_unit_directory_data[] = { 0x00040000, /* directory_length */ 0x1200005e, /* unit_specifier_id: IANA */ 0x81000003, /* textual descriptor offset */ 0x13000002, /* unit_sw_version: RFC 3146 */ 0x81000005, /* textual descriptor offset */ 0x00030000, /* descriptor_length */ 0x00000000, /* text */ 0x00000000, /* minimal ASCII, en */ 0x49414e41, /* I A N A */ 0x00030000, /* descriptor_length */ 0x00000000, /* text */ 0x00000000, /* minimal ASCII, en */ 0x49507636, /* I P v 6 */ }; static struct fw_descriptor rfc3146_unit_directory = { .length = ARRAY_SIZE(rfc3146_unit_directory_data), .key = (CSR_DIRECTORY | CSR_UNIT) << 24, .data = rfc3146_unit_directory_data }; #endif static int __init fwnet_init(void) { int err; err = fw_core_add_descriptor(&rfc2374_unit_directory); if (err) return err; #if IS_ENABLED(CONFIG_IPV6) err = fw_core_add_descriptor(&rfc3146_unit_directory); if (err) goto out; #endif fwnet_packet_task_cache = kmem_cache_create("packet_task", sizeof(struct fwnet_packet_task), 0, 0, NULL); if (!fwnet_packet_task_cache) { err = -ENOMEM; goto out2; } err = driver_register(&fwnet_driver.driver); if (!err) return 0; kmem_cache_destroy(fwnet_packet_task_cache); out2: #if IS_ENABLED(CONFIG_IPV6) fw_core_remove_descriptor(&rfc3146_unit_directory); out: #endif fw_core_remove_descriptor(&rfc2374_unit_directory); return err; } module_init(fwnet_init); static void __exit fwnet_cleanup(void) { driver_unregister(&fwnet_driver.driver); kmem_cache_destroy(fwnet_packet_task_cache); #if IS_ENABLED(CONFIG_IPV6) fw_core_remove_descriptor(&rfc3146_unit_directory); #endif fw_core_remove_descriptor(&rfc2374_unit_directory); } module_exit(fwnet_cleanup); MODULE_AUTHOR("Jay Fenlason <fenlason@redhat.com>"); MODULE_DESCRIPTION("IP over IEEE1394 as per RFC 2734/3146"); MODULE_LICENSE("GPL"); MODULE_DEVICE_TABLE(ieee1394, fwnet_id_table);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1