Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Sudeep Holla | 6727 | 93.91% | 44 | 74.58% |
Jens Wiklander | 175 | 2.44% | 3 | 5.08% |
Cristian Marussi | 157 | 2.19% | 6 | 10.17% |
Marc Bonnici | 80 | 1.12% | 2 | 3.39% |
Will Deacon | 12 | 0.17% | 1 | 1.69% |
Balint Dobszay | 6 | 0.08% | 1 | 1.69% |
Dan Carpenter | 4 | 0.06% | 1 | 1.69% |
Lorenzo Pieralisi | 2 | 0.03% | 1 | 1.69% |
Total | 7163 | 59 |
// SPDX-License-Identifier: GPL-2.0-only /* * Arm Firmware Framework for ARMv8-A(FFA) interface driver * * The Arm FFA specification[1] describes a software architecture to * leverages the virtualization extension to isolate software images * provided by an ecosystem of vendors from each other and describes * interfaces that standardize communication between the various software * images including communication between images in the Secure world and * Normal world. Any Hypervisor could use the FFA interfaces to enable * communication between VMs it manages. * * The Hypervisor a.k.a Partition managers in FFA terminology can assign * system resources(Memory regions, Devices, CPU cycles) to the partitions * and manage isolation amongst them. * * [1] https://developer.arm.com/docs/den0077/latest * * Copyright (C) 2021 ARM Ltd. */ #define DRIVER_NAME "ARM FF-A" #define pr_fmt(fmt) DRIVER_NAME ": " fmt #include <linux/acpi.h> #include <linux/arm_ffa.h> #include <linux/bitfield.h> #include <linux/cpuhotplug.h> #include <linux/device.h> #include <linux/hashtable.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/mm.h> #include <linux/mutex.h> #include <linux/of_irq.h> #include <linux/scatterlist.h> #include <linux/slab.h> #include <linux/smp.h> #include <linux/uuid.h> #include <linux/xarray.h> #include "common.h" #define FFA_DRIVER_VERSION FFA_VERSION_1_1 #define FFA_MIN_VERSION FFA_VERSION_1_0 #define SENDER_ID_MASK GENMASK(31, 16) #define RECEIVER_ID_MASK GENMASK(15, 0) #define SENDER_ID(x) ((u16)(FIELD_GET(SENDER_ID_MASK, (x)))) #define RECEIVER_ID(x) ((u16)(FIELD_GET(RECEIVER_ID_MASK, (x)))) #define PACK_TARGET_INFO(s, r) \ (FIELD_PREP(SENDER_ID_MASK, (s)) | FIELD_PREP(RECEIVER_ID_MASK, (r))) /* * Keeping RX TX buffer size as 4K for now * 64K may be preferred to keep it min a page in 64K PAGE_SIZE config */ #define RXTX_BUFFER_SIZE SZ_4K #define FFA_MAX_NOTIFICATIONS 64 static ffa_fn *invoke_ffa_fn; static const int ffa_linux_errmap[] = { /* better than switch case as long as return value is continuous */ 0, /* FFA_RET_SUCCESS */ -EOPNOTSUPP, /* FFA_RET_NOT_SUPPORTED */ -EINVAL, /* FFA_RET_INVALID_PARAMETERS */ -ENOMEM, /* FFA_RET_NO_MEMORY */ -EBUSY, /* FFA_RET_BUSY */ -EINTR, /* FFA_RET_INTERRUPTED */ -EACCES, /* FFA_RET_DENIED */ -EAGAIN, /* FFA_RET_RETRY */ -ECANCELED, /* FFA_RET_ABORTED */ -ENODATA, /* FFA_RET_NO_DATA */ }; static inline int ffa_to_linux_errno(int errno) { int err_idx = -errno; if (err_idx >= 0 && err_idx < ARRAY_SIZE(ffa_linux_errmap)) return ffa_linux_errmap[err_idx]; return -EINVAL; } struct ffa_pcpu_irq { struct ffa_drv_info *info; }; struct ffa_drv_info { u32 version; u16 vm_id; struct mutex rx_lock; /* lock to protect Rx buffer */ struct mutex tx_lock; /* lock to protect Tx buffer */ void *rx_buffer; void *tx_buffer; bool mem_ops_native; bool bitmap_created; bool notif_enabled; unsigned int sched_recv_irq; unsigned int notif_pend_irq; unsigned int cpuhp_state; struct ffa_pcpu_irq __percpu *irq_pcpu; struct workqueue_struct *notif_pcpu_wq; struct work_struct notif_pcpu_work; struct work_struct sched_recv_irq_work; struct xarray partition_info; DECLARE_HASHTABLE(notifier_hash, ilog2(FFA_MAX_NOTIFICATIONS)); struct mutex notify_lock; /* lock to protect notifier hashtable */ }; static struct ffa_drv_info *drv_info; static void ffa_partitions_cleanup(void); /* * The driver must be able to support all the versions from the earliest * supported FFA_MIN_VERSION to the latest supported FFA_DRIVER_VERSION. * The specification states that if firmware supports a FFA implementation * that is incompatible with and at a greater version number than specified * by the caller(FFA_DRIVER_VERSION passed as parameter to FFA_VERSION), * it must return the NOT_SUPPORTED error code. */ static u32 ffa_compatible_version_find(u32 version) { u16 major = FFA_MAJOR_VERSION(version), minor = FFA_MINOR_VERSION(version); u16 drv_major = FFA_MAJOR_VERSION(FFA_DRIVER_VERSION); u16 drv_minor = FFA_MINOR_VERSION(FFA_DRIVER_VERSION); if ((major < drv_major) || (major == drv_major && minor <= drv_minor)) return version; pr_info("Firmware version higher than driver version, downgrading\n"); return FFA_DRIVER_VERSION; } static int ffa_version_check(u32 *version) { ffa_value_t ver; invoke_ffa_fn((ffa_value_t){ .a0 = FFA_VERSION, .a1 = FFA_DRIVER_VERSION, }, &ver); if (ver.a0 == FFA_RET_NOT_SUPPORTED) { pr_info("FFA_VERSION returned not supported\n"); return -EOPNOTSUPP; } if (ver.a0 < FFA_MIN_VERSION) { pr_err("Incompatible v%d.%d! Earliest supported v%d.%d\n", FFA_MAJOR_VERSION(ver.a0), FFA_MINOR_VERSION(ver.a0), FFA_MAJOR_VERSION(FFA_MIN_VERSION), FFA_MINOR_VERSION(FFA_MIN_VERSION)); return -EINVAL; } pr_info("Driver version %d.%d\n", FFA_MAJOR_VERSION(FFA_DRIVER_VERSION), FFA_MINOR_VERSION(FFA_DRIVER_VERSION)); pr_info("Firmware version %d.%d found\n", FFA_MAJOR_VERSION(ver.a0), FFA_MINOR_VERSION(ver.a0)); *version = ffa_compatible_version_find(ver.a0); return 0; } static int ffa_rx_release(void) { ffa_value_t ret; invoke_ffa_fn((ffa_value_t){ .a0 = FFA_RX_RELEASE, }, &ret); if (ret.a0 == FFA_ERROR) return ffa_to_linux_errno((int)ret.a2); /* check for ret.a0 == FFA_RX_RELEASE ? */ return 0; } static int ffa_rxtx_map(phys_addr_t tx_buf, phys_addr_t rx_buf, u32 pg_cnt) { ffa_value_t ret; invoke_ffa_fn((ffa_value_t){ .a0 = FFA_FN_NATIVE(RXTX_MAP), .a1 = tx_buf, .a2 = rx_buf, .a3 = pg_cnt, }, &ret); if (ret.a0 == FFA_ERROR) return ffa_to_linux_errno((int)ret.a2); return 0; } static int ffa_rxtx_unmap(u16 vm_id) { ffa_value_t ret; invoke_ffa_fn((ffa_value_t){ .a0 = FFA_RXTX_UNMAP, .a1 = PACK_TARGET_INFO(vm_id, 0), }, &ret); if (ret.a0 == FFA_ERROR) return ffa_to_linux_errno((int)ret.a2); return 0; } #define PARTITION_INFO_GET_RETURN_COUNT_ONLY BIT(0) /* buffer must be sizeof(struct ffa_partition_info) * num_partitions */ static int __ffa_partition_info_get(u32 uuid0, u32 uuid1, u32 uuid2, u32 uuid3, struct ffa_partition_info *buffer, int num_partitions) { int idx, count, flags = 0, sz, buf_sz; ffa_value_t partition_info; if (drv_info->version > FFA_VERSION_1_0 && (!buffer || !num_partitions)) /* Just get the count for now */ flags = PARTITION_INFO_GET_RETURN_COUNT_ONLY; mutex_lock(&drv_info->rx_lock); invoke_ffa_fn((ffa_value_t){ .a0 = FFA_PARTITION_INFO_GET, .a1 = uuid0, .a2 = uuid1, .a3 = uuid2, .a4 = uuid3, .a5 = flags, }, &partition_info); if (partition_info.a0 == FFA_ERROR) { mutex_unlock(&drv_info->rx_lock); return ffa_to_linux_errno((int)partition_info.a2); } count = partition_info.a2; if (drv_info->version > FFA_VERSION_1_0) { buf_sz = sz = partition_info.a3; if (sz > sizeof(*buffer)) buf_sz = sizeof(*buffer); } else { /* FFA_VERSION_1_0 lacks size in the response */ buf_sz = sz = 8; } if (buffer && count <= num_partitions) for (idx = 0; idx < count; idx++) memcpy(buffer + idx, drv_info->rx_buffer + idx * sz, buf_sz); ffa_rx_release(); mutex_unlock(&drv_info->rx_lock); return count; } /* buffer is allocated and caller must free the same if returned count > 0 */ static int ffa_partition_probe(const uuid_t *uuid, struct ffa_partition_info **buffer) { int count; u32 uuid0_4[4]; struct ffa_partition_info *pbuf; export_uuid((u8 *)uuid0_4, uuid); count = __ffa_partition_info_get(uuid0_4[0], uuid0_4[1], uuid0_4[2], uuid0_4[3], NULL, 0); if (count <= 0) return count; pbuf = kcalloc(count, sizeof(*pbuf), GFP_KERNEL); if (!pbuf) return -ENOMEM; count = __ffa_partition_info_get(uuid0_4[0], uuid0_4[1], uuid0_4[2], uuid0_4[3], pbuf, count); if (count <= 0) kfree(pbuf); else *buffer = pbuf; return count; } #define VM_ID_MASK GENMASK(15, 0) static int ffa_id_get(u16 *vm_id) { ffa_value_t id; invoke_ffa_fn((ffa_value_t){ .a0 = FFA_ID_GET, }, &id); if (id.a0 == FFA_ERROR) return ffa_to_linux_errno((int)id.a2); *vm_id = FIELD_GET(VM_ID_MASK, (id.a2)); return 0; } static int ffa_msg_send_direct_req(u16 src_id, u16 dst_id, bool mode_32bit, struct ffa_send_direct_data *data) { u32 req_id, resp_id, src_dst_ids = PACK_TARGET_INFO(src_id, dst_id); ffa_value_t ret; if (mode_32bit) { req_id = FFA_MSG_SEND_DIRECT_REQ; resp_id = FFA_MSG_SEND_DIRECT_RESP; } else { req_id = FFA_FN_NATIVE(MSG_SEND_DIRECT_REQ); resp_id = FFA_FN_NATIVE(MSG_SEND_DIRECT_RESP); } invoke_ffa_fn((ffa_value_t){ .a0 = req_id, .a1 = src_dst_ids, .a2 = 0, .a3 = data->data0, .a4 = data->data1, .a5 = data->data2, .a6 = data->data3, .a7 = data->data4, }, &ret); while (ret.a0 == FFA_INTERRUPT) invoke_ffa_fn((ffa_value_t){ .a0 = FFA_RUN, .a1 = ret.a1, }, &ret); if (ret.a0 == FFA_ERROR) return ffa_to_linux_errno((int)ret.a2); if (ret.a0 == resp_id) { data->data0 = ret.a3; data->data1 = ret.a4; data->data2 = ret.a5; data->data3 = ret.a6; data->data4 = ret.a7; return 0; } return -EINVAL; } static int ffa_msg_send2(u16 src_id, u16 dst_id, void *buf, size_t sz) { u32 src_dst_ids = PACK_TARGET_INFO(src_id, dst_id); struct ffa_indirect_msg_hdr *msg; ffa_value_t ret; int retval = 0; if (sz > (RXTX_BUFFER_SIZE - sizeof(*msg))) return -ERANGE; mutex_lock(&drv_info->tx_lock); msg = drv_info->tx_buffer; msg->flags = 0; msg->res0 = 0; msg->offset = sizeof(*msg); msg->send_recv_id = src_dst_ids; msg->size = sz; memcpy((u8 *)msg + msg->offset, buf, sz); /* flags = 0, sender VMID = 0 works for both physical/virtual NS */ invoke_ffa_fn((ffa_value_t){ .a0 = FFA_MSG_SEND2, .a1 = 0, .a2 = 0 }, &ret); if (ret.a0 == FFA_ERROR) retval = ffa_to_linux_errno((int)ret.a2); mutex_unlock(&drv_info->tx_lock); return retval; } static int ffa_mem_first_frag(u32 func_id, phys_addr_t buf, u32 buf_sz, u32 frag_len, u32 len, u64 *handle) { ffa_value_t ret; invoke_ffa_fn((ffa_value_t){ .a0 = func_id, .a1 = len, .a2 = frag_len, .a3 = buf, .a4 = buf_sz, }, &ret); while (ret.a0 == FFA_MEM_OP_PAUSE) invoke_ffa_fn((ffa_value_t){ .a0 = FFA_MEM_OP_RESUME, .a1 = ret.a1, .a2 = ret.a2, }, &ret); if (ret.a0 == FFA_ERROR) return ffa_to_linux_errno((int)ret.a2); if (ret.a0 == FFA_SUCCESS) { if (handle) *handle = PACK_HANDLE(ret.a2, ret.a3); } else if (ret.a0 == FFA_MEM_FRAG_RX) { if (handle) *handle = PACK_HANDLE(ret.a1, ret.a2); } else { return -EOPNOTSUPP; } return frag_len; } static int ffa_mem_next_frag(u64 handle, u32 frag_len) { ffa_value_t ret; invoke_ffa_fn((ffa_value_t){ .a0 = FFA_MEM_FRAG_TX, .a1 = HANDLE_LOW(handle), .a2 = HANDLE_HIGH(handle), .a3 = frag_len, }, &ret); while (ret.a0 == FFA_MEM_OP_PAUSE) invoke_ffa_fn((ffa_value_t){ .a0 = FFA_MEM_OP_RESUME, .a1 = ret.a1, .a2 = ret.a2, }, &ret); if (ret.a0 == FFA_ERROR) return ffa_to_linux_errno((int)ret.a2); if (ret.a0 == FFA_MEM_FRAG_RX) return ret.a3; else if (ret.a0 == FFA_SUCCESS) return 0; return -EOPNOTSUPP; } static int ffa_transmit_fragment(u32 func_id, phys_addr_t buf, u32 buf_sz, u32 frag_len, u32 len, u64 *handle, bool first) { if (!first) return ffa_mem_next_frag(*handle, frag_len); return ffa_mem_first_frag(func_id, buf, buf_sz, frag_len, len, handle); } static u32 ffa_get_num_pages_sg(struct scatterlist *sg) { u32 num_pages = 0; do { num_pages += sg->length / FFA_PAGE_SIZE; } while ((sg = sg_next(sg))); return num_pages; } static u16 ffa_memory_attributes_get(u32 func_id) { /* * For the memory lend or donate operation, if the receiver is a PE or * a proxy endpoint, the owner/sender must not specify the attributes */ if (func_id == FFA_FN_NATIVE(MEM_LEND) || func_id == FFA_MEM_LEND) return 0; return FFA_MEM_NORMAL | FFA_MEM_WRITE_BACK | FFA_MEM_INNER_SHAREABLE; } static int ffa_setup_and_transmit(u32 func_id, void *buffer, u32 max_fragsize, struct ffa_mem_ops_args *args) { int rc = 0; bool first = true; u32 composite_offset; phys_addr_t addr = 0; struct ffa_mem_region *mem_region = buffer; struct ffa_composite_mem_region *composite; struct ffa_mem_region_addr_range *constituents; struct ffa_mem_region_attributes *ep_mem_access; u32 idx, frag_len, length, buf_sz = 0, num_entries = sg_nents(args->sg); mem_region->tag = args->tag; mem_region->flags = args->flags; mem_region->sender_id = drv_info->vm_id; mem_region->attributes = ffa_memory_attributes_get(func_id); ep_mem_access = buffer + ffa_mem_desc_offset(buffer, 0, drv_info->version); composite_offset = ffa_mem_desc_offset(buffer, args->nattrs, drv_info->version); for (idx = 0; idx < args->nattrs; idx++, ep_mem_access++) { ep_mem_access->receiver = args->attrs[idx].receiver; ep_mem_access->attrs = args->attrs[idx].attrs; ep_mem_access->composite_off = composite_offset; ep_mem_access->flag = 0; ep_mem_access->reserved = 0; } mem_region->handle = 0; mem_region->ep_count = args->nattrs; if (drv_info->version <= FFA_VERSION_1_0) { mem_region->ep_mem_size = 0; } else { mem_region->ep_mem_size = sizeof(*ep_mem_access); mem_region->ep_mem_offset = sizeof(*mem_region); memset(mem_region->reserved, 0, 12); } composite = buffer + composite_offset; composite->total_pg_cnt = ffa_get_num_pages_sg(args->sg); composite->addr_range_cnt = num_entries; composite->reserved = 0; length = composite_offset + CONSTITUENTS_OFFSET(num_entries); frag_len = composite_offset + CONSTITUENTS_OFFSET(0); if (frag_len > max_fragsize) return -ENXIO; if (!args->use_txbuf) { addr = virt_to_phys(buffer); buf_sz = max_fragsize / FFA_PAGE_SIZE; } constituents = buffer + frag_len; idx = 0; do { if (frag_len == max_fragsize) { rc = ffa_transmit_fragment(func_id, addr, buf_sz, frag_len, length, &args->g_handle, first); if (rc < 0) return -ENXIO; first = false; idx = 0; frag_len = 0; constituents = buffer; } if ((void *)constituents - buffer > max_fragsize) { pr_err("Memory Region Fragment > Tx Buffer size\n"); return -EFAULT; } constituents->address = sg_phys(args->sg); constituents->pg_cnt = args->sg->length / FFA_PAGE_SIZE; constituents->reserved = 0; constituents++; frag_len += sizeof(struct ffa_mem_region_addr_range); } while ((args->sg = sg_next(args->sg))); return ffa_transmit_fragment(func_id, addr, buf_sz, frag_len, length, &args->g_handle, first); } static int ffa_memory_ops(u32 func_id, struct ffa_mem_ops_args *args) { int ret; void *buffer; if (!args->use_txbuf) { buffer = alloc_pages_exact(RXTX_BUFFER_SIZE, GFP_KERNEL); if (!buffer) return -ENOMEM; } else { buffer = drv_info->tx_buffer; mutex_lock(&drv_info->tx_lock); } ret = ffa_setup_and_transmit(func_id, buffer, RXTX_BUFFER_SIZE, args); if (args->use_txbuf) mutex_unlock(&drv_info->tx_lock); else free_pages_exact(buffer, RXTX_BUFFER_SIZE); return ret < 0 ? ret : 0; } static int ffa_memory_reclaim(u64 g_handle, u32 flags) { ffa_value_t ret; invoke_ffa_fn((ffa_value_t){ .a0 = FFA_MEM_RECLAIM, .a1 = HANDLE_LOW(g_handle), .a2 = HANDLE_HIGH(g_handle), .a3 = flags, }, &ret); if (ret.a0 == FFA_ERROR) return ffa_to_linux_errno((int)ret.a2); return 0; } static int ffa_features(u32 func_feat_id, u32 input_props, u32 *if_props_1, u32 *if_props_2) { ffa_value_t id; if (!ARM_SMCCC_IS_FAST_CALL(func_feat_id) && input_props) { pr_err("%s: Invalid Parameters: %x, %x", __func__, func_feat_id, input_props); return ffa_to_linux_errno(FFA_RET_INVALID_PARAMETERS); } invoke_ffa_fn((ffa_value_t){ .a0 = FFA_FEATURES, .a1 = func_feat_id, .a2 = input_props, }, &id); if (id.a0 == FFA_ERROR) return ffa_to_linux_errno((int)id.a2); if (if_props_1) *if_props_1 = id.a2; if (if_props_2) *if_props_2 = id.a3; return 0; } static int ffa_notification_bitmap_create(void) { ffa_value_t ret; u16 vcpu_count = nr_cpu_ids; invoke_ffa_fn((ffa_value_t){ .a0 = FFA_NOTIFICATION_BITMAP_CREATE, .a1 = drv_info->vm_id, .a2 = vcpu_count, }, &ret); if (ret.a0 == FFA_ERROR) return ffa_to_linux_errno((int)ret.a2); return 0; } static int ffa_notification_bitmap_destroy(void) { ffa_value_t ret; invoke_ffa_fn((ffa_value_t){ .a0 = FFA_NOTIFICATION_BITMAP_DESTROY, .a1 = drv_info->vm_id, }, &ret); if (ret.a0 == FFA_ERROR) return ffa_to_linux_errno((int)ret.a2); return 0; } #define NOTIFICATION_LOW_MASK GENMASK(31, 0) #define NOTIFICATION_HIGH_MASK GENMASK(63, 32) #define NOTIFICATION_BITMAP_HIGH(x) \ ((u32)(FIELD_GET(NOTIFICATION_HIGH_MASK, (x)))) #define NOTIFICATION_BITMAP_LOW(x) \ ((u32)(FIELD_GET(NOTIFICATION_LOW_MASK, (x)))) #define PACK_NOTIFICATION_BITMAP(low, high) \ (FIELD_PREP(NOTIFICATION_LOW_MASK, (low)) | \ FIELD_PREP(NOTIFICATION_HIGH_MASK, (high))) #define RECEIVER_VCPU_MASK GENMASK(31, 16) #define PACK_NOTIFICATION_GET_RECEIVER_INFO(vcpu_r, r) \ (FIELD_PREP(RECEIVER_VCPU_MASK, (vcpu_r)) | \ FIELD_PREP(RECEIVER_ID_MASK, (r))) #define NOTIFICATION_INFO_GET_MORE_PEND_MASK BIT(0) #define NOTIFICATION_INFO_GET_ID_COUNT GENMASK(11, 7) #define ID_LIST_MASK_64 GENMASK(51, 12) #define ID_LIST_MASK_32 GENMASK(31, 12) #define MAX_IDS_64 20 #define MAX_IDS_32 10 #define PER_VCPU_NOTIFICATION_FLAG BIT(0) #define SECURE_PARTITION_BITMAP BIT(0) #define NON_SECURE_VM_BITMAP BIT(1) #define SPM_FRAMEWORK_BITMAP BIT(2) #define NS_HYP_FRAMEWORK_BITMAP BIT(3) static int ffa_notification_bind_common(u16 dst_id, u64 bitmap, u32 flags, bool is_bind) { ffa_value_t ret; u32 func, src_dst_ids = PACK_TARGET_INFO(dst_id, drv_info->vm_id); func = is_bind ? FFA_NOTIFICATION_BIND : FFA_NOTIFICATION_UNBIND; invoke_ffa_fn((ffa_value_t){ .a0 = func, .a1 = src_dst_ids, .a2 = flags, .a3 = NOTIFICATION_BITMAP_LOW(bitmap), .a4 = NOTIFICATION_BITMAP_HIGH(bitmap), }, &ret); if (ret.a0 == FFA_ERROR) return ffa_to_linux_errno((int)ret.a2); else if (ret.a0 != FFA_SUCCESS) return -EINVAL; return 0; } static int ffa_notification_set(u16 src_id, u16 dst_id, u32 flags, u64 bitmap) { ffa_value_t ret; u32 src_dst_ids = PACK_TARGET_INFO(dst_id, src_id); invoke_ffa_fn((ffa_value_t) { .a0 = FFA_NOTIFICATION_SET, .a1 = src_dst_ids, .a2 = flags, .a3 = NOTIFICATION_BITMAP_LOW(bitmap), .a4 = NOTIFICATION_BITMAP_HIGH(bitmap), }, &ret); if (ret.a0 == FFA_ERROR) return ffa_to_linux_errno((int)ret.a2); else if (ret.a0 != FFA_SUCCESS) return -EINVAL; return 0; } struct ffa_notify_bitmaps { u64 sp_map; u64 vm_map; u64 arch_map; }; static int ffa_notification_get(u32 flags, struct ffa_notify_bitmaps *notify) { ffa_value_t ret; u16 src_id = drv_info->vm_id; u16 cpu_id = smp_processor_id(); u32 rec_vcpu_ids = PACK_NOTIFICATION_GET_RECEIVER_INFO(cpu_id, src_id); invoke_ffa_fn((ffa_value_t){ .a0 = FFA_NOTIFICATION_GET, .a1 = rec_vcpu_ids, .a2 = flags, }, &ret); if (ret.a0 == FFA_ERROR) return ffa_to_linux_errno((int)ret.a2); else if (ret.a0 != FFA_SUCCESS) return -EINVAL; /* Something else went wrong. */ notify->sp_map = PACK_NOTIFICATION_BITMAP(ret.a2, ret.a3); notify->vm_map = PACK_NOTIFICATION_BITMAP(ret.a4, ret.a5); notify->arch_map = PACK_NOTIFICATION_BITMAP(ret.a6, ret.a7); return 0; } struct ffa_dev_part_info { ffa_sched_recv_cb callback; void *cb_data; rwlock_t rw_lock; }; static void __do_sched_recv_cb(u16 part_id, u16 vcpu, bool is_per_vcpu) { struct ffa_dev_part_info *partition; ffa_sched_recv_cb callback; void *cb_data; partition = xa_load(&drv_info->partition_info, part_id); if (!partition) { pr_err("%s: Invalid partition ID 0x%x\n", __func__, part_id); return; } read_lock(&partition->rw_lock); callback = partition->callback; cb_data = partition->cb_data; read_unlock(&partition->rw_lock); if (callback) callback(vcpu, is_per_vcpu, cb_data); } static void ffa_notification_info_get(void) { int idx, list, max_ids, lists_cnt, ids_processed, ids_count[MAX_IDS_64]; bool is_64b_resp; ffa_value_t ret; u64 id_list; do { invoke_ffa_fn((ffa_value_t){ .a0 = FFA_FN_NATIVE(NOTIFICATION_INFO_GET), }, &ret); if (ret.a0 != FFA_FN_NATIVE(SUCCESS) && ret.a0 != FFA_SUCCESS) { if (ret.a2 != FFA_RET_NO_DATA) pr_err("Notification Info fetch failed: 0x%lx (0x%lx)", ret.a0, ret.a2); return; } is_64b_resp = (ret.a0 == FFA_FN64_SUCCESS); ids_processed = 0; lists_cnt = FIELD_GET(NOTIFICATION_INFO_GET_ID_COUNT, ret.a2); if (is_64b_resp) { max_ids = MAX_IDS_64; id_list = FIELD_GET(ID_LIST_MASK_64, ret.a2); } else { max_ids = MAX_IDS_32; id_list = FIELD_GET(ID_LIST_MASK_32, ret.a2); } for (idx = 0; idx < lists_cnt; idx++, id_list >>= 2) ids_count[idx] = (id_list & 0x3) + 1; /* Process IDs */ for (list = 0; list < lists_cnt; list++) { u16 vcpu_id, part_id, *packed_id_list = (u16 *)&ret.a3; if (ids_processed >= max_ids - 1) break; part_id = packed_id_list[ids_processed++]; if (ids_count[list] == 1) { /* Global Notification */ __do_sched_recv_cb(part_id, 0, false); continue; } /* Per vCPU Notification */ for (idx = 0; idx < ids_count[list]; idx++) { if (ids_processed >= max_ids - 1) break; vcpu_id = packed_id_list[ids_processed++]; __do_sched_recv_cb(part_id, vcpu_id, true); } } } while (ret.a2 & NOTIFICATION_INFO_GET_MORE_PEND_MASK); } static int ffa_run(struct ffa_device *dev, u16 vcpu) { ffa_value_t ret; u32 target = dev->vm_id << 16 | vcpu; invoke_ffa_fn((ffa_value_t){ .a0 = FFA_RUN, .a1 = target, }, &ret); while (ret.a0 == FFA_INTERRUPT) invoke_ffa_fn((ffa_value_t){ .a0 = FFA_RUN, .a1 = ret.a1, }, &ret); if (ret.a0 == FFA_ERROR) return ffa_to_linux_errno((int)ret.a2); return 0; } static void ffa_set_up_mem_ops_native_flag(void) { if (!ffa_features(FFA_FN_NATIVE(MEM_LEND), 0, NULL, NULL) || !ffa_features(FFA_FN_NATIVE(MEM_SHARE), 0, NULL, NULL)) drv_info->mem_ops_native = true; } static u32 ffa_api_version_get(void) { return drv_info->version; } static int ffa_partition_info_get(const char *uuid_str, struct ffa_partition_info *buffer) { int count; uuid_t uuid; struct ffa_partition_info *pbuf; if (uuid_parse(uuid_str, &uuid)) { pr_err("invalid uuid (%s)\n", uuid_str); return -ENODEV; } count = ffa_partition_probe(&uuid, &pbuf); if (count <= 0) return -ENOENT; memcpy(buffer, pbuf, sizeof(*pbuf) * count); kfree(pbuf); return 0; } static void ffa_mode_32bit_set(struct ffa_device *dev) { dev->mode_32bit = true; } static int ffa_sync_send_receive(struct ffa_device *dev, struct ffa_send_direct_data *data) { return ffa_msg_send_direct_req(drv_info->vm_id, dev->vm_id, dev->mode_32bit, data); } static int ffa_indirect_msg_send(struct ffa_device *dev, void *buf, size_t sz) { return ffa_msg_send2(drv_info->vm_id, dev->vm_id, buf, sz); } static int ffa_memory_share(struct ffa_mem_ops_args *args) { if (drv_info->mem_ops_native) return ffa_memory_ops(FFA_FN_NATIVE(MEM_SHARE), args); return ffa_memory_ops(FFA_MEM_SHARE, args); } static int ffa_memory_lend(struct ffa_mem_ops_args *args) { /* Note that upon a successful MEM_LEND request the caller * must ensure that the memory region specified is not accessed * until a successful MEM_RECALIM call has been made. * On systems with a hypervisor present this will been enforced, * however on systems without a hypervisor the responsibility * falls to the calling kernel driver to prevent access. */ if (drv_info->mem_ops_native) return ffa_memory_ops(FFA_FN_NATIVE(MEM_LEND), args); return ffa_memory_ops(FFA_MEM_LEND, args); } #define FFA_SECURE_PARTITION_ID_FLAG BIT(15) #define ffa_notifications_disabled() (!drv_info->notif_enabled) enum notify_type { NON_SECURE_VM, SECURE_PARTITION, FRAMEWORK, }; struct notifier_cb_info { struct hlist_node hnode; ffa_notifier_cb cb; void *cb_data; enum notify_type type; }; static int ffa_sched_recv_cb_update(u16 part_id, ffa_sched_recv_cb callback, void *cb_data, bool is_registration) { struct ffa_dev_part_info *partition; bool cb_valid; if (ffa_notifications_disabled()) return -EOPNOTSUPP; partition = xa_load(&drv_info->partition_info, part_id); if (!partition) { pr_err("%s: Invalid partition ID 0x%x\n", __func__, part_id); return -EINVAL; } write_lock(&partition->rw_lock); cb_valid = !!partition->callback; if (!(is_registration ^ cb_valid)) { write_unlock(&partition->rw_lock); return -EINVAL; } partition->callback = callback; partition->cb_data = cb_data; write_unlock(&partition->rw_lock); return 0; } static int ffa_sched_recv_cb_register(struct ffa_device *dev, ffa_sched_recv_cb cb, void *cb_data) { return ffa_sched_recv_cb_update(dev->vm_id, cb, cb_data, true); } static int ffa_sched_recv_cb_unregister(struct ffa_device *dev) { return ffa_sched_recv_cb_update(dev->vm_id, NULL, NULL, false); } static int ffa_notification_bind(u16 dst_id, u64 bitmap, u32 flags) { return ffa_notification_bind_common(dst_id, bitmap, flags, true); } static int ffa_notification_unbind(u16 dst_id, u64 bitmap) { return ffa_notification_bind_common(dst_id, bitmap, 0, false); } /* Should be called while the notify_lock is taken */ static struct notifier_cb_info * notifier_hash_node_get(u16 notify_id, enum notify_type type) { struct notifier_cb_info *node; hash_for_each_possible(drv_info->notifier_hash, node, hnode, notify_id) if (type == node->type) return node; return NULL; } static int update_notifier_cb(int notify_id, enum notify_type type, ffa_notifier_cb cb, void *cb_data, bool is_registration) { struct notifier_cb_info *cb_info = NULL; bool cb_found; cb_info = notifier_hash_node_get(notify_id, type); cb_found = !!cb_info; if (!(is_registration ^ cb_found)) return -EINVAL; if (is_registration) { cb_info = kzalloc(sizeof(*cb_info), GFP_KERNEL); if (!cb_info) return -ENOMEM; cb_info->type = type; cb_info->cb = cb; cb_info->cb_data = cb_data; hash_add(drv_info->notifier_hash, &cb_info->hnode, notify_id); } else { hash_del(&cb_info->hnode); } return 0; } static enum notify_type ffa_notify_type_get(u16 vm_id) { if (vm_id & FFA_SECURE_PARTITION_ID_FLAG) return SECURE_PARTITION; else return NON_SECURE_VM; } static int ffa_notify_relinquish(struct ffa_device *dev, int notify_id) { int rc; enum notify_type type = ffa_notify_type_get(dev->vm_id); if (ffa_notifications_disabled()) return -EOPNOTSUPP; if (notify_id >= FFA_MAX_NOTIFICATIONS) return -EINVAL; mutex_lock(&drv_info->notify_lock); rc = update_notifier_cb(notify_id, type, NULL, NULL, false); if (rc) { pr_err("Could not unregister notification callback\n"); mutex_unlock(&drv_info->notify_lock); return rc; } rc = ffa_notification_unbind(dev->vm_id, BIT(notify_id)); mutex_unlock(&drv_info->notify_lock); return rc; } static int ffa_notify_request(struct ffa_device *dev, bool is_per_vcpu, ffa_notifier_cb cb, void *cb_data, int notify_id) { int rc; u32 flags = 0; enum notify_type type = ffa_notify_type_get(dev->vm_id); if (ffa_notifications_disabled()) return -EOPNOTSUPP; if (notify_id >= FFA_MAX_NOTIFICATIONS) return -EINVAL; mutex_lock(&drv_info->notify_lock); if (is_per_vcpu) flags = PER_VCPU_NOTIFICATION_FLAG; rc = ffa_notification_bind(dev->vm_id, BIT(notify_id), flags); if (rc) { mutex_unlock(&drv_info->notify_lock); return rc; } rc = update_notifier_cb(notify_id, type, cb, cb_data, true); if (rc) { pr_err("Failed to register callback for %d - %d\n", notify_id, rc); ffa_notification_unbind(dev->vm_id, BIT(notify_id)); } mutex_unlock(&drv_info->notify_lock); return rc; } static int ffa_notify_send(struct ffa_device *dev, int notify_id, bool is_per_vcpu, u16 vcpu) { u32 flags = 0; if (ffa_notifications_disabled()) return -EOPNOTSUPP; if (is_per_vcpu) flags |= (PER_VCPU_NOTIFICATION_FLAG | vcpu << 16); return ffa_notification_set(dev->vm_id, drv_info->vm_id, flags, BIT(notify_id)); } static void handle_notif_callbacks(u64 bitmap, enum notify_type type) { int notify_id; struct notifier_cb_info *cb_info = NULL; for (notify_id = 0; notify_id <= FFA_MAX_NOTIFICATIONS && bitmap; notify_id++, bitmap >>= 1) { if (!(bitmap & 1)) continue; mutex_lock(&drv_info->notify_lock); cb_info = notifier_hash_node_get(notify_id, type); mutex_unlock(&drv_info->notify_lock); if (cb_info && cb_info->cb) cb_info->cb(notify_id, cb_info->cb_data); } } static void notif_get_and_handle(void *unused) { int rc; struct ffa_notify_bitmaps bitmaps; rc = ffa_notification_get(SECURE_PARTITION_BITMAP | SPM_FRAMEWORK_BITMAP, &bitmaps); if (rc) { pr_err("Failed to retrieve notifications with %d!\n", rc); return; } handle_notif_callbacks(bitmaps.vm_map, NON_SECURE_VM); handle_notif_callbacks(bitmaps.sp_map, SECURE_PARTITION); handle_notif_callbacks(bitmaps.arch_map, FRAMEWORK); } static void ffa_self_notif_handle(u16 vcpu, bool is_per_vcpu, void *cb_data) { struct ffa_drv_info *info = cb_data; if (!is_per_vcpu) notif_get_and_handle(info); else smp_call_function_single(vcpu, notif_get_and_handle, info, 0); } static void notif_pcpu_irq_work_fn(struct work_struct *work) { struct ffa_drv_info *info = container_of(work, struct ffa_drv_info, notif_pcpu_work); ffa_self_notif_handle(smp_processor_id(), true, info); } static const struct ffa_info_ops ffa_drv_info_ops = { .api_version_get = ffa_api_version_get, .partition_info_get = ffa_partition_info_get, }; static const struct ffa_msg_ops ffa_drv_msg_ops = { .mode_32bit_set = ffa_mode_32bit_set, .sync_send_receive = ffa_sync_send_receive, .indirect_send = ffa_indirect_msg_send, }; static const struct ffa_mem_ops ffa_drv_mem_ops = { .memory_reclaim = ffa_memory_reclaim, .memory_share = ffa_memory_share, .memory_lend = ffa_memory_lend, }; static const struct ffa_cpu_ops ffa_drv_cpu_ops = { .run = ffa_run, }; static const struct ffa_notifier_ops ffa_drv_notifier_ops = { .sched_recv_cb_register = ffa_sched_recv_cb_register, .sched_recv_cb_unregister = ffa_sched_recv_cb_unregister, .notify_request = ffa_notify_request, .notify_relinquish = ffa_notify_relinquish, .notify_send = ffa_notify_send, }; static const struct ffa_ops ffa_drv_ops = { .info_ops = &ffa_drv_info_ops, .msg_ops = &ffa_drv_msg_ops, .mem_ops = &ffa_drv_mem_ops, .cpu_ops = &ffa_drv_cpu_ops, .notifier_ops = &ffa_drv_notifier_ops, }; void ffa_device_match_uuid(struct ffa_device *ffa_dev, const uuid_t *uuid) { int count, idx; struct ffa_partition_info *pbuf, *tpbuf; count = ffa_partition_probe(uuid, &pbuf); if (count <= 0) return; for (idx = 0, tpbuf = pbuf; idx < count; idx++, tpbuf++) if (tpbuf->id == ffa_dev->vm_id) uuid_copy(&ffa_dev->uuid, uuid); kfree(pbuf); } static int ffa_bus_notifier(struct notifier_block *nb, unsigned long action, void *data) { struct device *dev = data; struct ffa_device *fdev = to_ffa_dev(dev); if (action == BUS_NOTIFY_BIND_DRIVER) { struct ffa_driver *ffa_drv = to_ffa_driver(dev->driver); const struct ffa_device_id *id_table= ffa_drv->id_table; /* * FF-A v1.1 provides UUID for each partition as part of the * discovery API, the discovered UUID must be populated in the * device's UUID and there is no need to workaround by copying * the same from the driver table. */ if (uuid_is_null(&fdev->uuid)) ffa_device_match_uuid(fdev, &id_table->uuid); return NOTIFY_OK; } return NOTIFY_DONE; } static struct notifier_block ffa_bus_nb = { .notifier_call = ffa_bus_notifier, }; static int ffa_setup_partitions(void) { int count, idx, ret; uuid_t uuid; struct ffa_device *ffa_dev; struct ffa_dev_part_info *info; struct ffa_partition_info *pbuf, *tpbuf; if (drv_info->version == FFA_VERSION_1_0) { ret = bus_register_notifier(&ffa_bus_type, &ffa_bus_nb); if (ret) pr_err("Failed to register FF-A bus notifiers\n"); } count = ffa_partition_probe(&uuid_null, &pbuf); if (count <= 0) { pr_info("%s: No partitions found, error %d\n", __func__, count); return -EINVAL; } xa_init(&drv_info->partition_info); for (idx = 0, tpbuf = pbuf; idx < count; idx++, tpbuf++) { import_uuid(&uuid, (u8 *)tpbuf->uuid); /* Note that if the UUID will be uuid_null, that will require * ffa_bus_notifier() to find the UUID of this partition id * with help of ffa_device_match_uuid(). FF-A v1.1 and above * provides UUID here for each partition as part of the * discovery API and the same is passed. */ ffa_dev = ffa_device_register(&uuid, tpbuf->id, &ffa_drv_ops); if (!ffa_dev) { pr_err("%s: failed to register partition ID 0x%x\n", __func__, tpbuf->id); continue; } ffa_dev->properties = tpbuf->properties; if (drv_info->version > FFA_VERSION_1_0 && !(tpbuf->properties & FFA_PARTITION_AARCH64_EXEC)) ffa_mode_32bit_set(ffa_dev); info = kzalloc(sizeof(*info), GFP_KERNEL); if (!info) { ffa_device_unregister(ffa_dev); continue; } rwlock_init(&info->rw_lock); ret = xa_insert(&drv_info->partition_info, tpbuf->id, info, GFP_KERNEL); if (ret) { pr_err("%s: failed to save partition ID 0x%x - ret:%d\n", __func__, tpbuf->id, ret); ffa_device_unregister(ffa_dev); kfree(info); } } kfree(pbuf); /* Allocate for the host */ info = kzalloc(sizeof(*info), GFP_KERNEL); if (!info) { pr_err("%s: failed to alloc Host partition ID 0x%x. Abort.\n", __func__, drv_info->vm_id); /* Already registered devices are freed on bus_exit */ ffa_partitions_cleanup(); return -ENOMEM; } rwlock_init(&info->rw_lock); ret = xa_insert(&drv_info->partition_info, drv_info->vm_id, info, GFP_KERNEL); if (ret) { pr_err("%s: failed to save Host partition ID 0x%x - ret:%d. Abort.\n", __func__, drv_info->vm_id, ret); kfree(info); /* Already registered devices are freed on bus_exit */ ffa_partitions_cleanup(); } return ret; } static void ffa_partitions_cleanup(void) { struct ffa_dev_part_info *info; unsigned long idx; xa_for_each(&drv_info->partition_info, idx, info) { xa_erase(&drv_info->partition_info, idx); kfree(info); } xa_destroy(&drv_info->partition_info); } /* FFA FEATURE IDs */ #define FFA_FEAT_NOTIFICATION_PENDING_INT (1) #define FFA_FEAT_SCHEDULE_RECEIVER_INT (2) #define FFA_FEAT_MANAGED_EXIT_INT (3) static irqreturn_t ffa_sched_recv_irq_handler(int irq, void *irq_data) { struct ffa_pcpu_irq *pcpu = irq_data; struct ffa_drv_info *info = pcpu->info; queue_work(info->notif_pcpu_wq, &info->sched_recv_irq_work); return IRQ_HANDLED; } static irqreturn_t notif_pend_irq_handler(int irq, void *irq_data) { struct ffa_pcpu_irq *pcpu = irq_data; struct ffa_drv_info *info = pcpu->info; queue_work_on(smp_processor_id(), info->notif_pcpu_wq, &info->notif_pcpu_work); return IRQ_HANDLED; } static void ffa_sched_recv_irq_work_fn(struct work_struct *work) { ffa_notification_info_get(); } static int ffa_irq_map(u32 id) { char *err_str; int ret, irq, intid; if (id == FFA_FEAT_NOTIFICATION_PENDING_INT) err_str = "Notification Pending Interrupt"; else if (id == FFA_FEAT_SCHEDULE_RECEIVER_INT) err_str = "Schedule Receiver Interrupt"; else err_str = "Unknown ID"; /* The returned intid is assumed to be SGI donated to NS world */ ret = ffa_features(id, 0, &intid, NULL); if (ret < 0) { if (ret != -EOPNOTSUPP) pr_err("Failed to retrieve FF-A %s %u\n", err_str, id); return ret; } if (acpi_disabled) { struct of_phandle_args oirq = {}; struct device_node *gic; /* Only GICv3 supported currently with the device tree */ gic = of_find_compatible_node(NULL, NULL, "arm,gic-v3"); if (!gic) return -ENXIO; oirq.np = gic; oirq.args_count = 1; oirq.args[0] = intid; irq = irq_create_of_mapping(&oirq); of_node_put(gic); #ifdef CONFIG_ACPI } else { irq = acpi_register_gsi(NULL, intid, ACPI_EDGE_SENSITIVE, ACPI_ACTIVE_HIGH); #endif } if (irq <= 0) { pr_err("Failed to create IRQ mapping!\n"); return -ENODATA; } return irq; } static void ffa_irq_unmap(unsigned int irq) { if (!irq) return; irq_dispose_mapping(irq); } static int ffa_cpuhp_pcpu_irq_enable(unsigned int cpu) { if (drv_info->sched_recv_irq) enable_percpu_irq(drv_info->sched_recv_irq, IRQ_TYPE_NONE); if (drv_info->notif_pend_irq) enable_percpu_irq(drv_info->notif_pend_irq, IRQ_TYPE_NONE); return 0; } static int ffa_cpuhp_pcpu_irq_disable(unsigned int cpu) { if (drv_info->sched_recv_irq) disable_percpu_irq(drv_info->sched_recv_irq); if (drv_info->notif_pend_irq) disable_percpu_irq(drv_info->notif_pend_irq); return 0; } static void ffa_uninit_pcpu_irq(void) { if (drv_info->cpuhp_state) { cpuhp_remove_state(drv_info->cpuhp_state); drv_info->cpuhp_state = 0; } if (drv_info->notif_pcpu_wq) { destroy_workqueue(drv_info->notif_pcpu_wq); drv_info->notif_pcpu_wq = NULL; } if (drv_info->sched_recv_irq) free_percpu_irq(drv_info->sched_recv_irq, drv_info->irq_pcpu); if (drv_info->notif_pend_irq) free_percpu_irq(drv_info->notif_pend_irq, drv_info->irq_pcpu); if (drv_info->irq_pcpu) { free_percpu(drv_info->irq_pcpu); drv_info->irq_pcpu = NULL; } } static int ffa_init_pcpu_irq(void) { struct ffa_pcpu_irq __percpu *irq_pcpu; int ret, cpu; irq_pcpu = alloc_percpu(struct ffa_pcpu_irq); if (!irq_pcpu) return -ENOMEM; for_each_present_cpu(cpu) per_cpu_ptr(irq_pcpu, cpu)->info = drv_info; drv_info->irq_pcpu = irq_pcpu; if (drv_info->sched_recv_irq) { ret = request_percpu_irq(drv_info->sched_recv_irq, ffa_sched_recv_irq_handler, "ARM-FFA-SRI", irq_pcpu); if (ret) { pr_err("Error registering percpu SRI nIRQ %d : %d\n", drv_info->sched_recv_irq, ret); drv_info->sched_recv_irq = 0; return ret; } } if (drv_info->notif_pend_irq) { ret = request_percpu_irq(drv_info->notif_pend_irq, notif_pend_irq_handler, "ARM-FFA-NPI", irq_pcpu); if (ret) { pr_err("Error registering percpu NPI nIRQ %d : %d\n", drv_info->notif_pend_irq, ret); drv_info->notif_pend_irq = 0; return ret; } } INIT_WORK(&drv_info->sched_recv_irq_work, ffa_sched_recv_irq_work_fn); INIT_WORK(&drv_info->notif_pcpu_work, notif_pcpu_irq_work_fn); drv_info->notif_pcpu_wq = create_workqueue("ffa_pcpu_irq_notification"); if (!drv_info->notif_pcpu_wq) return -EINVAL; ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "ffa/pcpu-irq:starting", ffa_cpuhp_pcpu_irq_enable, ffa_cpuhp_pcpu_irq_disable); if (ret < 0) return ret; drv_info->cpuhp_state = ret; return 0; } static void ffa_notifications_cleanup(void) { ffa_uninit_pcpu_irq(); ffa_irq_unmap(drv_info->sched_recv_irq); drv_info->sched_recv_irq = 0; ffa_irq_unmap(drv_info->notif_pend_irq); drv_info->notif_pend_irq = 0; if (drv_info->bitmap_created) { ffa_notification_bitmap_destroy(); drv_info->bitmap_created = false; } drv_info->notif_enabled = false; } static void ffa_notifications_setup(void) { int ret; ret = ffa_features(FFA_NOTIFICATION_BITMAP_CREATE, 0, NULL, NULL); if (!ret) { ret = ffa_notification_bitmap_create(); if (ret) { pr_err("Notification bitmap create error %d\n", ret); return; } drv_info->bitmap_created = true; } ret = ffa_irq_map(FFA_FEAT_SCHEDULE_RECEIVER_INT); if (ret > 0) drv_info->sched_recv_irq = ret; ret = ffa_irq_map(FFA_FEAT_NOTIFICATION_PENDING_INT); if (ret > 0) drv_info->notif_pend_irq = ret; if (!drv_info->sched_recv_irq && !drv_info->notif_pend_irq) goto cleanup; ret = ffa_init_pcpu_irq(); if (ret) goto cleanup; hash_init(drv_info->notifier_hash); mutex_init(&drv_info->notify_lock); drv_info->notif_enabled = true; return; cleanup: pr_info("Notification setup failed %d, not enabled\n", ret); ffa_notifications_cleanup(); } static int __init ffa_init(void) { int ret; ret = ffa_transport_init(&invoke_ffa_fn); if (ret) return ret; drv_info = kzalloc(sizeof(*drv_info), GFP_KERNEL); if (!drv_info) { return -ENOMEM; } ret = ffa_version_check(&drv_info->version); if (ret) goto free_drv_info; if (ffa_id_get(&drv_info->vm_id)) { pr_err("failed to obtain VM id for self\n"); ret = -ENODEV; goto free_drv_info; } drv_info->rx_buffer = alloc_pages_exact(RXTX_BUFFER_SIZE, GFP_KERNEL); if (!drv_info->rx_buffer) { ret = -ENOMEM; goto free_pages; } drv_info->tx_buffer = alloc_pages_exact(RXTX_BUFFER_SIZE, GFP_KERNEL); if (!drv_info->tx_buffer) { ret = -ENOMEM; goto free_pages; } ret = ffa_rxtx_map(virt_to_phys(drv_info->tx_buffer), virt_to_phys(drv_info->rx_buffer), RXTX_BUFFER_SIZE / FFA_PAGE_SIZE); if (ret) { pr_err("failed to register FFA RxTx buffers\n"); goto free_pages; } mutex_init(&drv_info->rx_lock); mutex_init(&drv_info->tx_lock); ffa_set_up_mem_ops_native_flag(); ffa_notifications_setup(); ret = ffa_setup_partitions(); if (ret) { pr_err("failed to setup partitions\n"); goto cleanup_notifs; } ret = ffa_sched_recv_cb_update(drv_info->vm_id, ffa_self_notif_handle, drv_info, true); if (ret) pr_info("Failed to register driver sched callback %d\n", ret); return 0; cleanup_notifs: ffa_notifications_cleanup(); free_pages: if (drv_info->tx_buffer) free_pages_exact(drv_info->tx_buffer, RXTX_BUFFER_SIZE); free_pages_exact(drv_info->rx_buffer, RXTX_BUFFER_SIZE); free_drv_info: kfree(drv_info); return ret; } module_init(ffa_init); static void __exit ffa_exit(void) { ffa_notifications_cleanup(); ffa_partitions_cleanup(); ffa_rxtx_unmap(drv_info->vm_id); free_pages_exact(drv_info->tx_buffer, RXTX_BUFFER_SIZE); free_pages_exact(drv_info->rx_buffer, RXTX_BUFFER_SIZE); kfree(drv_info); } module_exit(ffa_exit); MODULE_ALIAS("arm-ffa"); MODULE_AUTHOR("Sudeep Holla <sudeep.holla@arm.com>"); MODULE_DESCRIPTION("Arm FF-A interface driver"); MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1