Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Oded Gabbay | 3173 | 20.25% | 10 | 4.95% |
Felix Kuhling | 2611 | 16.66% | 32 | 15.84% |
Rajneesh Bhardwaj | 2466 | 15.73% | 17 | 8.42% |
David Yat Sin | 2276 | 14.52% | 9 | 4.46% |
Jonathan Kim | 1691 | 10.79% | 19 | 9.41% |
Oak Zeng | 362 | 2.31% | 6 | 2.97% |
Andrew Lewycky | 347 | 2.21% | 4 | 1.98% |
Alex Sierra | 284 | 1.81% | 4 | 1.98% |
Yong Zhao | 258 | 1.65% | 8 | 3.96% |
Philip Yang | 229 | 1.46% | 8 | 3.96% |
Alexey Skidanov | 226 | 1.44% | 2 | 0.99% |
Graham Sider | 219 | 1.40% | 7 | 3.47% |
Mukul Joshi | 211 | 1.35% | 10 | 4.95% |
Harish Kasiviswanathan | 164 | 1.05% | 3 | 1.49% |
Daniel Phillips | 157 | 1.00% | 1 | 0.50% |
Ben Goz | 144 | 0.92% | 5 | 2.48% |
Moses Reuben | 141 | 0.90% | 1 | 0.50% |
Lang Yu | 88 | 0.56% | 3 | 1.49% |
Eric Huang | 81 | 0.52% | 5 | 2.48% |
Xiaogang Chen | 64 | 0.41% | 1 | 0.50% |
Amber Lin | 62 | 0.40% | 3 | 1.49% |
Jay Cornwall | 59 | 0.38% | 2 | 0.99% |
Evgeny Pinchuk | 48 | 0.31% | 1 | 0.50% |
Yair Shachar | 34 | 0.22% | 3 | 1.49% |
Kent Russell | 32 | 0.20% | 4 | 1.98% |
Shashank Sharma | 28 | 0.18% | 1 | 0.50% |
Alex Deucher | 25 | 0.16% | 2 | 0.99% |
Joseph Greathouse | 23 | 0.15% | 2 | 0.99% |
Ramesh Errabolu | 22 | 0.14% | 3 | 1.49% |
Ricardo B. Marliere | 22 | 0.14% | 1 | 0.50% |
Yifan Zhang | 17 | 0.11% | 1 | 0.50% |
Colin Ian King | 14 | 0.09% | 2 | 0.99% |
Dan Carpenter | 14 | 0.09% | 2 | 0.99% |
Chia-I Wu | 14 | 0.09% | 1 | 0.50% |
Andres Rodriguez | 13 | 0.08% | 2 | 0.99% |
Samuel Li | 7 | 0.04% | 1 | 0.50% |
Dave Airlie | 7 | 0.04% | 2 | 0.99% |
André Almeida | 6 | 0.04% | 1 | 0.50% |
Christian König | 6 | 0.04% | 1 | 0.50% |
Shaoyun Liu | 5 | 0.03% | 1 | 0.50% |
Jason Gunthorpe | 5 | 0.03% | 1 | 0.50% |
Arnd Bergmann | 4 | 0.03% | 2 | 0.99% |
Suren Baghdasaryan | 4 | 0.03% | 1 | 0.50% |
Tom Rix | 2 | 0.01% | 1 | 0.50% |
Wei Yongjun | 2 | 0.01% | 1 | 0.50% |
Jinpeng Cui | 2 | 0.01% | 1 | 0.50% |
Edward O'Callaghan | 1 | 0.01% | 1 | 0.50% |
Christoph Hellwig | 1 | 0.01% | 1 | 0.50% |
Jason A. Donenfeld | 1 | 0.01% | 1 | 0.50% |
Andrew Lutomirski | 1 | 0.01% | 1 | 0.50% |
Total | 15673 | 202 |
// SPDX-License-Identifier: GPL-2.0 OR MIT /* * Copyright 2014-2022 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #include <linux/device.h> #include <linux/export.h> #include <linux/err.h> #include <linux/fs.h> #include <linux/file.h> #include <linux/sched.h> #include <linux/slab.h> #include <linux/uaccess.h> #include <linux/compat.h> #include <uapi/linux/kfd_ioctl.h> #include <linux/time.h> #include <linux/mm.h> #include <linux/mman.h> #include <linux/ptrace.h> #include <linux/dma-buf.h> #include <linux/fdtable.h> #include <linux/processor.h> #include "kfd_priv.h" #include "kfd_device_queue_manager.h" #include "kfd_svm.h" #include "amdgpu_amdkfd.h" #include "kfd_smi_events.h" #include "amdgpu_dma_buf.h" #include "kfd_debug.h" static long kfd_ioctl(struct file *, unsigned int, unsigned long); static int kfd_open(struct inode *, struct file *); static int kfd_release(struct inode *, struct file *); static int kfd_mmap(struct file *, struct vm_area_struct *); static const char kfd_dev_name[] = "kfd"; static const struct file_operations kfd_fops = { .owner = THIS_MODULE, .unlocked_ioctl = kfd_ioctl, .compat_ioctl = compat_ptr_ioctl, .open = kfd_open, .release = kfd_release, .mmap = kfd_mmap, }; static int kfd_char_dev_major = -1; struct device *kfd_device; static const struct class kfd_class = { .name = kfd_dev_name, }; static inline struct kfd_process_device *kfd_lock_pdd_by_id(struct kfd_process *p, __u32 gpu_id) { struct kfd_process_device *pdd; mutex_lock(&p->mutex); pdd = kfd_process_device_data_by_id(p, gpu_id); if (pdd) return pdd; mutex_unlock(&p->mutex); return NULL; } static inline void kfd_unlock_pdd(struct kfd_process_device *pdd) { mutex_unlock(&pdd->process->mutex); } int kfd_chardev_init(void) { int err = 0; kfd_char_dev_major = register_chrdev(0, kfd_dev_name, &kfd_fops); err = kfd_char_dev_major; if (err < 0) goto err_register_chrdev; err = class_register(&kfd_class); if (err) goto err_class_create; kfd_device = device_create(&kfd_class, NULL, MKDEV(kfd_char_dev_major, 0), NULL, kfd_dev_name); err = PTR_ERR(kfd_device); if (IS_ERR(kfd_device)) goto err_device_create; return 0; err_device_create: class_unregister(&kfd_class); err_class_create: unregister_chrdev(kfd_char_dev_major, kfd_dev_name); err_register_chrdev: return err; } void kfd_chardev_exit(void) { device_destroy(&kfd_class, MKDEV(kfd_char_dev_major, 0)); class_unregister(&kfd_class); unregister_chrdev(kfd_char_dev_major, kfd_dev_name); kfd_device = NULL; } static int kfd_open(struct inode *inode, struct file *filep) { struct kfd_process *process; bool is_32bit_user_mode; if (iminor(inode) != 0) return -ENODEV; is_32bit_user_mode = in_compat_syscall(); if (is_32bit_user_mode) { dev_warn(kfd_device, "Process %d (32-bit) failed to open /dev/kfd\n" "32-bit processes are not supported by amdkfd\n", current->pid); return -EPERM; } process = kfd_create_process(current); if (IS_ERR(process)) return PTR_ERR(process); if (kfd_process_init_cwsr_apu(process, filep)) { kfd_unref_process(process); return -EFAULT; } /* filep now owns the reference returned by kfd_create_process */ filep->private_data = process; dev_dbg(kfd_device, "process %d opened, compat mode (32 bit) - %d\n", process->pasid, process->is_32bit_user_mode); return 0; } static int kfd_release(struct inode *inode, struct file *filep) { struct kfd_process *process = filep->private_data; if (process) kfd_unref_process(process); return 0; } static int kfd_ioctl_get_version(struct file *filep, struct kfd_process *p, void *data) { struct kfd_ioctl_get_version_args *args = data; args->major_version = KFD_IOCTL_MAJOR_VERSION; args->minor_version = KFD_IOCTL_MINOR_VERSION; return 0; } static int set_queue_properties_from_user(struct queue_properties *q_properties, struct kfd_ioctl_create_queue_args *args) { /* * Repurpose queue percentage to accommodate new features: * bit 0-7: queue percentage * bit 8-15: pm4_target_xcc */ if ((args->queue_percentage & 0xFF) > KFD_MAX_QUEUE_PERCENTAGE) { pr_err("Queue percentage must be between 0 to KFD_MAX_QUEUE_PERCENTAGE\n"); return -EINVAL; } if (args->queue_priority > KFD_MAX_QUEUE_PRIORITY) { pr_err("Queue priority must be between 0 to KFD_MAX_QUEUE_PRIORITY\n"); return -EINVAL; } if ((args->ring_base_address) && (!access_ok((const void __user *) args->ring_base_address, sizeof(uint64_t)))) { pr_err("Can't access ring base address\n"); return -EFAULT; } if (!is_power_of_2(args->ring_size) && (args->ring_size != 0)) { pr_err("Ring size must be a power of 2 or 0\n"); return -EINVAL; } if (!access_ok((const void __user *) args->read_pointer_address, sizeof(uint32_t))) { pr_err("Can't access read pointer\n"); return -EFAULT; } if (!access_ok((const void __user *) args->write_pointer_address, sizeof(uint32_t))) { pr_err("Can't access write pointer\n"); return -EFAULT; } if (args->eop_buffer_address && !access_ok((const void __user *) args->eop_buffer_address, sizeof(uint32_t))) { pr_debug("Can't access eop buffer"); return -EFAULT; } if (args->ctx_save_restore_address && !access_ok((const void __user *) args->ctx_save_restore_address, sizeof(uint32_t))) { pr_debug("Can't access ctx save restore buffer"); return -EFAULT; } q_properties->is_interop = false; q_properties->is_gws = false; q_properties->queue_percent = args->queue_percentage & 0xFF; /* bit 8-15 are repurposed to be PM4 target XCC */ q_properties->pm4_target_xcc = (args->queue_percentage >> 8) & 0xFF; q_properties->priority = args->queue_priority; q_properties->queue_address = args->ring_base_address; q_properties->queue_size = args->ring_size; q_properties->read_ptr = (uint32_t *) args->read_pointer_address; q_properties->write_ptr = (uint32_t *) args->write_pointer_address; q_properties->eop_ring_buffer_address = args->eop_buffer_address; q_properties->eop_ring_buffer_size = args->eop_buffer_size; q_properties->ctx_save_restore_area_address = args->ctx_save_restore_address; q_properties->ctx_save_restore_area_size = args->ctx_save_restore_size; q_properties->ctl_stack_size = args->ctl_stack_size; if (args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE || args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE_AQL) q_properties->type = KFD_QUEUE_TYPE_COMPUTE; else if (args->queue_type == KFD_IOC_QUEUE_TYPE_SDMA) q_properties->type = KFD_QUEUE_TYPE_SDMA; else if (args->queue_type == KFD_IOC_QUEUE_TYPE_SDMA_XGMI) q_properties->type = KFD_QUEUE_TYPE_SDMA_XGMI; else return -ENOTSUPP; if (args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE_AQL) q_properties->format = KFD_QUEUE_FORMAT_AQL; else q_properties->format = KFD_QUEUE_FORMAT_PM4; pr_debug("Queue Percentage: %d, %d\n", q_properties->queue_percent, args->queue_percentage); pr_debug("Queue Priority: %d, %d\n", q_properties->priority, args->queue_priority); pr_debug("Queue Address: 0x%llX, 0x%llX\n", q_properties->queue_address, args->ring_base_address); pr_debug("Queue Size: 0x%llX, %u\n", q_properties->queue_size, args->ring_size); pr_debug("Queue r/w Pointers: %px, %px\n", q_properties->read_ptr, q_properties->write_ptr); pr_debug("Queue Format: %d\n", q_properties->format); pr_debug("Queue EOP: 0x%llX\n", q_properties->eop_ring_buffer_address); pr_debug("Queue CTX save area: 0x%llX\n", q_properties->ctx_save_restore_area_address); return 0; } static int kfd_ioctl_create_queue(struct file *filep, struct kfd_process *p, void *data) { struct kfd_ioctl_create_queue_args *args = data; struct kfd_node *dev; int err = 0; unsigned int queue_id; struct kfd_process_device *pdd; struct queue_properties q_properties; uint32_t doorbell_offset_in_process = 0; struct amdgpu_bo *wptr_bo = NULL; memset(&q_properties, 0, sizeof(struct queue_properties)); pr_debug("Creating queue ioctl\n"); err = set_queue_properties_from_user(&q_properties, args); if (err) return err; pr_debug("Looking for gpu id 0x%x\n", args->gpu_id); mutex_lock(&p->mutex); pdd = kfd_process_device_data_by_id(p, args->gpu_id); if (!pdd) { pr_debug("Could not find gpu id 0x%x\n", args->gpu_id); err = -EINVAL; goto err_pdd; } dev = pdd->dev; pdd = kfd_bind_process_to_device(dev, p); if (IS_ERR(pdd)) { err = -ESRCH; goto err_bind_process; } if (!pdd->qpd.proc_doorbells) { err = kfd_alloc_process_doorbells(dev->kfd, pdd); if (err) { pr_debug("failed to allocate process doorbells\n"); goto err_bind_process; } } /* Starting with GFX11, wptr BOs must be mapped to GART for MES to determine work * on unmapped queues for usermode queue oversubscription (no aggregated doorbell) */ if (dev->kfd->shared_resources.enable_mes && ((dev->adev->mes.sched_version & AMDGPU_MES_API_VERSION_MASK) >> AMDGPU_MES_API_VERSION_SHIFT) >= 2) { struct amdgpu_bo_va_mapping *wptr_mapping; struct amdgpu_vm *wptr_vm; wptr_vm = drm_priv_to_vm(pdd->drm_priv); err = amdgpu_bo_reserve(wptr_vm->root.bo, false); if (err) goto err_wptr_map_gart; wptr_mapping = amdgpu_vm_bo_lookup_mapping( wptr_vm, args->write_pointer_address >> PAGE_SHIFT); amdgpu_bo_unreserve(wptr_vm->root.bo); if (!wptr_mapping) { pr_err("Failed to lookup wptr bo\n"); err = -EINVAL; goto err_wptr_map_gart; } wptr_bo = wptr_mapping->bo_va->base.bo; if (wptr_bo->tbo.base.size > PAGE_SIZE) { pr_err("Requested GART mapping for wptr bo larger than one page\n"); err = -EINVAL; goto err_wptr_map_gart; } if (dev->adev != amdgpu_ttm_adev(wptr_bo->tbo.bdev)) { pr_err("Queue memory allocated to wrong device\n"); err = -EINVAL; goto err_wptr_map_gart; } err = amdgpu_amdkfd_map_gtt_bo_to_gart(wptr_bo); if (err) { pr_err("Failed to map wptr bo to GART\n"); goto err_wptr_map_gart; } } pr_debug("Creating queue for PASID 0x%x on gpu 0x%x\n", p->pasid, dev->id); err = pqm_create_queue(&p->pqm, dev, filep, &q_properties, &queue_id, wptr_bo, NULL, NULL, NULL, &doorbell_offset_in_process); if (err != 0) goto err_create_queue; args->queue_id = queue_id; /* Return gpu_id as doorbell offset for mmap usage */ args->doorbell_offset = KFD_MMAP_TYPE_DOORBELL; args->doorbell_offset |= KFD_MMAP_GPU_ID(args->gpu_id); if (KFD_IS_SOC15(dev)) /* On SOC15 ASICs, include the doorbell offset within the * process doorbell frame, which is 2 pages. */ args->doorbell_offset |= doorbell_offset_in_process; mutex_unlock(&p->mutex); pr_debug("Queue id %d was created successfully\n", args->queue_id); pr_debug("Ring buffer address == 0x%016llX\n", args->ring_base_address); pr_debug("Read ptr address == 0x%016llX\n", args->read_pointer_address); pr_debug("Write ptr address == 0x%016llX\n", args->write_pointer_address); kfd_dbg_ev_raise(KFD_EC_MASK(EC_QUEUE_NEW), p, dev, queue_id, false, NULL, 0); return 0; err_create_queue: if (wptr_bo) amdgpu_amdkfd_free_gtt_mem(dev->adev, wptr_bo); err_wptr_map_gart: err_bind_process: err_pdd: mutex_unlock(&p->mutex); return err; } static int kfd_ioctl_destroy_queue(struct file *filp, struct kfd_process *p, void *data) { int retval; struct kfd_ioctl_destroy_queue_args *args = data; pr_debug("Destroying queue id %d for pasid 0x%x\n", args->queue_id, p->pasid); mutex_lock(&p->mutex); retval = pqm_destroy_queue(&p->pqm, args->queue_id); mutex_unlock(&p->mutex); return retval; } static int kfd_ioctl_update_queue(struct file *filp, struct kfd_process *p, void *data) { int retval; struct kfd_ioctl_update_queue_args *args = data; struct queue_properties properties; /* * Repurpose queue percentage to accommodate new features: * bit 0-7: queue percentage * bit 8-15: pm4_target_xcc */ if ((args->queue_percentage & 0xFF) > KFD_MAX_QUEUE_PERCENTAGE) { pr_err("Queue percentage must be between 0 to KFD_MAX_QUEUE_PERCENTAGE\n"); return -EINVAL; } if (args->queue_priority > KFD_MAX_QUEUE_PRIORITY) { pr_err("Queue priority must be between 0 to KFD_MAX_QUEUE_PRIORITY\n"); return -EINVAL; } if ((args->ring_base_address) && (!access_ok((const void __user *) args->ring_base_address, sizeof(uint64_t)))) { pr_err("Can't access ring base address\n"); return -EFAULT; } if (!is_power_of_2(args->ring_size) && (args->ring_size != 0)) { pr_err("Ring size must be a power of 2 or 0\n"); return -EINVAL; } properties.queue_address = args->ring_base_address; properties.queue_size = args->ring_size; properties.queue_percent = args->queue_percentage & 0xFF; /* bit 8-15 are repurposed to be PM4 target XCC */ properties.pm4_target_xcc = (args->queue_percentage >> 8) & 0xFF; properties.priority = args->queue_priority; pr_debug("Updating queue id %d for pasid 0x%x\n", args->queue_id, p->pasid); mutex_lock(&p->mutex); retval = pqm_update_queue_properties(&p->pqm, args->queue_id, &properties); mutex_unlock(&p->mutex); return retval; } static int kfd_ioctl_set_cu_mask(struct file *filp, struct kfd_process *p, void *data) { int retval; const int max_num_cus = 1024; struct kfd_ioctl_set_cu_mask_args *args = data; struct mqd_update_info minfo = {0}; uint32_t __user *cu_mask_ptr = (uint32_t __user *)args->cu_mask_ptr; size_t cu_mask_size = sizeof(uint32_t) * (args->num_cu_mask / 32); if ((args->num_cu_mask % 32) != 0) { pr_debug("num_cu_mask 0x%x must be a multiple of 32", args->num_cu_mask); return -EINVAL; } minfo.cu_mask.count = args->num_cu_mask; if (minfo.cu_mask.count == 0) { pr_debug("CU mask cannot be 0"); return -EINVAL; } /* To prevent an unreasonably large CU mask size, set an arbitrary * limit of max_num_cus bits. We can then just drop any CU mask bits * past max_num_cus bits and just use the first max_num_cus bits. */ if (minfo.cu_mask.count > max_num_cus) { pr_debug("CU mask cannot be greater than 1024 bits"); minfo.cu_mask.count = max_num_cus; cu_mask_size = sizeof(uint32_t) * (max_num_cus/32); } minfo.cu_mask.ptr = kzalloc(cu_mask_size, GFP_KERNEL); if (!minfo.cu_mask.ptr) return -ENOMEM; retval = copy_from_user(minfo.cu_mask.ptr, cu_mask_ptr, cu_mask_size); if (retval) { pr_debug("Could not copy CU mask from userspace"); retval = -EFAULT; goto out; } mutex_lock(&p->mutex); retval = pqm_update_mqd(&p->pqm, args->queue_id, &minfo); mutex_unlock(&p->mutex); out: kfree(minfo.cu_mask.ptr); return retval; } static int kfd_ioctl_get_queue_wave_state(struct file *filep, struct kfd_process *p, void *data) { struct kfd_ioctl_get_queue_wave_state_args *args = data; int r; mutex_lock(&p->mutex); r = pqm_get_wave_state(&p->pqm, args->queue_id, (void __user *)args->ctl_stack_address, &args->ctl_stack_used_size, &args->save_area_used_size); mutex_unlock(&p->mutex); return r; } static int kfd_ioctl_set_memory_policy(struct file *filep, struct kfd_process *p, void *data) { struct kfd_ioctl_set_memory_policy_args *args = data; int err = 0; struct kfd_process_device *pdd; enum cache_policy default_policy, alternate_policy; if (args->default_policy != KFD_IOC_CACHE_POLICY_COHERENT && args->default_policy != KFD_IOC_CACHE_POLICY_NONCOHERENT) { return -EINVAL; } if (args->alternate_policy != KFD_IOC_CACHE_POLICY_COHERENT && args->alternate_policy != KFD_IOC_CACHE_POLICY_NONCOHERENT) { return -EINVAL; } mutex_lock(&p->mutex); pdd = kfd_process_device_data_by_id(p, args->gpu_id); if (!pdd) { pr_debug("Could not find gpu id 0x%x\n", args->gpu_id); err = -EINVAL; goto err_pdd; } pdd = kfd_bind_process_to_device(pdd->dev, p); if (IS_ERR(pdd)) { err = -ESRCH; goto out; } default_policy = (args->default_policy == KFD_IOC_CACHE_POLICY_COHERENT) ? cache_policy_coherent : cache_policy_noncoherent; alternate_policy = (args->alternate_policy == KFD_IOC_CACHE_POLICY_COHERENT) ? cache_policy_coherent : cache_policy_noncoherent; if (!pdd->dev->dqm->ops.set_cache_memory_policy(pdd->dev->dqm, &pdd->qpd, default_policy, alternate_policy, (void __user *)args->alternate_aperture_base, args->alternate_aperture_size)) err = -EINVAL; out: err_pdd: mutex_unlock(&p->mutex); return err; } static int kfd_ioctl_set_trap_handler(struct file *filep, struct kfd_process *p, void *data) { struct kfd_ioctl_set_trap_handler_args *args = data; int err = 0; struct kfd_process_device *pdd; mutex_lock(&p->mutex); pdd = kfd_process_device_data_by_id(p, args->gpu_id); if (!pdd) { err = -EINVAL; goto err_pdd; } pdd = kfd_bind_process_to_device(pdd->dev, p); if (IS_ERR(pdd)) { err = -ESRCH; goto out; } kfd_process_set_trap_handler(&pdd->qpd, args->tba_addr, args->tma_addr); out: err_pdd: mutex_unlock(&p->mutex); return err; } static int kfd_ioctl_dbg_register(struct file *filep, struct kfd_process *p, void *data) { return -EPERM; } static int kfd_ioctl_dbg_unregister(struct file *filep, struct kfd_process *p, void *data) { return -EPERM; } static int kfd_ioctl_dbg_address_watch(struct file *filep, struct kfd_process *p, void *data) { return -EPERM; } /* Parse and generate fixed size data structure for wave control */ static int kfd_ioctl_dbg_wave_control(struct file *filep, struct kfd_process *p, void *data) { return -EPERM; } static int kfd_ioctl_get_clock_counters(struct file *filep, struct kfd_process *p, void *data) { struct kfd_ioctl_get_clock_counters_args *args = data; struct kfd_process_device *pdd; mutex_lock(&p->mutex); pdd = kfd_process_device_data_by_id(p, args->gpu_id); mutex_unlock(&p->mutex); if (pdd) /* Reading GPU clock counter from KGD */ args->gpu_clock_counter = amdgpu_amdkfd_get_gpu_clock_counter(pdd->dev->adev); else /* Node without GPU resource */ args->gpu_clock_counter = 0; /* No access to rdtsc. Using raw monotonic time */ args->cpu_clock_counter = ktime_get_raw_ns(); args->system_clock_counter = ktime_get_boottime_ns(); /* Since the counter is in nano-seconds we use 1GHz frequency */ args->system_clock_freq = 1000000000; return 0; } static int kfd_ioctl_get_process_apertures(struct file *filp, struct kfd_process *p, void *data) { struct kfd_ioctl_get_process_apertures_args *args = data; struct kfd_process_device_apertures *pAperture; int i; dev_dbg(kfd_device, "get apertures for PASID 0x%x", p->pasid); args->num_of_nodes = 0; mutex_lock(&p->mutex); /* Run over all pdd of the process */ for (i = 0; i < p->n_pdds; i++) { struct kfd_process_device *pdd = p->pdds[i]; pAperture = &args->process_apertures[args->num_of_nodes]; pAperture->gpu_id = pdd->dev->id; pAperture->lds_base = pdd->lds_base; pAperture->lds_limit = pdd->lds_limit; pAperture->gpuvm_base = pdd->gpuvm_base; pAperture->gpuvm_limit = pdd->gpuvm_limit; pAperture->scratch_base = pdd->scratch_base; pAperture->scratch_limit = pdd->scratch_limit; dev_dbg(kfd_device, "node id %u\n", args->num_of_nodes); dev_dbg(kfd_device, "gpu id %u\n", pdd->dev->id); dev_dbg(kfd_device, "lds_base %llX\n", pdd->lds_base); dev_dbg(kfd_device, "lds_limit %llX\n", pdd->lds_limit); dev_dbg(kfd_device, "gpuvm_base %llX\n", pdd->gpuvm_base); dev_dbg(kfd_device, "gpuvm_limit %llX\n", pdd->gpuvm_limit); dev_dbg(kfd_device, "scratch_base %llX\n", pdd->scratch_base); dev_dbg(kfd_device, "scratch_limit %llX\n", pdd->scratch_limit); if (++args->num_of_nodes >= NUM_OF_SUPPORTED_GPUS) break; } mutex_unlock(&p->mutex); return 0; } static int kfd_ioctl_get_process_apertures_new(struct file *filp, struct kfd_process *p, void *data) { struct kfd_ioctl_get_process_apertures_new_args *args = data; struct kfd_process_device_apertures *pa; int ret; int i; dev_dbg(kfd_device, "get apertures for PASID 0x%x", p->pasid); if (args->num_of_nodes == 0) { /* Return number of nodes, so that user space can alloacate * sufficient memory */ mutex_lock(&p->mutex); args->num_of_nodes = p->n_pdds; goto out_unlock; } /* Fill in process-aperture information for all available * nodes, but not more than args->num_of_nodes as that is * the amount of memory allocated by user */ pa = kcalloc(args->num_of_nodes, sizeof(struct kfd_process_device_apertures), GFP_KERNEL); if (!pa) return -ENOMEM; mutex_lock(&p->mutex); if (!p->n_pdds) { args->num_of_nodes = 0; kfree(pa); goto out_unlock; } /* Run over all pdd of the process */ for (i = 0; i < min(p->n_pdds, args->num_of_nodes); i++) { struct kfd_process_device *pdd = p->pdds[i]; pa[i].gpu_id = pdd->dev->id; pa[i].lds_base = pdd->lds_base; pa[i].lds_limit = pdd->lds_limit; pa[i].gpuvm_base = pdd->gpuvm_base; pa[i].gpuvm_limit = pdd->gpuvm_limit; pa[i].scratch_base = pdd->scratch_base; pa[i].scratch_limit = pdd->scratch_limit; dev_dbg(kfd_device, "gpu id %u\n", pdd->dev->id); dev_dbg(kfd_device, "lds_base %llX\n", pdd->lds_base); dev_dbg(kfd_device, "lds_limit %llX\n", pdd->lds_limit); dev_dbg(kfd_device, "gpuvm_base %llX\n", pdd->gpuvm_base); dev_dbg(kfd_device, "gpuvm_limit %llX\n", pdd->gpuvm_limit); dev_dbg(kfd_device, "scratch_base %llX\n", pdd->scratch_base); dev_dbg(kfd_device, "scratch_limit %llX\n", pdd->scratch_limit); } mutex_unlock(&p->mutex); args->num_of_nodes = i; ret = copy_to_user( (void __user *)args->kfd_process_device_apertures_ptr, pa, (i * sizeof(struct kfd_process_device_apertures))); kfree(pa); return ret ? -EFAULT : 0; out_unlock: mutex_unlock(&p->mutex); return 0; } static int kfd_ioctl_create_event(struct file *filp, struct kfd_process *p, void *data) { struct kfd_ioctl_create_event_args *args = data; int err; /* For dGPUs the event page is allocated in user mode. The * handle is passed to KFD with the first call to this IOCTL * through the event_page_offset field. */ if (args->event_page_offset) { mutex_lock(&p->mutex); err = kfd_kmap_event_page(p, args->event_page_offset); mutex_unlock(&p->mutex); if (err) return err; } err = kfd_event_create(filp, p, args->event_type, args->auto_reset != 0, args->node_id, &args->event_id, &args->event_trigger_data, &args->event_page_offset, &args->event_slot_index); pr_debug("Created event (id:0x%08x) (%s)\n", args->event_id, __func__); return err; } static int kfd_ioctl_destroy_event(struct file *filp, struct kfd_process *p, void *data) { struct kfd_ioctl_destroy_event_args *args = data; return kfd_event_destroy(p, args->event_id); } static int kfd_ioctl_set_event(struct file *filp, struct kfd_process *p, void *data) { struct kfd_ioctl_set_event_args *args = data; return kfd_set_event(p, args->event_id); } static int kfd_ioctl_reset_event(struct file *filp, struct kfd_process *p, void *data) { struct kfd_ioctl_reset_event_args *args = data; return kfd_reset_event(p, args->event_id); } static int kfd_ioctl_wait_events(struct file *filp, struct kfd_process *p, void *data) { struct kfd_ioctl_wait_events_args *args = data; return kfd_wait_on_events(p, args->num_events, (void __user *)args->events_ptr, (args->wait_for_all != 0), &args->timeout, &args->wait_result); } static int kfd_ioctl_set_scratch_backing_va(struct file *filep, struct kfd_process *p, void *data) { struct kfd_ioctl_set_scratch_backing_va_args *args = data; struct kfd_process_device *pdd; struct kfd_node *dev; long err; mutex_lock(&p->mutex); pdd = kfd_process_device_data_by_id(p, args->gpu_id); if (!pdd) { err = -EINVAL; goto err_pdd; } dev = pdd->dev; pdd = kfd_bind_process_to_device(dev, p); if (IS_ERR(pdd)) { err = PTR_ERR(pdd); goto bind_process_to_device_fail; } pdd->qpd.sh_hidden_private_base = args->va_addr; mutex_unlock(&p->mutex); if (dev->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS && pdd->qpd.vmid != 0 && dev->kfd2kgd->set_scratch_backing_va) dev->kfd2kgd->set_scratch_backing_va( dev->adev, args->va_addr, pdd->qpd.vmid); return 0; bind_process_to_device_fail: err_pdd: mutex_unlock(&p->mutex); return err; } static int kfd_ioctl_get_tile_config(struct file *filep, struct kfd_process *p, void *data) { struct kfd_ioctl_get_tile_config_args *args = data; struct kfd_process_device *pdd; struct tile_config config; int err = 0; mutex_lock(&p->mutex); pdd = kfd_process_device_data_by_id(p, args->gpu_id); mutex_unlock(&p->mutex); if (!pdd) return -EINVAL; amdgpu_amdkfd_get_tile_config(pdd->dev->adev, &config); args->gb_addr_config = config.gb_addr_config; args->num_banks = config.num_banks; args->num_ranks = config.num_ranks; if (args->num_tile_configs > config.num_tile_configs) args->num_tile_configs = config.num_tile_configs; err = copy_to_user((void __user *)args->tile_config_ptr, config.tile_config_ptr, args->num_tile_configs * sizeof(uint32_t)); if (err) { args->num_tile_configs = 0; return -EFAULT; } if (args->num_macro_tile_configs > config.num_macro_tile_configs) args->num_macro_tile_configs = config.num_macro_tile_configs; err = copy_to_user((void __user *)args->macro_tile_config_ptr, config.macro_tile_config_ptr, args->num_macro_tile_configs * sizeof(uint32_t)); if (err) { args->num_macro_tile_configs = 0; return -EFAULT; } return 0; } static int kfd_ioctl_acquire_vm(struct file *filep, struct kfd_process *p, void *data) { struct kfd_ioctl_acquire_vm_args *args = data; struct kfd_process_device *pdd; struct file *drm_file; int ret; drm_file = fget(args->drm_fd); if (!drm_file) return -EINVAL; mutex_lock(&p->mutex); pdd = kfd_process_device_data_by_id(p, args->gpu_id); if (!pdd) { ret = -EINVAL; goto err_pdd; } if (pdd->drm_file) { ret = pdd->drm_file == drm_file ? 0 : -EBUSY; goto err_drm_file; } ret = kfd_process_device_init_vm(pdd, drm_file); if (ret) goto err_unlock; /* On success, the PDD keeps the drm_file reference */ mutex_unlock(&p->mutex); return 0; err_unlock: err_pdd: err_drm_file: mutex_unlock(&p->mutex); fput(drm_file); return ret; } bool kfd_dev_is_large_bar(struct kfd_node *dev) { if (dev->kfd->adev->debug_largebar) { pr_debug("Simulate large-bar allocation on non large-bar machine\n"); return true; } if (dev->local_mem_info.local_mem_size_private == 0 && dev->local_mem_info.local_mem_size_public > 0) return true; if (dev->local_mem_info.local_mem_size_public == 0 && dev->kfd->adev->gmc.is_app_apu) { pr_debug("APP APU, Consider like a large bar system\n"); return true; } return false; } static int kfd_ioctl_get_available_memory(struct file *filep, struct kfd_process *p, void *data) { struct kfd_ioctl_get_available_memory_args *args = data; struct kfd_process_device *pdd = kfd_lock_pdd_by_id(p, args->gpu_id); if (!pdd) return -EINVAL; args->available = amdgpu_amdkfd_get_available_memory(pdd->dev->adev, pdd->dev->node_id); kfd_unlock_pdd(pdd); return 0; } static int kfd_ioctl_alloc_memory_of_gpu(struct file *filep, struct kfd_process *p, void *data) { struct kfd_ioctl_alloc_memory_of_gpu_args *args = data; struct kfd_process_device *pdd; void *mem; struct kfd_node *dev; int idr_handle; long err; uint64_t offset = args->mmap_offset; uint32_t flags = args->flags; if (args->size == 0) return -EINVAL; #if IS_ENABLED(CONFIG_HSA_AMD_SVM) /* Flush pending deferred work to avoid racing with deferred actions * from previous memory map changes (e.g. munmap). */ svm_range_list_lock_and_flush_work(&p->svms, current->mm); mutex_lock(&p->svms.lock); mmap_write_unlock(current->mm); if (interval_tree_iter_first(&p->svms.objects, args->va_addr >> PAGE_SHIFT, (args->va_addr + args->size - 1) >> PAGE_SHIFT)) { pr_err("Address: 0x%llx already allocated by SVM\n", args->va_addr); mutex_unlock(&p->svms.lock); return -EADDRINUSE; } /* When register user buffer check if it has been registered by svm by * buffer cpu virtual address. */ if ((flags & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) && interval_tree_iter_first(&p->svms.objects, args->mmap_offset >> PAGE_SHIFT, (args->mmap_offset + args->size - 1) >> PAGE_SHIFT)) { pr_err("User Buffer Address: 0x%llx already allocated by SVM\n", args->mmap_offset); mutex_unlock(&p->svms.lock); return -EADDRINUSE; } mutex_unlock(&p->svms.lock); #endif mutex_lock(&p->mutex); pdd = kfd_process_device_data_by_id(p, args->gpu_id); if (!pdd) { err = -EINVAL; goto err_pdd; } dev = pdd->dev; if ((flags & KFD_IOC_ALLOC_MEM_FLAGS_PUBLIC) && (flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) && !kfd_dev_is_large_bar(dev)) { pr_err("Alloc host visible vram on small bar is not allowed\n"); err = -EINVAL; goto err_large_bar; } pdd = kfd_bind_process_to_device(dev, p); if (IS_ERR(pdd)) { err = PTR_ERR(pdd); goto err_unlock; } if (flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL) { if (args->size != kfd_doorbell_process_slice(dev->kfd)) { err = -EINVAL; goto err_unlock; } offset = kfd_get_process_doorbells(pdd); if (!offset) { err = -ENOMEM; goto err_unlock; } } else if (flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP) { if (args->size != PAGE_SIZE) { err = -EINVAL; goto err_unlock; } offset = dev->adev->rmmio_remap.bus_addr; if (!offset || (PAGE_SIZE > 4096)) { err = -ENOMEM; goto err_unlock; } } err = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu( dev->adev, args->va_addr, args->size, pdd->drm_priv, (struct kgd_mem **) &mem, &offset, flags, false); if (err) goto err_unlock; idr_handle = kfd_process_device_create_obj_handle(pdd, mem); if (idr_handle < 0) { err = -EFAULT; goto err_free; } /* Update the VRAM usage count */ if (flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) { uint64_t size = args->size; if (flags & KFD_IOC_ALLOC_MEM_FLAGS_AQL_QUEUE_MEM) size >>= 1; WRITE_ONCE(pdd->vram_usage, pdd->vram_usage + PAGE_ALIGN(size)); } mutex_unlock(&p->mutex); args->handle = MAKE_HANDLE(args->gpu_id, idr_handle); args->mmap_offset = offset; /* MMIO is mapped through kfd device * Generate a kfd mmap offset */ if (flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP) args->mmap_offset = KFD_MMAP_TYPE_MMIO | KFD_MMAP_GPU_ID(args->gpu_id); return 0; err_free: amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->adev, (struct kgd_mem *)mem, pdd->drm_priv, NULL); err_unlock: err_pdd: err_large_bar: mutex_unlock(&p->mutex); return err; } static int kfd_ioctl_free_memory_of_gpu(struct file *filep, struct kfd_process *p, void *data) { struct kfd_ioctl_free_memory_of_gpu_args *args = data; struct kfd_process_device *pdd; void *mem; int ret; uint64_t size = 0; mutex_lock(&p->mutex); /* * Safeguard to prevent user space from freeing signal BO. * It will be freed at process termination. */ if (p->signal_handle && (p->signal_handle == args->handle)) { pr_err("Free signal BO is not allowed\n"); ret = -EPERM; goto err_unlock; } pdd = kfd_process_device_data_by_id(p, GET_GPU_ID(args->handle)); if (!pdd) { pr_err("Process device data doesn't exist\n"); ret = -EINVAL; goto err_pdd; } mem = kfd_process_device_translate_handle( pdd, GET_IDR_HANDLE(args->handle)); if (!mem) { ret = -EINVAL; goto err_unlock; } ret = amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev, (struct kgd_mem *)mem, pdd->drm_priv, &size); /* If freeing the buffer failed, leave the handle in place for * clean-up during process tear-down. */ if (!ret) kfd_process_device_remove_obj_handle( pdd, GET_IDR_HANDLE(args->handle)); WRITE_ONCE(pdd->vram_usage, pdd->vram_usage - size); err_unlock: err_pdd: mutex_unlock(&p->mutex); return ret; } static int kfd_ioctl_map_memory_to_gpu(struct file *filep, struct kfd_process *p, void *data) { struct kfd_ioctl_map_memory_to_gpu_args *args = data; struct kfd_process_device *pdd, *peer_pdd; void *mem; struct kfd_node *dev; long err = 0; int i; uint32_t *devices_arr = NULL; if (!args->n_devices) { pr_debug("Device IDs array empty\n"); return -EINVAL; } if (args->n_success > args->n_devices) { pr_debug("n_success exceeds n_devices\n"); return -EINVAL; } devices_arr = kmalloc_array(args->n_devices, sizeof(*devices_arr), GFP_KERNEL); if (!devices_arr) return -ENOMEM; err = copy_from_user(devices_arr, (void __user *)args->device_ids_array_ptr, args->n_devices * sizeof(*devices_arr)); if (err != 0) { err = -EFAULT; goto copy_from_user_failed; } mutex_lock(&p->mutex); pdd = kfd_process_device_data_by_id(p, GET_GPU_ID(args->handle)); if (!pdd) { err = -EINVAL; goto get_process_device_data_failed; } dev = pdd->dev; pdd = kfd_bind_process_to_device(dev, p); if (IS_ERR(pdd)) { err = PTR_ERR(pdd); goto bind_process_to_device_failed; } mem = kfd_process_device_translate_handle(pdd, GET_IDR_HANDLE(args->handle)); if (!mem) { err = -ENOMEM; goto get_mem_obj_from_handle_failed; } for (i = args->n_success; i < args->n_devices; i++) { peer_pdd = kfd_process_device_data_by_id(p, devices_arr[i]); if (!peer_pdd) { pr_debug("Getting device by id failed for 0x%x\n", devices_arr[i]); err = -EINVAL; goto get_mem_obj_from_handle_failed; } peer_pdd = kfd_bind_process_to_device(peer_pdd->dev, p); if (IS_ERR(peer_pdd)) { err = PTR_ERR(peer_pdd); goto get_mem_obj_from_handle_failed; } err = amdgpu_amdkfd_gpuvm_map_memory_to_gpu( peer_pdd->dev->adev, (struct kgd_mem *)mem, peer_pdd->drm_priv); if (err) { struct pci_dev *pdev = peer_pdd->dev->adev->pdev; dev_err(dev->adev->dev, "Failed to map peer:%04x:%02x:%02x.%d mem_domain:%d\n", pci_domain_nr(pdev->bus), pdev->bus->number, PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn), ((struct kgd_mem *)mem)->domain); goto map_memory_to_gpu_failed; } args->n_success = i+1; } err = amdgpu_amdkfd_gpuvm_sync_memory(dev->adev, (struct kgd_mem *) mem, true); if (err) { pr_debug("Sync memory failed, wait interrupted by user signal\n"); goto sync_memory_failed; } mutex_unlock(&p->mutex); /* Flush TLBs after waiting for the page table updates to complete */ for (i = 0; i < args->n_devices; i++) { peer_pdd = kfd_process_device_data_by_id(p, devices_arr[i]); if (WARN_ON_ONCE(!peer_pdd)) continue; kfd_flush_tlb(peer_pdd, TLB_FLUSH_LEGACY); } kfree(devices_arr); return err; get_process_device_data_failed: bind_process_to_device_failed: get_mem_obj_from_handle_failed: map_memory_to_gpu_failed: sync_memory_failed: mutex_unlock(&p->mutex); copy_from_user_failed: kfree(devices_arr); return err; } static int kfd_ioctl_unmap_memory_from_gpu(struct file *filep, struct kfd_process *p, void *data) { struct kfd_ioctl_unmap_memory_from_gpu_args *args = data; struct kfd_process_device *pdd, *peer_pdd; void *mem; long err = 0; uint32_t *devices_arr = NULL, i; bool flush_tlb; if (!args->n_devices) { pr_debug("Device IDs array empty\n"); return -EINVAL; } if (args->n_success > args->n_devices) { pr_debug("n_success exceeds n_devices\n"); return -EINVAL; } devices_arr = kmalloc_array(args->n_devices, sizeof(*devices_arr), GFP_KERNEL); if (!devices_arr) return -ENOMEM; err = copy_from_user(devices_arr, (void __user *)args->device_ids_array_ptr, args->n_devices * sizeof(*devices_arr)); if (err != 0) { err = -EFAULT; goto copy_from_user_failed; } mutex_lock(&p->mutex); pdd = kfd_process_device_data_by_id(p, GET_GPU_ID(args->handle)); if (!pdd) { err = -EINVAL; goto bind_process_to_device_failed; } mem = kfd_process_device_translate_handle(pdd, GET_IDR_HANDLE(args->handle)); if (!mem) { err = -ENOMEM; goto get_mem_obj_from_handle_failed; } for (i = args->n_success; i < args->n_devices; i++) { peer_pdd = kfd_process_device_data_by_id(p, devices_arr[i]); if (!peer_pdd) { err = -EINVAL; goto get_mem_obj_from_handle_failed; } err = amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu( peer_pdd->dev->adev, (struct kgd_mem *)mem, peer_pdd->drm_priv); if (err) { pr_err("Failed to unmap from gpu %d/%d\n", i, args->n_devices); goto unmap_memory_from_gpu_failed; } args->n_success = i+1; } flush_tlb = kfd_flush_tlb_after_unmap(pdd->dev->kfd); if (flush_tlb) { err = amdgpu_amdkfd_gpuvm_sync_memory(pdd->dev->adev, (struct kgd_mem *) mem, true); if (err) { pr_debug("Sync memory failed, wait interrupted by user signal\n"); goto sync_memory_failed; } } /* Flush TLBs after waiting for the page table updates to complete */ for (i = 0; i < args->n_devices; i++) { peer_pdd = kfd_process_device_data_by_id(p, devices_arr[i]); if (WARN_ON_ONCE(!peer_pdd)) continue; if (flush_tlb) kfd_flush_tlb(peer_pdd, TLB_FLUSH_HEAVYWEIGHT); /* Remove dma mapping after tlb flush to avoid IO_PAGE_FAULT */ err = amdgpu_amdkfd_gpuvm_dmaunmap_mem(mem, peer_pdd->drm_priv); if (err) goto sync_memory_failed; } mutex_unlock(&p->mutex); kfree(devices_arr); return 0; bind_process_to_device_failed: get_mem_obj_from_handle_failed: unmap_memory_from_gpu_failed: sync_memory_failed: mutex_unlock(&p->mutex); copy_from_user_failed: kfree(devices_arr); return err; } static int kfd_ioctl_alloc_queue_gws(struct file *filep, struct kfd_process *p, void *data) { int retval; struct kfd_ioctl_alloc_queue_gws_args *args = data; struct queue *q; struct kfd_node *dev; mutex_lock(&p->mutex); q = pqm_get_user_queue(&p->pqm, args->queue_id); if (q) { dev = q->device; } else { retval = -EINVAL; goto out_unlock; } if (!dev->gws) { retval = -ENODEV; goto out_unlock; } if (dev->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) { retval = -ENODEV; goto out_unlock; } if (p->debug_trap_enabled && (!kfd_dbg_has_gws_support(dev) || kfd_dbg_has_cwsr_workaround(dev))) { retval = -EBUSY; goto out_unlock; } retval = pqm_set_gws(&p->pqm, args->queue_id, args->num_gws ? dev->gws : NULL); mutex_unlock(&p->mutex); args->first_gws = 0; return retval; out_unlock: mutex_unlock(&p->mutex); return retval; } static int kfd_ioctl_get_dmabuf_info(struct file *filep, struct kfd_process *p, void *data) { struct kfd_ioctl_get_dmabuf_info_args *args = data; struct kfd_node *dev = NULL; struct amdgpu_device *dmabuf_adev; void *metadata_buffer = NULL; uint32_t flags; int8_t xcp_id; unsigned int i; int r; /* Find a KFD GPU device that supports the get_dmabuf_info query */ for (i = 0; kfd_topology_enum_kfd_devices(i, &dev) == 0; i++) if (dev && !kfd_devcgroup_check_permission(dev)) break; if (!dev) return -EINVAL; if (args->metadata_ptr) { metadata_buffer = kzalloc(args->metadata_size, GFP_KERNEL); if (!metadata_buffer) return -ENOMEM; } /* Get dmabuf info from KGD */ r = amdgpu_amdkfd_get_dmabuf_info(dev->adev, args->dmabuf_fd, &dmabuf_adev, &args->size, metadata_buffer, args->metadata_size, &args->metadata_size, &flags, &xcp_id); if (r) goto exit; if (xcp_id >= 0) args->gpu_id = dmabuf_adev->kfd.dev->nodes[xcp_id]->id; else args->gpu_id = dev->id; args->flags = flags; /* Copy metadata buffer to user mode */ if (metadata_buffer) { r = copy_to_user((void __user *)args->metadata_ptr, metadata_buffer, args->metadata_size); if (r != 0) r = -EFAULT; } exit: kfree(metadata_buffer); return r; } static int kfd_ioctl_import_dmabuf(struct file *filep, struct kfd_process *p, void *data) { struct kfd_ioctl_import_dmabuf_args *args = data; struct kfd_process_device *pdd; int idr_handle; uint64_t size; void *mem; int r; mutex_lock(&p->mutex); pdd = kfd_process_device_data_by_id(p, args->gpu_id); if (!pdd) { r = -EINVAL; goto err_unlock; } pdd = kfd_bind_process_to_device(pdd->dev, p); if (IS_ERR(pdd)) { r = PTR_ERR(pdd); goto err_unlock; } r = amdgpu_amdkfd_gpuvm_import_dmabuf_fd(pdd->dev->adev, args->dmabuf_fd, args->va_addr, pdd->drm_priv, (struct kgd_mem **)&mem, &size, NULL); if (r) goto err_unlock; idr_handle = kfd_process_device_create_obj_handle(pdd, mem); if (idr_handle < 0) { r = -EFAULT; goto err_free; } mutex_unlock(&p->mutex); args->handle = MAKE_HANDLE(args->gpu_id, idr_handle); return 0; err_free: amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev, (struct kgd_mem *)mem, pdd->drm_priv, NULL); err_unlock: mutex_unlock(&p->mutex); return r; } static int kfd_ioctl_export_dmabuf(struct file *filep, struct kfd_process *p, void *data) { struct kfd_ioctl_export_dmabuf_args *args = data; struct kfd_process_device *pdd; struct dma_buf *dmabuf; struct kfd_node *dev; void *mem; int ret = 0; dev = kfd_device_by_id(GET_GPU_ID(args->handle)); if (!dev) return -EINVAL; mutex_lock(&p->mutex); pdd = kfd_get_process_device_data(dev, p); if (!pdd) { ret = -EINVAL; goto err_unlock; } mem = kfd_process_device_translate_handle(pdd, GET_IDR_HANDLE(args->handle)); if (!mem) { ret = -EINVAL; goto err_unlock; } ret = amdgpu_amdkfd_gpuvm_export_dmabuf(mem, &dmabuf); mutex_unlock(&p->mutex); if (ret) goto err_out; ret = dma_buf_fd(dmabuf, args->flags); if (ret < 0) { dma_buf_put(dmabuf); goto err_out; } /* dma_buf_fd assigns the reference count to the fd, no need to * put the reference here. */ args->dmabuf_fd = ret; return 0; err_unlock: mutex_unlock(&p->mutex); err_out: return ret; } /* Handle requests for watching SMI events */ static int kfd_ioctl_smi_events(struct file *filep, struct kfd_process *p, void *data) { struct kfd_ioctl_smi_events_args *args = data; struct kfd_process_device *pdd; mutex_lock(&p->mutex); pdd = kfd_process_device_data_by_id(p, args->gpuid); mutex_unlock(&p->mutex); if (!pdd) return -EINVAL; return kfd_smi_event_open(pdd->dev, &args->anon_fd); } #if IS_ENABLED(CONFIG_HSA_AMD_SVM) static int kfd_ioctl_set_xnack_mode(struct file *filep, struct kfd_process *p, void *data) { struct kfd_ioctl_set_xnack_mode_args *args = data; int r = 0; mutex_lock(&p->mutex); if (args->xnack_enabled >= 0) { if (!list_empty(&p->pqm.queues)) { pr_debug("Process has user queues running\n"); r = -EBUSY; goto out_unlock; } if (p->xnack_enabled == args->xnack_enabled) goto out_unlock; if (args->xnack_enabled && !kfd_process_xnack_mode(p, true)) { r = -EPERM; goto out_unlock; } r = svm_range_switch_xnack_reserve_mem(p, args->xnack_enabled); } else { args->xnack_enabled = p->xnack_enabled; } out_unlock: mutex_unlock(&p->mutex); return r; } static int kfd_ioctl_svm(struct file *filep, struct kfd_process *p, void *data) { struct kfd_ioctl_svm_args *args = data; int r = 0; pr_debug("start 0x%llx size 0x%llx op 0x%x nattr 0x%x\n", args->start_addr, args->size, args->op, args->nattr); if ((args->start_addr & ~PAGE_MASK) || (args->size & ~PAGE_MASK)) return -EINVAL; if (!args->start_addr || !args->size) return -EINVAL; r = svm_ioctl(p, args->op, args->start_addr, args->size, args->nattr, args->attrs); return r; } #else static int kfd_ioctl_set_xnack_mode(struct file *filep, struct kfd_process *p, void *data) { return -EPERM; } static int kfd_ioctl_svm(struct file *filep, struct kfd_process *p, void *data) { return -EPERM; } #endif static int criu_checkpoint_process(struct kfd_process *p, uint8_t __user *user_priv_data, uint64_t *priv_offset) { struct kfd_criu_process_priv_data process_priv; int ret; memset(&process_priv, 0, sizeof(process_priv)); process_priv.version = KFD_CRIU_PRIV_VERSION; /* For CR, we don't consider negative xnack mode which is used for * querying without changing it, here 0 simply means disabled and 1 * means enabled so retry for finding a valid PTE. */ process_priv.xnack_mode = p->xnack_enabled ? 1 : 0; ret = copy_to_user(user_priv_data + *priv_offset, &process_priv, sizeof(process_priv)); if (ret) { pr_err("Failed to copy process information to user\n"); ret = -EFAULT; } *priv_offset += sizeof(process_priv); return ret; } static int criu_checkpoint_devices(struct kfd_process *p, uint32_t num_devices, uint8_t __user *user_addr, uint8_t __user *user_priv_data, uint64_t *priv_offset) { struct kfd_criu_device_priv_data *device_priv = NULL; struct kfd_criu_device_bucket *device_buckets = NULL; int ret = 0, i; device_buckets = kvzalloc(num_devices * sizeof(*device_buckets), GFP_KERNEL); if (!device_buckets) { ret = -ENOMEM; goto exit; } device_priv = kvzalloc(num_devices * sizeof(*device_priv), GFP_KERNEL); if (!device_priv) { ret = -ENOMEM; goto exit; } for (i = 0; i < num_devices; i++) { struct kfd_process_device *pdd = p->pdds[i]; device_buckets[i].user_gpu_id = pdd->user_gpu_id; device_buckets[i].actual_gpu_id = pdd->dev->id; /* * priv_data does not contain useful information for now and is reserved for * future use, so we do not set its contents. */ } ret = copy_to_user(user_addr, device_buckets, num_devices * sizeof(*device_buckets)); if (ret) { pr_err("Failed to copy device information to user\n"); ret = -EFAULT; goto exit; } ret = copy_to_user(user_priv_data + *priv_offset, device_priv, num_devices * sizeof(*device_priv)); if (ret) { pr_err("Failed to copy device information to user\n"); ret = -EFAULT; } *priv_offset += num_devices * sizeof(*device_priv); exit: kvfree(device_buckets); kvfree(device_priv); return ret; } static uint32_t get_process_num_bos(struct kfd_process *p) { uint32_t num_of_bos = 0; int i; /* Run over all PDDs of the process */ for (i = 0; i < p->n_pdds; i++) { struct kfd_process_device *pdd = p->pdds[i]; void *mem; int id; idr_for_each_entry(&pdd->alloc_idr, mem, id) { struct kgd_mem *kgd_mem = (struct kgd_mem *)mem; if (!kgd_mem->va || kgd_mem->va > pdd->gpuvm_base) num_of_bos++; } } return num_of_bos; } static int criu_get_prime_handle(struct kgd_mem *mem, int flags, u32 *shared_fd) { struct dma_buf *dmabuf; int ret; ret = amdgpu_amdkfd_gpuvm_export_dmabuf(mem, &dmabuf); if (ret) { pr_err("dmabuf export failed for the BO\n"); return ret; } ret = dma_buf_fd(dmabuf, flags); if (ret < 0) { pr_err("dmabuf create fd failed, ret:%d\n", ret); goto out_free_dmabuf; } *shared_fd = ret; return 0; out_free_dmabuf: dma_buf_put(dmabuf); return ret; } static int criu_checkpoint_bos(struct kfd_process *p, uint32_t num_bos, uint8_t __user *user_bos, uint8_t __user *user_priv_data, uint64_t *priv_offset) { struct kfd_criu_bo_bucket *bo_buckets; struct kfd_criu_bo_priv_data *bo_privs; int ret = 0, pdd_index, bo_index = 0, id; void *mem; bo_buckets = kvzalloc(num_bos * sizeof(*bo_buckets), GFP_KERNEL); if (!bo_buckets) return -ENOMEM; bo_privs = kvzalloc(num_bos * sizeof(*bo_privs), GFP_KERNEL); if (!bo_privs) { ret = -ENOMEM; goto exit; } for (pdd_index = 0; pdd_index < p->n_pdds; pdd_index++) { struct kfd_process_device *pdd = p->pdds[pdd_index]; struct amdgpu_bo *dumper_bo; struct kgd_mem *kgd_mem; idr_for_each_entry(&pdd->alloc_idr, mem, id) { struct kfd_criu_bo_bucket *bo_bucket; struct kfd_criu_bo_priv_data *bo_priv; int i, dev_idx = 0; kgd_mem = (struct kgd_mem *)mem; dumper_bo = kgd_mem->bo; /* Skip checkpointing BOs that are used for Trap handler * code and state. Currently, these BOs have a VA that * is less GPUVM Base */ if (kgd_mem->va && kgd_mem->va <= pdd->gpuvm_base) continue; bo_bucket = &bo_buckets[bo_index]; bo_priv = &bo_privs[bo_index]; bo_bucket->gpu_id = pdd->user_gpu_id; bo_bucket->addr = (uint64_t)kgd_mem->va; bo_bucket->size = amdgpu_bo_size(dumper_bo); bo_bucket->alloc_flags = (uint32_t)kgd_mem->alloc_flags; bo_priv->idr_handle = id; if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) { ret = amdgpu_ttm_tt_get_userptr(&dumper_bo->tbo, &bo_priv->user_addr); if (ret) { pr_err("Failed to obtain user address for user-pointer bo\n"); goto exit; } } if (bo_bucket->alloc_flags & (KFD_IOC_ALLOC_MEM_FLAGS_VRAM | KFD_IOC_ALLOC_MEM_FLAGS_GTT)) { ret = criu_get_prime_handle(kgd_mem, bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ? DRM_RDWR : 0, &bo_bucket->dmabuf_fd); if (ret) goto exit; } else { bo_bucket->dmabuf_fd = KFD_INVALID_FD; } if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL) bo_bucket->offset = KFD_MMAP_TYPE_DOORBELL | KFD_MMAP_GPU_ID(pdd->dev->id); else if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP) bo_bucket->offset = KFD_MMAP_TYPE_MMIO | KFD_MMAP_GPU_ID(pdd->dev->id); else bo_bucket->offset = amdgpu_bo_mmap_offset(dumper_bo); for (i = 0; i < p->n_pdds; i++) { if (amdgpu_amdkfd_bo_mapped_to_dev(p->pdds[i]->dev->adev, kgd_mem)) bo_priv->mapped_gpuids[dev_idx++] = p->pdds[i]->user_gpu_id; } pr_debug("bo_size = 0x%llx, bo_addr = 0x%llx bo_offset = 0x%llx\n" "gpu_id = 0x%x alloc_flags = 0x%x idr_handle = 0x%x", bo_bucket->size, bo_bucket->addr, bo_bucket->offset, bo_bucket->gpu_id, bo_bucket->alloc_flags, bo_priv->idr_handle); bo_index++; } } ret = copy_to_user(user_bos, bo_buckets, num_bos * sizeof(*bo_buckets)); if (ret) { pr_err("Failed to copy BO information to user\n"); ret = -EFAULT; goto exit; } ret = copy_to_user(user_priv_data + *priv_offset, bo_privs, num_bos * sizeof(*bo_privs)); if (ret) { pr_err("Failed to copy BO priv information to user\n"); ret = -EFAULT; goto exit; } *priv_offset += num_bos * sizeof(*bo_privs); exit: while (ret && bo_index--) { if (bo_buckets[bo_index].alloc_flags & (KFD_IOC_ALLOC_MEM_FLAGS_VRAM | KFD_IOC_ALLOC_MEM_FLAGS_GTT)) close_fd(bo_buckets[bo_index].dmabuf_fd); } kvfree(bo_buckets); kvfree(bo_privs); return ret; } static int criu_get_process_object_info(struct kfd_process *p, uint32_t *num_devices, uint32_t *num_bos, uint32_t *num_objects, uint64_t *objs_priv_size) { uint64_t queues_priv_data_size, svm_priv_data_size, priv_size; uint32_t num_queues, num_events, num_svm_ranges; int ret; *num_devices = p->n_pdds; *num_bos = get_process_num_bos(p); ret = kfd_process_get_queue_info(p, &num_queues, &queues_priv_data_size); if (ret) return ret; num_events = kfd_get_num_events(p); ret = svm_range_get_info(p, &num_svm_ranges, &svm_priv_data_size); if (ret) return ret; *num_objects = num_queues + num_events + num_svm_ranges; if (objs_priv_size) { priv_size = sizeof(struct kfd_criu_process_priv_data); priv_size += *num_devices * sizeof(struct kfd_criu_device_priv_data); priv_size += *num_bos * sizeof(struct kfd_criu_bo_priv_data); priv_size += queues_priv_data_size; priv_size += num_events * sizeof(struct kfd_criu_event_priv_data); priv_size += svm_priv_data_size; *objs_priv_size = priv_size; } return 0; } static int criu_checkpoint(struct file *filep, struct kfd_process *p, struct kfd_ioctl_criu_args *args) { int ret; uint32_t num_devices, num_bos, num_objects; uint64_t priv_size, priv_offset = 0, bo_priv_offset; if (!args->devices || !args->bos || !args->priv_data) return -EINVAL; mutex_lock(&p->mutex); if (!p->n_pdds) { pr_err("No pdd for given process\n"); ret = -ENODEV; goto exit_unlock; } /* Confirm all process queues are evicted */ if (!p->queues_paused) { pr_err("Cannot dump process when queues are not in evicted state\n"); /* CRIU plugin did not call op PROCESS_INFO before checkpointing */ ret = -EINVAL; goto exit_unlock; } ret = criu_get_process_object_info(p, &num_devices, &num_bos, &num_objects, &priv_size); if (ret) goto exit_unlock; if (num_devices != args->num_devices || num_bos != args->num_bos || num_objects != args->num_objects || priv_size != args->priv_data_size) { ret = -EINVAL; goto exit_unlock; } /* each function will store private data inside priv_data and adjust priv_offset */ ret = criu_checkpoint_process(p, (uint8_t __user *)args->priv_data, &priv_offset); if (ret) goto exit_unlock; ret = criu_checkpoint_devices(p, num_devices, (uint8_t __user *)args->devices, (uint8_t __user *)args->priv_data, &priv_offset); if (ret) goto exit_unlock; /* Leave room for BOs in the private data. They need to be restored * before events, but we checkpoint them last to simplify the error * handling. */ bo_priv_offset = priv_offset; priv_offset += num_bos * sizeof(struct kfd_criu_bo_priv_data); if (num_objects) { ret = kfd_criu_checkpoint_queues(p, (uint8_t __user *)args->priv_data, &priv_offset); if (ret) goto exit_unlock; ret = kfd_criu_checkpoint_events(p, (uint8_t __user *)args->priv_data, &priv_offset); if (ret) goto exit_unlock; ret = kfd_criu_checkpoint_svm(p, (uint8_t __user *)args->priv_data, &priv_offset); if (ret) goto exit_unlock; } /* This must be the last thing in this function that can fail. * Otherwise we leak dmabuf file descriptors. */ ret = criu_checkpoint_bos(p, num_bos, (uint8_t __user *)args->bos, (uint8_t __user *)args->priv_data, &bo_priv_offset); exit_unlock: mutex_unlock(&p->mutex); if (ret) pr_err("Failed to dump CRIU ret:%d\n", ret); else pr_debug("CRIU dump ret:%d\n", ret); return ret; } static int criu_restore_process(struct kfd_process *p, struct kfd_ioctl_criu_args *args, uint64_t *priv_offset, uint64_t max_priv_data_size) { int ret = 0; struct kfd_criu_process_priv_data process_priv; if (*priv_offset + sizeof(process_priv) > max_priv_data_size) return -EINVAL; ret = copy_from_user(&process_priv, (void __user *)(args->priv_data + *priv_offset), sizeof(process_priv)); if (ret) { pr_err("Failed to copy process private information from user\n"); ret = -EFAULT; goto exit; } *priv_offset += sizeof(process_priv); if (process_priv.version != KFD_CRIU_PRIV_VERSION) { pr_err("Invalid CRIU API version (checkpointed:%d current:%d)\n", process_priv.version, KFD_CRIU_PRIV_VERSION); return -EINVAL; } pr_debug("Setting XNACK mode\n"); if (process_priv.xnack_mode && !kfd_process_xnack_mode(p, true)) { pr_err("xnack mode cannot be set\n"); ret = -EPERM; goto exit; } else { pr_debug("set xnack mode: %d\n", process_priv.xnack_mode); p->xnack_enabled = process_priv.xnack_mode; } exit: return ret; } static int criu_restore_devices(struct kfd_process *p, struct kfd_ioctl_criu_args *args, uint64_t *priv_offset, uint64_t max_priv_data_size) { struct kfd_criu_device_bucket *device_buckets; struct kfd_criu_device_priv_data *device_privs; int ret = 0; uint32_t i; if (args->num_devices != p->n_pdds) return -EINVAL; if (*priv_offset + (args->num_devices * sizeof(*device_privs)) > max_priv_data_size) return -EINVAL; device_buckets = kmalloc_array(args->num_devices, sizeof(*device_buckets), GFP_KERNEL); if (!device_buckets) return -ENOMEM; ret = copy_from_user(device_buckets, (void __user *)args->devices, args->num_devices * sizeof(*device_buckets)); if (ret) { pr_err("Failed to copy devices buckets from user\n"); ret = -EFAULT; goto exit; } for (i = 0; i < args->num_devices; i++) { struct kfd_node *dev; struct kfd_process_device *pdd; struct file *drm_file; /* device private data is not currently used */ if (!device_buckets[i].user_gpu_id) { pr_err("Invalid user gpu_id\n"); ret = -EINVAL; goto exit; } dev = kfd_device_by_id(device_buckets[i].actual_gpu_id); if (!dev) { pr_err("Failed to find device with gpu_id = %x\n", device_buckets[i].actual_gpu_id); ret = -EINVAL; goto exit; } pdd = kfd_get_process_device_data(dev, p); if (!pdd) { pr_err("Failed to get pdd for gpu_id = %x\n", device_buckets[i].actual_gpu_id); ret = -EINVAL; goto exit; } pdd->user_gpu_id = device_buckets[i].user_gpu_id; drm_file = fget(device_buckets[i].drm_fd); if (!drm_file) { pr_err("Invalid render node file descriptor sent from plugin (%d)\n", device_buckets[i].drm_fd); ret = -EINVAL; goto exit; } if (pdd->drm_file) { ret = -EINVAL; goto exit; } /* create the vm using render nodes for kfd pdd */ if (kfd_process_device_init_vm(pdd, drm_file)) { pr_err("could not init vm for given pdd\n"); /* On success, the PDD keeps the drm_file reference */ fput(drm_file); ret = -EINVAL; goto exit; } /* * pdd now already has the vm bound to render node so below api won't create a new * exclusive kfd mapping but use existing one with renderDXXX but is still needed * for iommu v2 binding and runtime pm. */ pdd = kfd_bind_process_to_device(dev, p); if (IS_ERR(pdd)) { ret = PTR_ERR(pdd); goto exit; } if (!pdd->qpd.proc_doorbells) { ret = kfd_alloc_process_doorbells(dev->kfd, pdd); if (ret) goto exit; } } /* * We are not copying device private data from user as we are not using the data for now, * but we still adjust for its private data. */ *priv_offset += args->num_devices * sizeof(*device_privs); exit: kfree(device_buckets); return ret; } static int criu_restore_memory_of_gpu(struct kfd_process_device *pdd, struct kfd_criu_bo_bucket *bo_bucket, struct kfd_criu_bo_priv_data *bo_priv, struct kgd_mem **kgd_mem) { int idr_handle; int ret; const bool criu_resume = true; u64 offset; if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL) { if (bo_bucket->size != kfd_doorbell_process_slice(pdd->dev->kfd)) return -EINVAL; offset = kfd_get_process_doorbells(pdd); if (!offset) return -ENOMEM; } else if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP) { /* MMIO BOs need remapped bus address */ if (bo_bucket->size != PAGE_SIZE) { pr_err("Invalid page size\n"); return -EINVAL; } offset = pdd->dev->adev->rmmio_remap.bus_addr; if (!offset || (PAGE_SIZE > 4096)) { pr_err("amdgpu_amdkfd_get_mmio_remap_phys_addr failed\n"); return -ENOMEM; } } else if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) { offset = bo_priv->user_addr; } /* Create the BO */ ret = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(pdd->dev->adev, bo_bucket->addr, bo_bucket->size, pdd->drm_priv, kgd_mem, &offset, bo_bucket->alloc_flags, criu_resume); if (ret) { pr_err("Could not create the BO\n"); return ret; } pr_debug("New BO created: size:0x%llx addr:0x%llx offset:0x%llx\n", bo_bucket->size, bo_bucket->addr, offset); /* Restore previous IDR handle */ pr_debug("Restoring old IDR handle for the BO"); idr_handle = idr_alloc(&pdd->alloc_idr, *kgd_mem, bo_priv->idr_handle, bo_priv->idr_handle + 1, GFP_KERNEL); if (idr_handle < 0) { pr_err("Could not allocate idr\n"); amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev, *kgd_mem, pdd->drm_priv, NULL); return -ENOMEM; } if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL) bo_bucket->restored_offset = KFD_MMAP_TYPE_DOORBELL | KFD_MMAP_GPU_ID(pdd->dev->id); if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP) { bo_bucket->restored_offset = KFD_MMAP_TYPE_MMIO | KFD_MMAP_GPU_ID(pdd->dev->id); } else if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_GTT) { bo_bucket->restored_offset = offset; } else if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) { bo_bucket->restored_offset = offset; /* Update the VRAM usage count */ WRITE_ONCE(pdd->vram_usage, pdd->vram_usage + bo_bucket->size); } return 0; } static int criu_restore_bo(struct kfd_process *p, struct kfd_criu_bo_bucket *bo_bucket, struct kfd_criu_bo_priv_data *bo_priv) { struct kfd_process_device *pdd; struct kgd_mem *kgd_mem; int ret; int j; pr_debug("Restoring BO size:0x%llx addr:0x%llx gpu_id:0x%x flags:0x%x idr_handle:0x%x\n", bo_bucket->size, bo_bucket->addr, bo_bucket->gpu_id, bo_bucket->alloc_flags, bo_priv->idr_handle); pdd = kfd_process_device_data_by_id(p, bo_bucket->gpu_id); if (!pdd) { pr_err("Failed to get pdd\n"); return -ENODEV; } ret = criu_restore_memory_of_gpu(pdd, bo_bucket, bo_priv, &kgd_mem); if (ret) return ret; /* now map these BOs to GPU/s */ for (j = 0; j < p->n_pdds; j++) { struct kfd_node *peer; struct kfd_process_device *peer_pdd; if (!bo_priv->mapped_gpuids[j]) break; peer_pdd = kfd_process_device_data_by_id(p, bo_priv->mapped_gpuids[j]); if (!peer_pdd) return -EINVAL; peer = peer_pdd->dev; peer_pdd = kfd_bind_process_to_device(peer, p); if (IS_ERR(peer_pdd)) return PTR_ERR(peer_pdd); ret = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(peer->adev, kgd_mem, peer_pdd->drm_priv); if (ret) { pr_err("Failed to map to gpu %d/%d\n", j, p->n_pdds); return ret; } } pr_debug("map memory was successful for the BO\n"); /* create the dmabuf object and export the bo */ if (bo_bucket->alloc_flags & (KFD_IOC_ALLOC_MEM_FLAGS_VRAM | KFD_IOC_ALLOC_MEM_FLAGS_GTT)) { ret = criu_get_prime_handle(kgd_mem, DRM_RDWR, &bo_bucket->dmabuf_fd); if (ret) return ret; } else { bo_bucket->dmabuf_fd = KFD_INVALID_FD; } return 0; } static int criu_restore_bos(struct kfd_process *p, struct kfd_ioctl_criu_args *args, uint64_t *priv_offset, uint64_t max_priv_data_size) { struct kfd_criu_bo_bucket *bo_buckets = NULL; struct kfd_criu_bo_priv_data *bo_privs = NULL; int ret = 0; uint32_t i = 0; if (*priv_offset + (args->num_bos * sizeof(*bo_privs)) > max_priv_data_size) return -EINVAL; /* Prevent MMU notifications until stage-4 IOCTL (CRIU_RESUME) is received */ amdgpu_amdkfd_block_mmu_notifications(p->kgd_process_info); bo_buckets = kvmalloc_array(args->num_bos, sizeof(*bo_buckets), GFP_KERNEL); if (!bo_buckets) return -ENOMEM; ret = copy_from_user(bo_buckets, (void __user *)args->bos, args->num_bos * sizeof(*bo_buckets)); if (ret) { pr_err("Failed to copy BOs information from user\n"); ret = -EFAULT; goto exit; } bo_privs = kvmalloc_array(args->num_bos, sizeof(*bo_privs), GFP_KERNEL); if (!bo_privs) { ret = -ENOMEM; goto exit; } ret = copy_from_user(bo_privs, (void __user *)args->priv_data + *priv_offset, args->num_bos * sizeof(*bo_privs)); if (ret) { pr_err("Failed to copy BOs information from user\n"); ret = -EFAULT; goto exit; } *priv_offset += args->num_bos * sizeof(*bo_privs); /* Create and map new BOs */ for (; i < args->num_bos; i++) { ret = criu_restore_bo(p, &bo_buckets[i], &bo_privs[i]); if (ret) { pr_debug("Failed to restore BO[%d] ret%d\n", i, ret); goto exit; } } /* done */ /* Copy only the buckets back so user can read bo_buckets[N].restored_offset */ ret = copy_to_user((void __user *)args->bos, bo_buckets, (args->num_bos * sizeof(*bo_buckets))); if (ret) ret = -EFAULT; exit: while (ret && i--) { if (bo_buckets[i].alloc_flags & (KFD_IOC_ALLOC_MEM_FLAGS_VRAM | KFD_IOC_ALLOC_MEM_FLAGS_GTT)) close_fd(bo_buckets[i].dmabuf_fd); } kvfree(bo_buckets); kvfree(bo_privs); return ret; } static int criu_restore_objects(struct file *filep, struct kfd_process *p, struct kfd_ioctl_criu_args *args, uint64_t *priv_offset, uint64_t max_priv_data_size) { int ret = 0; uint32_t i; BUILD_BUG_ON(offsetof(struct kfd_criu_queue_priv_data, object_type)); BUILD_BUG_ON(offsetof(struct kfd_criu_event_priv_data, object_type)); BUILD_BUG_ON(offsetof(struct kfd_criu_svm_range_priv_data, object_type)); for (i = 0; i < args->num_objects; i++) { uint32_t object_type; if (*priv_offset + sizeof(object_type) > max_priv_data_size) { pr_err("Invalid private data size\n"); return -EINVAL; } ret = get_user(object_type, (uint32_t __user *)(args->priv_data + *priv_offset)); if (ret) { pr_err("Failed to copy private information from user\n"); goto exit; } switch (object_type) { case KFD_CRIU_OBJECT_TYPE_QUEUE: ret = kfd_criu_restore_queue(p, (uint8_t __user *)args->priv_data, priv_offset, max_priv_data_size); if (ret) goto exit; break; case KFD_CRIU_OBJECT_TYPE_EVENT: ret = kfd_criu_restore_event(filep, p, (uint8_t __user *)args->priv_data, priv_offset, max_priv_data_size); if (ret) goto exit; break; case KFD_CRIU_OBJECT_TYPE_SVM_RANGE: ret = kfd_criu_restore_svm(p, (uint8_t __user *)args->priv_data, priv_offset, max_priv_data_size); if (ret) goto exit; break; default: pr_err("Invalid object type:%u at index:%d\n", object_type, i); ret = -EINVAL; goto exit; } } exit: return ret; } static int criu_restore(struct file *filep, struct kfd_process *p, struct kfd_ioctl_criu_args *args) { uint64_t priv_offset = 0; int ret = 0; pr_debug("CRIU restore (num_devices:%u num_bos:%u num_objects:%u priv_data_size:%llu)\n", args->num_devices, args->num_bos, args->num_objects, args->priv_data_size); if (!args->bos || !args->devices || !args->priv_data || !args->priv_data_size || !args->num_devices || !args->num_bos) return -EINVAL; mutex_lock(&p->mutex); /* * Set the process to evicted state to avoid running any new queues before all the memory * mappings are ready. */ ret = kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_CRIU_RESTORE); if (ret) goto exit_unlock; /* Each function will adjust priv_offset based on how many bytes they consumed */ ret = criu_restore_process(p, args, &priv_offset, args->priv_data_size); if (ret) goto exit_unlock; ret = criu_restore_devices(p, args, &priv_offset, args->priv_data_size); if (ret) goto exit_unlock; ret = criu_restore_bos(p, args, &priv_offset, args->priv_data_size); if (ret) goto exit_unlock; ret = criu_restore_objects(filep, p, args, &priv_offset, args->priv_data_size); if (ret) goto exit_unlock; if (priv_offset != args->priv_data_size) { pr_err("Invalid private data size\n"); ret = -EINVAL; } exit_unlock: mutex_unlock(&p->mutex); if (ret) pr_err("Failed to restore CRIU ret:%d\n", ret); else pr_debug("CRIU restore successful\n"); return ret; } static int criu_unpause(struct file *filep, struct kfd_process *p, struct kfd_ioctl_criu_args *args) { int ret; mutex_lock(&p->mutex); if (!p->queues_paused) { mutex_unlock(&p->mutex); return -EINVAL; } ret = kfd_process_restore_queues(p); if (ret) pr_err("Failed to unpause queues ret:%d\n", ret); else p->queues_paused = false; mutex_unlock(&p->mutex); return ret; } static int criu_resume(struct file *filep, struct kfd_process *p, struct kfd_ioctl_criu_args *args) { struct kfd_process *target = NULL; struct pid *pid = NULL; int ret = 0; pr_debug("Inside %s, target pid for criu restore: %d\n", __func__, args->pid); pid = find_get_pid(args->pid); if (!pid) { pr_err("Cannot find pid info for %i\n", args->pid); return -ESRCH; } pr_debug("calling kfd_lookup_process_by_pid\n"); target = kfd_lookup_process_by_pid(pid); put_pid(pid); if (!target) { pr_debug("Cannot find process info for %i\n", args->pid); return -ESRCH; } mutex_lock(&target->mutex); ret = kfd_criu_resume_svm(target); if (ret) { pr_err("kfd_criu_resume_svm failed for %i\n", args->pid); goto exit; } ret = amdgpu_amdkfd_criu_resume(target->kgd_process_info); if (ret) pr_err("amdgpu_amdkfd_criu_resume failed for %i\n", args->pid); exit: mutex_unlock(&target->mutex); kfd_unref_process(target); return ret; } static int criu_process_info(struct file *filep, struct kfd_process *p, struct kfd_ioctl_criu_args *args) { int ret = 0; mutex_lock(&p->mutex); if (!p->n_pdds) { pr_err("No pdd for given process\n"); ret = -ENODEV; goto err_unlock; } ret = kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_CRIU_CHECKPOINT); if (ret) goto err_unlock; p->queues_paused = true; args->pid = task_pid_nr_ns(p->lead_thread, task_active_pid_ns(p->lead_thread)); ret = criu_get_process_object_info(p, &args->num_devices, &args->num_bos, &args->num_objects, &args->priv_data_size); if (ret) goto err_unlock; dev_dbg(kfd_device, "Num of devices:%u bos:%u objects:%u priv_data_size:%lld\n", args->num_devices, args->num_bos, args->num_objects, args->priv_data_size); err_unlock: if (ret) { kfd_process_restore_queues(p); p->queues_paused = false; } mutex_unlock(&p->mutex); return ret; } static int kfd_ioctl_criu(struct file *filep, struct kfd_process *p, void *data) { struct kfd_ioctl_criu_args *args = data; int ret; dev_dbg(kfd_device, "CRIU operation: %d\n", args->op); switch (args->op) { case KFD_CRIU_OP_PROCESS_INFO: ret = criu_process_info(filep, p, args); break; case KFD_CRIU_OP_CHECKPOINT: ret = criu_checkpoint(filep, p, args); break; case KFD_CRIU_OP_UNPAUSE: ret = criu_unpause(filep, p, args); break; case KFD_CRIU_OP_RESTORE: ret = criu_restore(filep, p, args); break; case KFD_CRIU_OP_RESUME: ret = criu_resume(filep, p, args); break; default: dev_dbg(kfd_device, "Unsupported CRIU operation:%d\n", args->op); ret = -EINVAL; break; } if (ret) dev_dbg(kfd_device, "CRIU operation:%d err:%d\n", args->op, ret); return ret; } static int runtime_enable(struct kfd_process *p, uint64_t r_debug, bool enable_ttmp_setup) { int i = 0, ret = 0; if (p->is_runtime_retry) goto retry; if (p->runtime_info.runtime_state != DEBUG_RUNTIME_STATE_DISABLED) return -EBUSY; for (i = 0; i < p->n_pdds; i++) { struct kfd_process_device *pdd = p->pdds[i]; if (pdd->qpd.queue_count) return -EEXIST; /* * Setup TTMPs by default. * Note that this call must remain here for MES ADD QUEUE to * skip_process_ctx_clear unconditionally as the first call to * SET_SHADER_DEBUGGER clears any stale process context data * saved in MES. */ if (pdd->dev->kfd->shared_resources.enable_mes) kfd_dbg_set_mes_debug_mode(pdd, !kfd_dbg_has_cwsr_workaround(pdd->dev)); } p->runtime_info.runtime_state = DEBUG_RUNTIME_STATE_ENABLED; p->runtime_info.r_debug = r_debug; p->runtime_info.ttmp_setup = enable_ttmp_setup; if (p->runtime_info.ttmp_setup) { for (i = 0; i < p->n_pdds; i++) { struct kfd_process_device *pdd = p->pdds[i]; if (!kfd_dbg_is_rlc_restore_supported(pdd->dev)) { amdgpu_gfx_off_ctrl(pdd->dev->adev, false); pdd->dev->kfd2kgd->enable_debug_trap( pdd->dev->adev, true, pdd->dev->vm_info.last_vmid_kfd); } else if (kfd_dbg_is_per_vmid_supported(pdd->dev)) { pdd->spi_dbg_override = pdd->dev->kfd2kgd->enable_debug_trap( pdd->dev->adev, false, 0); } } } retry: if (p->debug_trap_enabled) { if (!p->is_runtime_retry) { kfd_dbg_trap_activate(p); kfd_dbg_ev_raise(KFD_EC_MASK(EC_PROCESS_RUNTIME), p, NULL, 0, false, NULL, 0); } mutex_unlock(&p->mutex); ret = down_interruptible(&p->runtime_enable_sema); mutex_lock(&p->mutex); p->is_runtime_retry = !!ret; } return ret; } static int runtime_disable(struct kfd_process *p) { int i = 0, ret; bool was_enabled = p->runtime_info.runtime_state == DEBUG_RUNTIME_STATE_ENABLED; p->runtime_info.runtime_state = DEBUG_RUNTIME_STATE_DISABLED; p->runtime_info.r_debug = 0; if (p->debug_trap_enabled) { if (was_enabled) kfd_dbg_trap_deactivate(p, false, 0); if (!p->is_runtime_retry) kfd_dbg_ev_raise(KFD_EC_MASK(EC_PROCESS_RUNTIME), p, NULL, 0, false, NULL, 0); mutex_unlock(&p->mutex); ret = down_interruptible(&p->runtime_enable_sema); mutex_lock(&p->mutex); p->is_runtime_retry = !!ret; if (ret) return ret; } if (was_enabled && p->runtime_info.ttmp_setup) { for (i = 0; i < p->n_pdds; i++) { struct kfd_process_device *pdd = p->pdds[i]; if (!kfd_dbg_is_rlc_restore_supported(pdd->dev)) amdgpu_gfx_off_ctrl(pdd->dev->adev, true); } } p->runtime_info.ttmp_setup = false; /* disable ttmp setup */ for (i = 0; i < p->n_pdds; i++) { struct kfd_process_device *pdd = p->pdds[i]; if (kfd_dbg_is_per_vmid_supported(pdd->dev)) { pdd->spi_dbg_override = pdd->dev->kfd2kgd->disable_debug_trap( pdd->dev->adev, false, pdd->dev->vm_info.last_vmid_kfd); if (!pdd->dev->kfd->shared_resources.enable_mes) debug_refresh_runlist(pdd->dev->dqm); else kfd_dbg_set_mes_debug_mode(pdd, !kfd_dbg_has_cwsr_workaround(pdd->dev)); } } return 0; } static int kfd_ioctl_runtime_enable(struct file *filep, struct kfd_process *p, void *data) { struct kfd_ioctl_runtime_enable_args *args = data; int r; mutex_lock(&p->mutex); if (args->mode_mask & KFD_RUNTIME_ENABLE_MODE_ENABLE_MASK) r = runtime_enable(p, args->r_debug, !!(args->mode_mask & KFD_RUNTIME_ENABLE_MODE_TTMP_SAVE_MASK)); else r = runtime_disable(p); mutex_unlock(&p->mutex); return r; } static int kfd_ioctl_set_debug_trap(struct file *filep, struct kfd_process *p, void *data) { struct kfd_ioctl_dbg_trap_args *args = data; struct task_struct *thread = NULL; struct mm_struct *mm = NULL; struct pid *pid = NULL; struct kfd_process *target = NULL; struct kfd_process_device *pdd = NULL; int r = 0; if (sched_policy == KFD_SCHED_POLICY_NO_HWS) { pr_err("Debugging does not support sched_policy %i", sched_policy); return -EINVAL; } pid = find_get_pid(args->pid); if (!pid) { pr_debug("Cannot find pid info for %i\n", args->pid); r = -ESRCH; goto out; } thread = get_pid_task(pid, PIDTYPE_PID); if (!thread) { r = -ESRCH; goto out; } mm = get_task_mm(thread); if (!mm) { r = -ESRCH; goto out; } if (args->op == KFD_IOC_DBG_TRAP_ENABLE) { bool create_process; rcu_read_lock(); create_process = thread && thread != current && ptrace_parent(thread) == current; rcu_read_unlock(); target = create_process ? kfd_create_process(thread) : kfd_lookup_process_by_pid(pid); } else { target = kfd_lookup_process_by_pid(pid); } if (IS_ERR_OR_NULL(target)) { pr_debug("Cannot find process PID %i to debug\n", args->pid); r = target ? PTR_ERR(target) : -ESRCH; target = NULL; goto out; } /* Check if target is still PTRACED. */ rcu_read_lock(); if (target != p && args->op != KFD_IOC_DBG_TRAP_DISABLE && ptrace_parent(target->lead_thread) != current) { pr_err("PID %i is not PTRACED and cannot be debugged\n", args->pid); r = -EPERM; } rcu_read_unlock(); if (r) goto out; mutex_lock(&target->mutex); if (args->op != KFD_IOC_DBG_TRAP_ENABLE && !target->debug_trap_enabled) { pr_err("PID %i not debug enabled for op %i\n", args->pid, args->op); r = -EINVAL; goto unlock_out; } if (target->runtime_info.runtime_state != DEBUG_RUNTIME_STATE_ENABLED && (args->op == KFD_IOC_DBG_TRAP_SET_WAVE_LAUNCH_OVERRIDE || args->op == KFD_IOC_DBG_TRAP_SET_WAVE_LAUNCH_MODE || args->op == KFD_IOC_DBG_TRAP_SUSPEND_QUEUES || args->op == KFD_IOC_DBG_TRAP_RESUME_QUEUES || args->op == KFD_IOC_DBG_TRAP_SET_NODE_ADDRESS_WATCH || args->op == KFD_IOC_DBG_TRAP_CLEAR_NODE_ADDRESS_WATCH || args->op == KFD_IOC_DBG_TRAP_SET_FLAGS)) { r = -EPERM; goto unlock_out; } if (args->op == KFD_IOC_DBG_TRAP_SET_NODE_ADDRESS_WATCH || args->op == KFD_IOC_DBG_TRAP_CLEAR_NODE_ADDRESS_WATCH) { int user_gpu_id = kfd_process_get_user_gpu_id(target, args->op == KFD_IOC_DBG_TRAP_SET_NODE_ADDRESS_WATCH ? args->set_node_address_watch.gpu_id : args->clear_node_address_watch.gpu_id); pdd = kfd_process_device_data_by_id(target, user_gpu_id); if (user_gpu_id == -EINVAL || !pdd) { r = -ENODEV; goto unlock_out; } } switch (args->op) { case KFD_IOC_DBG_TRAP_ENABLE: if (target != p) target->debugger_process = p; r = kfd_dbg_trap_enable(target, args->enable.dbg_fd, (void __user *)args->enable.rinfo_ptr, &args->enable.rinfo_size); if (!r) target->exception_enable_mask = args->enable.exception_mask; break; case KFD_IOC_DBG_TRAP_DISABLE: r = kfd_dbg_trap_disable(target); break; case KFD_IOC_DBG_TRAP_SEND_RUNTIME_EVENT: r = kfd_dbg_send_exception_to_runtime(target, args->send_runtime_event.gpu_id, args->send_runtime_event.queue_id, args->send_runtime_event.exception_mask); break; case KFD_IOC_DBG_TRAP_SET_EXCEPTIONS_ENABLED: kfd_dbg_set_enabled_debug_exception_mask(target, args->set_exceptions_enabled.exception_mask); break; case KFD_IOC_DBG_TRAP_SET_WAVE_LAUNCH_OVERRIDE: r = kfd_dbg_trap_set_wave_launch_override(target, args->launch_override.override_mode, args->launch_override.enable_mask, args->launch_override.support_request_mask, &args->launch_override.enable_mask, &args->launch_override.support_request_mask); break; case KFD_IOC_DBG_TRAP_SET_WAVE_LAUNCH_MODE: r = kfd_dbg_trap_set_wave_launch_mode(target, args->launch_mode.launch_mode); break; case KFD_IOC_DBG_TRAP_SUSPEND_QUEUES: r = suspend_queues(target, args->suspend_queues.num_queues, args->suspend_queues.grace_period, args->suspend_queues.exception_mask, (uint32_t *)args->suspend_queues.queue_array_ptr); break; case KFD_IOC_DBG_TRAP_RESUME_QUEUES: r = resume_queues(target, args->resume_queues.num_queues, (uint32_t *)args->resume_queues.queue_array_ptr); break; case KFD_IOC_DBG_TRAP_SET_NODE_ADDRESS_WATCH: r = kfd_dbg_trap_set_dev_address_watch(pdd, args->set_node_address_watch.address, args->set_node_address_watch.mask, &args->set_node_address_watch.id, args->set_node_address_watch.mode); break; case KFD_IOC_DBG_TRAP_CLEAR_NODE_ADDRESS_WATCH: r = kfd_dbg_trap_clear_dev_address_watch(pdd, args->clear_node_address_watch.id); break; case KFD_IOC_DBG_TRAP_SET_FLAGS: r = kfd_dbg_trap_set_flags(target, &args->set_flags.flags); break; case KFD_IOC_DBG_TRAP_QUERY_DEBUG_EVENT: r = kfd_dbg_ev_query_debug_event(target, &args->query_debug_event.queue_id, &args->query_debug_event.gpu_id, args->query_debug_event.exception_mask, &args->query_debug_event.exception_mask); break; case KFD_IOC_DBG_TRAP_QUERY_EXCEPTION_INFO: r = kfd_dbg_trap_query_exception_info(target, args->query_exception_info.source_id, args->query_exception_info.exception_code, args->query_exception_info.clear_exception, (void __user *)args->query_exception_info.info_ptr, &args->query_exception_info.info_size); break; case KFD_IOC_DBG_TRAP_GET_QUEUE_SNAPSHOT: r = pqm_get_queue_snapshot(&target->pqm, args->queue_snapshot.exception_mask, (void __user *)args->queue_snapshot.snapshot_buf_ptr, &args->queue_snapshot.num_queues, &args->queue_snapshot.entry_size); break; case KFD_IOC_DBG_TRAP_GET_DEVICE_SNAPSHOT: r = kfd_dbg_trap_device_snapshot(target, args->device_snapshot.exception_mask, (void __user *)args->device_snapshot.snapshot_buf_ptr, &args->device_snapshot.num_devices, &args->device_snapshot.entry_size); break; default: pr_err("Invalid option: %i\n", args->op); r = -EINVAL; } unlock_out: mutex_unlock(&target->mutex); out: if (thread) put_task_struct(thread); if (mm) mmput(mm); if (pid) put_pid(pid); if (target) kfd_unref_process(target); return r; } #define AMDKFD_IOCTL_DEF(ioctl, _func, _flags) \ [_IOC_NR(ioctl)] = {.cmd = ioctl, .func = _func, .flags = _flags, \ .cmd_drv = 0, .name = #ioctl} /** Ioctl table */ static const struct amdkfd_ioctl_desc amdkfd_ioctls[] = { AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_VERSION, kfd_ioctl_get_version, 0), AMDKFD_IOCTL_DEF(AMDKFD_IOC_CREATE_QUEUE, kfd_ioctl_create_queue, 0), AMDKFD_IOCTL_DEF(AMDKFD_IOC_DESTROY_QUEUE, kfd_ioctl_destroy_queue, 0), AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_MEMORY_POLICY, kfd_ioctl_set_memory_policy, 0), AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_CLOCK_COUNTERS, kfd_ioctl_get_clock_counters, 0), AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_PROCESS_APERTURES, kfd_ioctl_get_process_apertures, 0), AMDKFD_IOCTL_DEF(AMDKFD_IOC_UPDATE_QUEUE, kfd_ioctl_update_queue, 0), AMDKFD_IOCTL_DEF(AMDKFD_IOC_CREATE_EVENT, kfd_ioctl_create_event, 0), AMDKFD_IOCTL_DEF(AMDKFD_IOC_DESTROY_EVENT, kfd_ioctl_destroy_event, 0), AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_EVENT, kfd_ioctl_set_event, 0), AMDKFD_IOCTL_DEF(AMDKFD_IOC_RESET_EVENT, kfd_ioctl_reset_event, 0), AMDKFD_IOCTL_DEF(AMDKFD_IOC_WAIT_EVENTS, kfd_ioctl_wait_events, 0), AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_REGISTER_DEPRECATED, kfd_ioctl_dbg_register, 0), AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_UNREGISTER_DEPRECATED, kfd_ioctl_dbg_unregister, 0), AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_ADDRESS_WATCH_DEPRECATED, kfd_ioctl_dbg_address_watch, 0), AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_WAVE_CONTROL_DEPRECATED, kfd_ioctl_dbg_wave_control, 0), AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_SCRATCH_BACKING_VA, kfd_ioctl_set_scratch_backing_va, 0), AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_TILE_CONFIG, kfd_ioctl_get_tile_config, 0), AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_TRAP_HANDLER, kfd_ioctl_set_trap_handler, 0), AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_PROCESS_APERTURES_NEW, kfd_ioctl_get_process_apertures_new, 0), AMDKFD_IOCTL_DEF(AMDKFD_IOC_ACQUIRE_VM, kfd_ioctl_acquire_vm, 0), AMDKFD_IOCTL_DEF(AMDKFD_IOC_ALLOC_MEMORY_OF_GPU, kfd_ioctl_alloc_memory_of_gpu, 0), AMDKFD_IOCTL_DEF(AMDKFD_IOC_FREE_MEMORY_OF_GPU, kfd_ioctl_free_memory_of_gpu, 0), AMDKFD_IOCTL_DEF(AMDKFD_IOC_MAP_MEMORY_TO_GPU, kfd_ioctl_map_memory_to_gpu, 0), AMDKFD_IOCTL_DEF(AMDKFD_IOC_UNMAP_MEMORY_FROM_GPU, kfd_ioctl_unmap_memory_from_gpu, 0), AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_CU_MASK, kfd_ioctl_set_cu_mask, 0), AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_QUEUE_WAVE_STATE, kfd_ioctl_get_queue_wave_state, 0), AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_DMABUF_INFO, kfd_ioctl_get_dmabuf_info, 0), AMDKFD_IOCTL_DEF(AMDKFD_IOC_IMPORT_DMABUF, kfd_ioctl_import_dmabuf, 0), AMDKFD_IOCTL_DEF(AMDKFD_IOC_ALLOC_QUEUE_GWS, kfd_ioctl_alloc_queue_gws, 0), AMDKFD_IOCTL_DEF(AMDKFD_IOC_SMI_EVENTS, kfd_ioctl_smi_events, 0), AMDKFD_IOCTL_DEF(AMDKFD_IOC_SVM, kfd_ioctl_svm, 0), AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_XNACK_MODE, kfd_ioctl_set_xnack_mode, 0), AMDKFD_IOCTL_DEF(AMDKFD_IOC_CRIU_OP, kfd_ioctl_criu, KFD_IOC_FLAG_CHECKPOINT_RESTORE), AMDKFD_IOCTL_DEF(AMDKFD_IOC_AVAILABLE_MEMORY, kfd_ioctl_get_available_memory, 0), AMDKFD_IOCTL_DEF(AMDKFD_IOC_EXPORT_DMABUF, kfd_ioctl_export_dmabuf, 0), AMDKFD_IOCTL_DEF(AMDKFD_IOC_RUNTIME_ENABLE, kfd_ioctl_runtime_enable, 0), AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_TRAP, kfd_ioctl_set_debug_trap, 0), }; #define AMDKFD_CORE_IOCTL_COUNT ARRAY_SIZE(amdkfd_ioctls) static long kfd_ioctl(struct file *filep, unsigned int cmd, unsigned long arg) { struct kfd_process *process; amdkfd_ioctl_t *func; const struct amdkfd_ioctl_desc *ioctl = NULL; unsigned int nr = _IOC_NR(cmd); char stack_kdata[128]; char *kdata = NULL; unsigned int usize, asize; int retcode = -EINVAL; bool ptrace_attached = false; if (nr >= AMDKFD_CORE_IOCTL_COUNT) goto err_i1; if ((nr >= AMDKFD_COMMAND_START) && (nr < AMDKFD_COMMAND_END)) { u32 amdkfd_size; ioctl = &amdkfd_ioctls[nr]; amdkfd_size = _IOC_SIZE(ioctl->cmd); usize = asize = _IOC_SIZE(cmd); if (amdkfd_size > asize) asize = amdkfd_size; cmd = ioctl->cmd; } else goto err_i1; dev_dbg(kfd_device, "ioctl cmd 0x%x (#0x%x), arg 0x%lx\n", cmd, nr, arg); /* Get the process struct from the filep. Only the process * that opened /dev/kfd can use the file descriptor. Child * processes need to create their own KFD device context. */ process = filep->private_data; rcu_read_lock(); if ((ioctl->flags & KFD_IOC_FLAG_CHECKPOINT_RESTORE) && ptrace_parent(process->lead_thread) == current) ptrace_attached = true; rcu_read_unlock(); if (process->lead_thread != current->group_leader && !ptrace_attached) { dev_dbg(kfd_device, "Using KFD FD in wrong process\n"); retcode = -EBADF; goto err_i1; } /* Do not trust userspace, use our own definition */ func = ioctl->func; if (unlikely(!func)) { dev_dbg(kfd_device, "no function\n"); retcode = -EINVAL; goto err_i1; } /* * Versions of docker shipped in Ubuntu 18.xx and 20.xx do not support * CAP_CHECKPOINT_RESTORE, so we also allow access if CAP_SYS_ADMIN as CAP_SYS_ADMIN is a * more priviledged access. */ if (unlikely(ioctl->flags & KFD_IOC_FLAG_CHECKPOINT_RESTORE)) { if (!capable(CAP_CHECKPOINT_RESTORE) && !capable(CAP_SYS_ADMIN)) { retcode = -EACCES; goto err_i1; } } if (cmd & (IOC_IN | IOC_OUT)) { if (asize <= sizeof(stack_kdata)) { kdata = stack_kdata; } else { kdata = kmalloc(asize, GFP_KERNEL); if (!kdata) { retcode = -ENOMEM; goto err_i1; } } if (asize > usize) memset(kdata + usize, 0, asize - usize); } if (cmd & IOC_IN) { if (copy_from_user(kdata, (void __user *)arg, usize) != 0) { retcode = -EFAULT; goto err_i1; } } else if (cmd & IOC_OUT) { memset(kdata, 0, usize); } retcode = func(filep, process, kdata); if (cmd & IOC_OUT) if (copy_to_user((void __user *)arg, kdata, usize) != 0) retcode = -EFAULT; err_i1: if (!ioctl) dev_dbg(kfd_device, "invalid ioctl: pid=%d, cmd=0x%02x, nr=0x%02x\n", task_pid_nr(current), cmd, nr); if (kdata != stack_kdata) kfree(kdata); if (retcode) dev_dbg(kfd_device, "ioctl cmd (#0x%x), arg 0x%lx, ret = %d\n", nr, arg, retcode); return retcode; } static int kfd_mmio_mmap(struct kfd_node *dev, struct kfd_process *process, struct vm_area_struct *vma) { phys_addr_t address; if (vma->vm_end - vma->vm_start != PAGE_SIZE) return -EINVAL; if (PAGE_SIZE > 4096) return -EINVAL; address = dev->adev->rmmio_remap.bus_addr; vm_flags_set(vma, VM_IO | VM_DONTCOPY | VM_DONTEXPAND | VM_NORESERVE | VM_DONTDUMP | VM_PFNMAP); vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); pr_debug("pasid 0x%x mapping mmio page\n" " target user address == 0x%08llX\n" " physical address == 0x%08llX\n" " vm_flags == 0x%04lX\n" " size == 0x%04lX\n", process->pasid, (unsigned long long) vma->vm_start, address, vma->vm_flags, PAGE_SIZE); return io_remap_pfn_range(vma, vma->vm_start, address >> PAGE_SHIFT, PAGE_SIZE, vma->vm_page_prot); } static int kfd_mmap(struct file *filp, struct vm_area_struct *vma) { struct kfd_process *process; struct kfd_node *dev = NULL; unsigned long mmap_offset; unsigned int gpu_id; process = kfd_get_process(current); if (IS_ERR(process)) return PTR_ERR(process); mmap_offset = vma->vm_pgoff << PAGE_SHIFT; gpu_id = KFD_MMAP_GET_GPU_ID(mmap_offset); if (gpu_id) dev = kfd_device_by_id(gpu_id); switch (mmap_offset & KFD_MMAP_TYPE_MASK) { case KFD_MMAP_TYPE_DOORBELL: if (!dev) return -ENODEV; return kfd_doorbell_mmap(dev, process, vma); case KFD_MMAP_TYPE_EVENTS: return kfd_event_mmap(process, vma); case KFD_MMAP_TYPE_RESERVED_MEM: if (!dev) return -ENODEV; return kfd_reserved_mem_mmap(dev, process, vma); case KFD_MMAP_TYPE_MMIO: if (!dev) return -ENODEV; return kfd_mmio_mmap(dev, process, vma); } return -EFAULT; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1