Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Edward A. James | 3434 | 99.45% | 12 | 70.59% |
Zou Wei | 7 | 0.20% | 1 | 5.88% |
Christophe Jaillet | 6 | 0.17% | 1 | 5.88% |
Xu Wang | 3 | 0.09% | 1 | 5.88% |
Uwe Kleine-König | 2 | 0.06% | 1 | 5.88% |
Rob Herring | 1 | 0.03% | 1 | 5.88% |
Total | 3453 | 17 |
// SPDX-License-Identifier: GPL-2.0 #include <linux/device.h> #include <linux/err.h> #include <linux/errno.h> #include <linux/fs.h> #include <linux/fsi-sbefifo.h> #include <linux/gfp.h> #include <linux/idr.h> #include <linux/kernel.h> #include <linux/list.h> #include <linux/miscdevice.h> #include <linux/mm.h> #include <linux/module.h> #include <linux/mutex.h> #include <linux/fsi-occ.h> #include <linux/of.h> #include <linux/of_platform.h> #include <linux/platform_device.h> #include <linux/sched.h> #include <linux/slab.h> #include <linux/uaccess.h> #include <asm/unaligned.h> #define OCC_SRAM_BYTES 4096 #define OCC_CMD_DATA_BYTES 4090 #define OCC_RESP_DATA_BYTES 4089 #define OCC_P9_SRAM_CMD_ADDR 0xFFFBE000 #define OCC_P9_SRAM_RSP_ADDR 0xFFFBF000 #define OCC_P10_SRAM_CMD_ADDR 0xFFFFD000 #define OCC_P10_SRAM_RSP_ADDR 0xFFFFE000 #define OCC_P10_SRAM_MODE 0x58 /* Normal mode, OCB channel 2 */ #define OCC_TIMEOUT_MS 1000 #define OCC_CMD_IN_PRG_WAIT_MS 50 enum versions { occ_p9, occ_p10 }; struct occ { struct device *dev; struct device *sbefifo; char name[32]; int idx; bool platform_hwmon; u8 sequence_number; void *buffer; void *client_buffer; size_t client_buffer_size; size_t client_response_size; enum versions version; struct miscdevice mdev; struct mutex occ_lock; }; #define to_occ(x) container_of((x), struct occ, mdev) struct occ_response { u8 seq_no; u8 cmd_type; u8 return_status; __be16 data_length; u8 data[OCC_RESP_DATA_BYTES + 2]; /* two bytes checksum */ } __packed; struct occ_client { struct occ *occ; struct mutex lock; size_t data_size; size_t read_offset; u8 *buffer; }; #define to_client(x) container_of((x), struct occ_client, xfr) static DEFINE_IDA(occ_ida); static int occ_open(struct inode *inode, struct file *file) { struct occ_client *client = kzalloc(sizeof(*client), GFP_KERNEL); struct miscdevice *mdev = file->private_data; struct occ *occ = to_occ(mdev); if (!client) return -ENOMEM; client->buffer = (u8 *)__get_free_page(GFP_KERNEL); if (!client->buffer) { kfree(client); return -ENOMEM; } client->occ = occ; mutex_init(&client->lock); file->private_data = client; get_device(occ->dev); /* We allocate a 1-page buffer, make sure it all fits */ BUILD_BUG_ON((OCC_CMD_DATA_BYTES + 3) > PAGE_SIZE); BUILD_BUG_ON((OCC_RESP_DATA_BYTES + 7) > PAGE_SIZE); return 0; } static ssize_t occ_read(struct file *file, char __user *buf, size_t len, loff_t *offset) { struct occ_client *client = file->private_data; ssize_t rc = 0; if (!client) return -ENODEV; if (len > OCC_SRAM_BYTES) return -EINVAL; mutex_lock(&client->lock); /* This should not be possible ... */ if (WARN_ON_ONCE(client->read_offset > client->data_size)) { rc = -EIO; goto done; } /* Grab how much data we have to read */ rc = min(len, client->data_size - client->read_offset); if (copy_to_user(buf, client->buffer + client->read_offset, rc)) rc = -EFAULT; else client->read_offset += rc; done: mutex_unlock(&client->lock); return rc; } static ssize_t occ_write(struct file *file, const char __user *buf, size_t len, loff_t *offset) { struct occ_client *client = file->private_data; size_t rlen, data_length; ssize_t rc; u8 *cmd; if (!client) return -ENODEV; if (len > (OCC_CMD_DATA_BYTES + 3) || len < 3) return -EINVAL; mutex_lock(&client->lock); /* Construct the command */ cmd = client->buffer; /* * Copy the user command (assume user data follows the occ command * format) * byte 0: command type * bytes 1-2: data length (msb first) * bytes 3-n: data */ if (copy_from_user(&cmd[1], buf, len)) { rc = -EFAULT; goto done; } /* Extract data length */ data_length = (cmd[2] << 8) + cmd[3]; if (data_length > OCC_CMD_DATA_BYTES) { rc = -EINVAL; goto done; } /* Submit command; 4 bytes before the data and 2 bytes after */ rlen = PAGE_SIZE; rc = fsi_occ_submit(client->occ->dev, cmd, data_length + 6, cmd, &rlen); if (rc) goto done; /* Set read tracking data */ client->data_size = rlen; client->read_offset = 0; /* Done */ rc = len; done: mutex_unlock(&client->lock); return rc; } static int occ_release(struct inode *inode, struct file *file) { struct occ_client *client = file->private_data; put_device(client->occ->dev); free_page((unsigned long)client->buffer); kfree(client); return 0; } static const struct file_operations occ_fops = { .owner = THIS_MODULE, .open = occ_open, .read = occ_read, .write = occ_write, .release = occ_release, }; static void occ_save_ffdc(struct occ *occ, __be32 *resp, size_t parsed_len, size_t resp_len) { if (resp_len > parsed_len) { size_t dh = resp_len - parsed_len; size_t ffdc_len = (dh - 1) * 4; /* SBE words are four bytes */ __be32 *ffdc = &resp[parsed_len]; if (ffdc_len > occ->client_buffer_size) ffdc_len = occ->client_buffer_size; memcpy(occ->client_buffer, ffdc, ffdc_len); occ->client_response_size = ffdc_len; } } static int occ_verify_checksum(struct occ *occ, struct occ_response *resp, u16 data_length) { /* Fetch the two bytes after the data for the checksum. */ u16 checksum_resp = get_unaligned_be16(&resp->data[data_length]); u16 checksum; u16 i; checksum = resp->seq_no; checksum += resp->cmd_type; checksum += resp->return_status; checksum += (data_length >> 8) + (data_length & 0xFF); for (i = 0; i < data_length; ++i) checksum += resp->data[i]; if (checksum != checksum_resp) { dev_err(occ->dev, "Bad checksum: %04x!=%04x\n", checksum, checksum_resp); return -EBADE; } return 0; } static int occ_getsram(struct occ *occ, u32 offset, void *data, ssize_t len) { u32 data_len = ((len + 7) / 8) * 8; /* must be multiples of 8 B */ size_t cmd_len, parsed_len, resp_data_len; size_t resp_len = OCC_MAX_RESP_WORDS; __be32 *resp = occ->buffer; __be32 cmd[6]; int idx = 0, rc; /* * Magic sequence to do SBE getsram command. SBE will fetch data from * specified SRAM address. */ switch (occ->version) { default: case occ_p9: cmd_len = 5; cmd[2] = cpu_to_be32(1); /* Normal mode */ cmd[3] = cpu_to_be32(OCC_P9_SRAM_RSP_ADDR + offset); break; case occ_p10: idx = 1; cmd_len = 6; cmd[2] = cpu_to_be32(OCC_P10_SRAM_MODE); cmd[3] = 0; cmd[4] = cpu_to_be32(OCC_P10_SRAM_RSP_ADDR + offset); break; } cmd[0] = cpu_to_be32(cmd_len); cmd[1] = cpu_to_be32(SBEFIFO_CMD_GET_OCC_SRAM); cmd[4 + idx] = cpu_to_be32(data_len); rc = sbefifo_submit(occ->sbefifo, cmd, cmd_len, resp, &resp_len); if (rc) return rc; rc = sbefifo_parse_status(occ->sbefifo, SBEFIFO_CMD_GET_OCC_SRAM, resp, resp_len, &parsed_len); if (rc > 0) { dev_err(occ->dev, "SRAM read returned failure status: %08x\n", rc); occ_save_ffdc(occ, resp, parsed_len, resp_len); return -ECOMM; } else if (rc) { return rc; } resp_data_len = be32_to_cpu(resp[parsed_len - 1]); if (resp_data_len != data_len) { dev_err(occ->dev, "SRAM read expected %d bytes got %zd\n", data_len, resp_data_len); rc = -EBADMSG; } else { memcpy(data, resp, len); } return rc; } static int occ_putsram(struct occ *occ, const void *data, ssize_t len, u8 seq_no, u16 checksum) { u32 data_len = ((len + 7) / 8) * 8; /* must be multiples of 8 B */ size_t cmd_len, parsed_len, resp_data_len; size_t resp_len = OCC_MAX_RESP_WORDS; __be32 *buf = occ->buffer; u8 *byte_buf; int idx = 0, rc; cmd_len = (occ->version == occ_p10) ? 6 : 5; cmd_len += data_len >> 2; /* * Magic sequence to do SBE putsram command. SBE will transfer * data to specified SRAM address. */ buf[0] = cpu_to_be32(cmd_len); buf[1] = cpu_to_be32(SBEFIFO_CMD_PUT_OCC_SRAM); switch (occ->version) { default: case occ_p9: buf[2] = cpu_to_be32(1); /* Normal mode */ buf[3] = cpu_to_be32(OCC_P9_SRAM_CMD_ADDR); break; case occ_p10: idx = 1; buf[2] = cpu_to_be32(OCC_P10_SRAM_MODE); buf[3] = 0; buf[4] = cpu_to_be32(OCC_P10_SRAM_CMD_ADDR); break; } buf[4 + idx] = cpu_to_be32(data_len); memcpy(&buf[5 + idx], data, len); byte_buf = (u8 *)&buf[5 + idx]; /* * Overwrite the first byte with our sequence number and the last two * bytes with the checksum. */ byte_buf[0] = seq_no; byte_buf[len - 2] = checksum >> 8; byte_buf[len - 1] = checksum & 0xff; rc = sbefifo_submit(occ->sbefifo, buf, cmd_len, buf, &resp_len); if (rc) return rc; rc = sbefifo_parse_status(occ->sbefifo, SBEFIFO_CMD_PUT_OCC_SRAM, buf, resp_len, &parsed_len); if (rc > 0) { dev_err(occ->dev, "SRAM write returned failure status: %08x\n", rc); occ_save_ffdc(occ, buf, parsed_len, resp_len); return -ECOMM; } else if (rc) { return rc; } if (parsed_len != 1) { dev_err(occ->dev, "SRAM write response length invalid: %zd\n", parsed_len); rc = -EBADMSG; } else { resp_data_len = be32_to_cpu(buf[0]); if (resp_data_len != data_len) { dev_err(occ->dev, "SRAM write expected %d bytes got %zd\n", data_len, resp_data_len); rc = -EBADMSG; } } return rc; } static int occ_trigger_attn(struct occ *occ) { __be32 *buf = occ->buffer; size_t cmd_len, parsed_len, resp_data_len; size_t resp_len = OCC_MAX_RESP_WORDS; int idx = 0, rc; switch (occ->version) { default: case occ_p9: cmd_len = 7; buf[2] = cpu_to_be32(3); /* Circular mode */ buf[3] = 0; break; case occ_p10: idx = 1; cmd_len = 8; buf[2] = cpu_to_be32(0xd0); /* Circular mode, OCB Channel 1 */ buf[3] = 0; buf[4] = 0; break; } buf[0] = cpu_to_be32(cmd_len); /* Chip-op length in words */ buf[1] = cpu_to_be32(SBEFIFO_CMD_PUT_OCC_SRAM); buf[4 + idx] = cpu_to_be32(8); /* Data length in bytes */ buf[5 + idx] = cpu_to_be32(0x20010000); /* Trigger OCC attention */ buf[6 + idx] = 0; rc = sbefifo_submit(occ->sbefifo, buf, cmd_len, buf, &resp_len); if (rc) return rc; rc = sbefifo_parse_status(occ->sbefifo, SBEFIFO_CMD_PUT_OCC_SRAM, buf, resp_len, &parsed_len); if (rc > 0) { dev_err(occ->dev, "SRAM attn returned failure status: %08x\n", rc); occ_save_ffdc(occ, buf, parsed_len, resp_len); return -ECOMM; } else if (rc) { return rc; } if (parsed_len != 1) { dev_err(occ->dev, "SRAM attn response length invalid: %zd\n", parsed_len); rc = -EBADMSG; } else { resp_data_len = be32_to_cpu(buf[0]); if (resp_data_len != 8) { dev_err(occ->dev, "SRAM attn expected 8 bytes got %zd\n", resp_data_len); rc = -EBADMSG; } } return rc; } static bool fsi_occ_response_not_ready(struct occ_response *resp, u8 seq_no, u8 cmd_type) { return resp->return_status == OCC_RESP_CMD_IN_PRG || resp->return_status == OCC_RESP_CRIT_INIT || resp->seq_no != seq_no || resp->cmd_type != cmd_type; } int fsi_occ_submit(struct device *dev, const void *request, size_t req_len, void *response, size_t *resp_len) { const unsigned long timeout = msecs_to_jiffies(OCC_TIMEOUT_MS); const unsigned long wait_time = msecs_to_jiffies(OCC_CMD_IN_PRG_WAIT_MS); struct occ *occ = dev_get_drvdata(dev); struct occ_response *resp = response; size_t user_resp_len = *resp_len; u8 seq_no; u8 cmd_type; u16 checksum = 0; u16 resp_data_length; const u8 *byte_request = (const u8 *)request; unsigned long end; int rc; size_t i; *resp_len = 0; if (!occ) return -ENODEV; if (user_resp_len < 7) { dev_dbg(dev, "Bad resplen %zd\n", user_resp_len); return -EINVAL; } cmd_type = byte_request[1]; /* Checksum the request, ignoring first byte (sequence number). */ for (i = 1; i < req_len - 2; ++i) checksum += byte_request[i]; rc = mutex_lock_interruptible(&occ->occ_lock); if (rc) return rc; occ->client_buffer = response; occ->client_buffer_size = user_resp_len; occ->client_response_size = 0; if (!occ->buffer) { rc = -ENOENT; goto done; } /* * Get a sequence number and update the counter. Avoid a sequence * number of 0 which would pass the response check below even if the * OCC response is uninitialized. Any sequence number the user is * trying to send is overwritten since this function is the only common * interface to the OCC and therefore the only place we can guarantee * unique sequence numbers. */ seq_no = occ->sequence_number++; if (!occ->sequence_number) occ->sequence_number = 1; checksum += seq_no; rc = occ_putsram(occ, request, req_len, seq_no, checksum); if (rc) goto done; rc = occ_trigger_attn(occ); if (rc) goto done; end = jiffies + timeout; while (true) { /* Read occ response header */ rc = occ_getsram(occ, 0, resp, 8); if (rc) goto done; if (fsi_occ_response_not_ready(resp, seq_no, cmd_type)) { if (time_after(jiffies, end)) { dev_err(occ->dev, "resp timeout status=%02x seq=%d cmd=%d, our seq=%d cmd=%d\n", resp->return_status, resp->seq_no, resp->cmd_type, seq_no, cmd_type); rc = -ETIMEDOUT; goto done; } set_current_state(TASK_UNINTERRUPTIBLE); schedule_timeout(wait_time); } else { /* Extract size of response data */ resp_data_length = get_unaligned_be16(&resp->data_length); /* * Message size is data length + 5 bytes header + 2 * bytes checksum */ if ((resp_data_length + 7) > user_resp_len) { rc = -EMSGSIZE; goto done; } /* * Get the entire response including the header again, * in case it changed */ if (resp_data_length > 1) { rc = occ_getsram(occ, 0, resp, resp_data_length + 7); if (rc) goto done; if (!fsi_occ_response_not_ready(resp, seq_no, cmd_type)) break; } else { break; } } } dev_dbg(dev, "resp_status=%02x resp_data_len=%d\n", resp->return_status, resp_data_length); rc = occ_verify_checksum(occ, resp, resp_data_length); if (rc) goto done; occ->client_response_size = resp_data_length + 7; done: *resp_len = occ->client_response_size; mutex_unlock(&occ->occ_lock); return rc; } EXPORT_SYMBOL_GPL(fsi_occ_submit); static int occ_unregister_platform_child(struct device *dev, void *data) { struct platform_device *hwmon_dev = to_platform_device(dev); platform_device_unregister(hwmon_dev); return 0; } static int occ_unregister_of_child(struct device *dev, void *data) { struct platform_device *hwmon_dev = to_platform_device(dev); of_device_unregister(hwmon_dev); if (dev->of_node) of_node_clear_flag(dev->of_node, OF_POPULATED); return 0; } static int occ_probe(struct platform_device *pdev) { int rc; u32 reg; char child_name[32]; struct occ *occ; struct platform_device *hwmon_dev = NULL; struct device_node *hwmon_node; struct device *dev = &pdev->dev; struct platform_device_info hwmon_dev_info = { .parent = dev, .name = "occ-hwmon", }; occ = devm_kzalloc(dev, sizeof(*occ), GFP_KERNEL); if (!occ) return -ENOMEM; /* SBE words are always four bytes */ occ->buffer = kvmalloc(OCC_MAX_RESP_WORDS * 4, GFP_KERNEL); if (!occ->buffer) return -ENOMEM; occ->version = (uintptr_t)of_device_get_match_data(dev); occ->dev = dev; occ->sbefifo = dev->parent; /* * Quickly derive a pseudo-random number from jiffies so that * re-probing the driver doesn't accidentally overlap sequence numbers. */ occ->sequence_number = (u8)((jiffies % 0xff) + 1); mutex_init(&occ->occ_lock); if (dev->of_node) { rc = of_property_read_u32(dev->of_node, "reg", ®); if (!rc) { /* make sure we don't have a duplicate from dts */ occ->idx = ida_alloc_range(&occ_ida, reg, reg, GFP_KERNEL); if (occ->idx < 0) occ->idx = ida_alloc_min(&occ_ida, 1, GFP_KERNEL); } else { occ->idx = ida_alloc_min(&occ_ida, 1, GFP_KERNEL); } } else { occ->idx = ida_alloc_min(&occ_ida, 1, GFP_KERNEL); } platform_set_drvdata(pdev, occ); snprintf(occ->name, sizeof(occ->name), "occ%d", occ->idx); occ->mdev.fops = &occ_fops; occ->mdev.minor = MISC_DYNAMIC_MINOR; occ->mdev.name = occ->name; occ->mdev.parent = dev; rc = misc_register(&occ->mdev); if (rc) { dev_err(dev, "failed to register miscdevice: %d\n", rc); ida_free(&occ_ida, occ->idx); kvfree(occ->buffer); return rc; } hwmon_node = of_get_child_by_name(dev->of_node, hwmon_dev_info.name); if (hwmon_node) { snprintf(child_name, sizeof(child_name), "%s.%d", hwmon_dev_info.name, occ->idx); hwmon_dev = of_platform_device_create(hwmon_node, child_name, dev); of_node_put(hwmon_node); } if (!hwmon_dev) { occ->platform_hwmon = true; hwmon_dev_info.id = occ->idx; hwmon_dev = platform_device_register_full(&hwmon_dev_info); if (IS_ERR(hwmon_dev)) dev_warn(dev, "failed to create hwmon device\n"); } return 0; } static void occ_remove(struct platform_device *pdev) { struct occ *occ = platform_get_drvdata(pdev); misc_deregister(&occ->mdev); mutex_lock(&occ->occ_lock); kvfree(occ->buffer); occ->buffer = NULL; mutex_unlock(&occ->occ_lock); if (occ->platform_hwmon) device_for_each_child(&pdev->dev, NULL, occ_unregister_platform_child); else device_for_each_child(&pdev->dev, NULL, occ_unregister_of_child); ida_free(&occ_ida, occ->idx); } static const struct of_device_id occ_match[] = { { .compatible = "ibm,p9-occ", .data = (void *)occ_p9 }, { .compatible = "ibm,p10-occ", .data = (void *)occ_p10 }, { }, }; MODULE_DEVICE_TABLE(of, occ_match); static struct platform_driver occ_driver = { .driver = { .name = "occ", .of_match_table = occ_match, }, .probe = occ_probe, .remove_new = occ_remove, }; static int occ_init(void) { return platform_driver_register(&occ_driver); } static void occ_exit(void) { platform_driver_unregister(&occ_driver); ida_destroy(&occ_ida); } module_init(occ_init); module_exit(occ_exit); MODULE_AUTHOR("Eddie James <eajames@linux.ibm.com>"); MODULE_DESCRIPTION("BMC P9 OCC driver"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1