Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Ben Goz | 884 | 39.48% | 4 | 9.76% |
Felix Kuhling | 669 | 29.88% | 9 | 21.95% |
Jonathan Kim | 357 | 15.94% | 5 | 12.20% |
Oak Zeng | 196 | 8.75% | 4 | 9.76% |
Mukul Joshi | 28 | 1.25% | 3 | 7.32% |
Shaoyun Liu | 21 | 0.94% | 1 | 2.44% |
Yong Zhao | 20 | 0.89% | 3 | 7.32% |
Joseph Greathouse | 18 | 0.80% | 2 | 4.88% |
Philip Cox | 17 | 0.76% | 1 | 2.44% |
Yair Shachar | 13 | 0.58% | 1 | 2.44% |
Lijo Lazar | 5 | 0.22% | 1 | 2.44% |
Jay Cornwall | 3 | 0.13% | 1 | 2.44% |
David Yat Sin | 2 | 0.09% | 1 | 2.44% |
Rajneesh Bhardwaj | 2 | 0.09% | 1 | 2.44% |
Nathan Chancellor | 1 | 0.04% | 1 | 2.44% |
Jesse Zhang | 1 | 0.04% | 1 | 2.44% |
Graham Sider | 1 | 0.04% | 1 | 2.44% |
Qu Huang | 1 | 0.04% | 1 | 2.44% |
Total | 2239 | 41 |
// SPDX-License-Identifier: GPL-2.0 OR MIT /* * Copyright 2016-2022 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * */ #include "kfd_kernel_queue.h" #include "kfd_device_queue_manager.h" #include "kfd_pm4_headers_ai.h" #include "kfd_pm4_headers_aldebaran.h" #include "kfd_pm4_opcodes.h" #include "gc/gc_10_1_0_sh_mask.h" static int pm_map_process_v9(struct packet_manager *pm, uint32_t *buffer, struct qcm_process_device *qpd) { struct pm4_mes_map_process *packet; uint64_t vm_page_table_base_addr = qpd->page_table_base; struct kfd_node *kfd = pm->dqm->dev; struct kfd_process_device *pdd = container_of(qpd, struct kfd_process_device, qpd); packet = (struct pm4_mes_map_process *)buffer; memset(buffer, 0, sizeof(struct pm4_mes_map_process)); packet->header.u32All = pm_build_pm4_header(IT_MAP_PROCESS, sizeof(struct pm4_mes_map_process)); packet->bitfields2.diq_enable = (qpd->is_debug) ? 1 : 0; packet->bitfields2.process_quantum = 10; packet->bitfields2.pasid = qpd->pqm->process->pasid; packet->bitfields14.gds_size = qpd->gds_size & 0x3F; packet->bitfields14.gds_size_hi = (qpd->gds_size >> 6) & 0xF; packet->bitfields14.num_gws = (qpd->mapped_gws_queue) ? qpd->num_gws : 0; packet->bitfields14.num_oac = qpd->num_oac; packet->bitfields14.sdma_enable = 1; packet->bitfields14.num_queues = (qpd->is_debug) ? 0 : qpd->queue_count; if (kfd->dqm->trap_debug_vmid && pdd->process->debug_trap_enabled && pdd->process->runtime_info.runtime_state == DEBUG_RUNTIME_STATE_ENABLED) { packet->bitfields2.debug_vmid = kfd->dqm->trap_debug_vmid; packet->bitfields2.new_debug = 1; } packet->sh_mem_config = qpd->sh_mem_config; packet->sh_mem_bases = qpd->sh_mem_bases; if (qpd->tba_addr) { packet->sq_shader_tba_lo = lower_32_bits(qpd->tba_addr >> 8); /* On GFX9, unlike GFX10, bit TRAP_EN of SQ_SHADER_TBA_HI is * not defined, so setting it won't do any harm. */ packet->sq_shader_tba_hi = upper_32_bits(qpd->tba_addr >> 8) | 1 << SQ_SHADER_TBA_HI__TRAP_EN__SHIFT; packet->sq_shader_tma_lo = lower_32_bits(qpd->tma_addr >> 8); packet->sq_shader_tma_hi = upper_32_bits(qpd->tma_addr >> 8); } packet->gds_addr_lo = lower_32_bits(qpd->gds_context_area); packet->gds_addr_hi = upper_32_bits(qpd->gds_context_area); packet->vm_context_page_table_base_addr_lo32 = lower_32_bits(vm_page_table_base_addr); packet->vm_context_page_table_base_addr_hi32 = upper_32_bits(vm_page_table_base_addr); return 0; } static int pm_map_process_aldebaran(struct packet_manager *pm, uint32_t *buffer, struct qcm_process_device *qpd) { struct pm4_mes_map_process_aldebaran *packet; uint64_t vm_page_table_base_addr = qpd->page_table_base; struct kfd_dev *kfd = pm->dqm->dev->kfd; struct kfd_process_device *pdd = container_of(qpd, struct kfd_process_device, qpd); int i; packet = (struct pm4_mes_map_process_aldebaran *)buffer; memset(buffer, 0, sizeof(struct pm4_mes_map_process_aldebaran)); packet->header.u32All = pm_build_pm4_header(IT_MAP_PROCESS, sizeof(struct pm4_mes_map_process_aldebaran)); packet->bitfields2.diq_enable = (qpd->is_debug) ? 1 : 0; packet->bitfields2.process_quantum = 10; packet->bitfields2.pasid = qpd->pqm->process->pasid; packet->bitfields14.gds_size = qpd->gds_size & 0x3F; packet->bitfields14.gds_size_hi = (qpd->gds_size >> 6) & 0xF; packet->bitfields14.num_gws = (qpd->mapped_gws_queue) ? qpd->num_gws : 0; packet->bitfields14.num_oac = qpd->num_oac; packet->bitfields14.sdma_enable = 1; packet->bitfields14.num_queues = (qpd->is_debug) ? 0 : qpd->queue_count; packet->spi_gdbg_per_vmid_cntl = pdd->spi_dbg_override | pdd->spi_dbg_launch_mode; if (pdd->process->debug_trap_enabled) { for (i = 0; i < kfd->device_info.num_of_watch_points; i++) packet->tcp_watch_cntl[i] = pdd->watch_points[i]; packet->bitfields2.single_memops = !!(pdd->process->dbg_flags & KFD_DBG_TRAP_FLAG_SINGLE_MEM_OP); } packet->sh_mem_config = qpd->sh_mem_config; packet->sh_mem_bases = qpd->sh_mem_bases; if (qpd->tba_addr) { packet->sq_shader_tba_lo = lower_32_bits(qpd->tba_addr >> 8); packet->sq_shader_tba_hi = upper_32_bits(qpd->tba_addr >> 8); packet->sq_shader_tma_lo = lower_32_bits(qpd->tma_addr >> 8); packet->sq_shader_tma_hi = upper_32_bits(qpd->tma_addr >> 8); } packet->gds_addr_lo = lower_32_bits(qpd->gds_context_area); packet->gds_addr_hi = upper_32_bits(qpd->gds_context_area); packet->vm_context_page_table_base_addr_lo32 = lower_32_bits(vm_page_table_base_addr); packet->vm_context_page_table_base_addr_hi32 = upper_32_bits(vm_page_table_base_addr); return 0; } static int pm_runlist_v9(struct packet_manager *pm, uint32_t *buffer, uint64_t ib, size_t ib_size_in_dwords, bool chain) { struct pm4_mes_runlist *packet; int concurrent_proc_cnt = 0; struct kfd_node *kfd = pm->dqm->dev; /* Determine the number of processes to map together to HW: * it can not exceed the number of VMIDs available to the * scheduler, and it is determined by the smaller of the number * of processes in the runlist and kfd module parameter * hws_max_conc_proc. * Note: the arbitration between the number of VMIDs and * hws_max_conc_proc has been done in * kgd2kfd_device_init(). */ concurrent_proc_cnt = min(pm->dqm->processes_count, kfd->max_proc_per_quantum); packet = (struct pm4_mes_runlist *)buffer; memset(buffer, 0, sizeof(struct pm4_mes_runlist)); packet->header.u32All = pm_build_pm4_header(IT_RUN_LIST, sizeof(struct pm4_mes_runlist)); packet->bitfields4.ib_size = ib_size_in_dwords; packet->bitfields4.chain = chain ? 1 : 0; packet->bitfields4.offload_polling = 0; packet->bitfields4.chained_runlist_idle_disable = chain ? 1 : 0; packet->bitfields4.valid = 1; packet->bitfields4.process_cnt = concurrent_proc_cnt; packet->ordinal2 = lower_32_bits(ib); packet->ib_base_hi = upper_32_bits(ib); return 0; } static int pm_set_resources_v9(struct packet_manager *pm, uint32_t *buffer, struct scheduling_resources *res) { struct pm4_mes_set_resources *packet; packet = (struct pm4_mes_set_resources *)buffer; memset(buffer, 0, sizeof(struct pm4_mes_set_resources)); packet->header.u32All = pm_build_pm4_header(IT_SET_RESOURCES, sizeof(struct pm4_mes_set_resources)); packet->bitfields2.queue_type = queue_type__mes_set_resources__hsa_interface_queue_hiq; packet->bitfields2.vmid_mask = res->vmid_mask; packet->bitfields2.unmap_latency = KFD_UNMAP_LATENCY_MS / 100; packet->bitfields7.oac_mask = res->oac_mask; packet->bitfields8.gds_heap_base = res->gds_heap_base; packet->bitfields8.gds_heap_size = res->gds_heap_size; packet->gws_mask_lo = lower_32_bits(res->gws_mask); packet->gws_mask_hi = upper_32_bits(res->gws_mask); packet->queue_mask_lo = lower_32_bits(res->queue_mask); packet->queue_mask_hi = upper_32_bits(res->queue_mask); return 0; } static inline bool pm_use_ext_eng(struct kfd_dev *dev) { return amdgpu_ip_version(dev->adev, SDMA0_HWIP, 0) >= IP_VERSION(5, 2, 0); } static int pm_map_queues_v9(struct packet_manager *pm, uint32_t *buffer, struct queue *q, bool is_static) { struct pm4_mes_map_queues *packet; packet = (struct pm4_mes_map_queues *)buffer; memset(buffer, 0, sizeof(struct pm4_mes_map_queues)); packet->header.u32All = pm_build_pm4_header(IT_MAP_QUEUES, sizeof(struct pm4_mes_map_queues)); packet->bitfields2.num_queues = 1; packet->bitfields2.queue_sel = queue_sel__mes_map_queues__map_to_hws_determined_queue_slots_vi; packet->bitfields2.engine_sel = engine_sel__mes_map_queues__compute_vi; packet->bitfields2.gws_control_queue = q->gws ? 1 : 0; packet->bitfields2.extended_engine_sel = extended_engine_sel__mes_map_queues__legacy_engine_sel; packet->bitfields2.queue_type = queue_type__mes_map_queues__normal_compute_vi; switch (q->properties.type) { case KFD_QUEUE_TYPE_COMPUTE: if (is_static) packet->bitfields2.queue_type = queue_type__mes_map_queues__normal_latency_static_queue_vi; break; case KFD_QUEUE_TYPE_DIQ: packet->bitfields2.queue_type = queue_type__mes_map_queues__debug_interface_queue_vi; break; case KFD_QUEUE_TYPE_SDMA: case KFD_QUEUE_TYPE_SDMA_XGMI: if (q->properties.sdma_engine_id < 2 && !pm_use_ext_eng(q->device->kfd)) packet->bitfields2.engine_sel = q->properties.sdma_engine_id + engine_sel__mes_map_queues__sdma0_vi; else { /* * For GFX9.4.3, SDMA engine id can be greater than 8. * For such cases, set extended_engine_sel to 2 and * ensure engine_sel lies between 0-7. */ if (q->properties.sdma_engine_id >= 8) packet->bitfields2.extended_engine_sel = extended_engine_sel__mes_map_queues__sdma8_to_15_sel; else packet->bitfields2.extended_engine_sel = extended_engine_sel__mes_map_queues__sdma0_to_7_sel; packet->bitfields2.engine_sel = q->properties.sdma_engine_id % 8; } break; default: WARN(1, "queue type %d", q->properties.type); return -EINVAL; } packet->bitfields3.doorbell_offset = q->properties.doorbell_off; packet->mqd_addr_lo = lower_32_bits(q->gart_mqd_addr); packet->mqd_addr_hi = upper_32_bits(q->gart_mqd_addr); packet->wptr_addr_lo = lower_32_bits((uint64_t)q->properties.write_ptr); packet->wptr_addr_hi = upper_32_bits((uint64_t)q->properties.write_ptr); return 0; } static int pm_set_grace_period_v9(struct packet_manager *pm, uint32_t *buffer, uint32_t grace_period) { struct pm4_mec_write_data_mmio *packet; uint32_t reg_offset = 0; uint32_t reg_data = 0; pm->dqm->dev->kfd2kgd->build_grace_period_packet_info( pm->dqm->dev->adev, pm->dqm->wait_times, grace_period, ®_offset, ®_data); if (grace_period == USE_DEFAULT_GRACE_PERIOD) reg_data = pm->dqm->wait_times; packet = (struct pm4_mec_write_data_mmio *)buffer; memset(buffer, 0, sizeof(struct pm4_mec_write_data_mmio)); packet->header.u32All = pm_build_pm4_header(IT_WRITE_DATA, sizeof(struct pm4_mec_write_data_mmio)); packet->bitfields2.dst_sel = dst_sel___write_data__mem_mapped_register; packet->bitfields2.addr_incr = addr_incr___write_data__do_not_increment_address; packet->bitfields3.dst_mmreg_addr = reg_offset; packet->data = reg_data; return 0; } static int pm_unmap_queues_v9(struct packet_manager *pm, uint32_t *buffer, enum kfd_unmap_queues_filter filter, uint32_t filter_param, bool reset) { struct pm4_mes_unmap_queues *packet; packet = (struct pm4_mes_unmap_queues *)buffer; memset(buffer, 0, sizeof(struct pm4_mes_unmap_queues)); packet->header.u32All = pm_build_pm4_header(IT_UNMAP_QUEUES, sizeof(struct pm4_mes_unmap_queues)); packet->bitfields2.extended_engine_sel = pm_use_ext_eng(pm->dqm->dev->kfd) ? extended_engine_sel__mes_unmap_queues__sdma0_to_7_sel : extended_engine_sel__mes_unmap_queues__legacy_engine_sel; packet->bitfields2.engine_sel = engine_sel__mes_unmap_queues__compute; if (reset) packet->bitfields2.action = action__mes_unmap_queues__reset_queues; else packet->bitfields2.action = action__mes_unmap_queues__preempt_queues; switch (filter) { case KFD_UNMAP_QUEUES_FILTER_BY_PASID: packet->bitfields2.queue_sel = queue_sel__mes_unmap_queues__perform_request_on_pasid_queues; packet->bitfields3a.pasid = filter_param; break; case KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES: packet->bitfields2.queue_sel = queue_sel__mes_unmap_queues__unmap_all_queues; break; case KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES: /* in this case, we do not preempt static queues */ packet->bitfields2.queue_sel = queue_sel__mes_unmap_queues__unmap_all_non_static_queues; break; default: WARN(1, "filter %d", filter); return -EINVAL; } return 0; } static int pm_query_status_v9(struct packet_manager *pm, uint32_t *buffer, uint64_t fence_address, uint64_t fence_value) { struct pm4_mes_query_status *packet; packet = (struct pm4_mes_query_status *)buffer; memset(buffer, 0, sizeof(struct pm4_mes_query_status)); packet->header.u32All = pm_build_pm4_header(IT_QUERY_STATUS, sizeof(struct pm4_mes_query_status)); packet->bitfields2.context_id = 0; packet->bitfields2.interrupt_sel = interrupt_sel__mes_query_status__completion_status; packet->bitfields2.command = command__mes_query_status__fence_only_after_write_ack; packet->addr_hi = upper_32_bits((uint64_t)fence_address); packet->addr_lo = lower_32_bits((uint64_t)fence_address); packet->data_hi = upper_32_bits((uint64_t)fence_value); packet->data_lo = lower_32_bits((uint64_t)fence_value); return 0; } const struct packet_manager_funcs kfd_v9_pm_funcs = { .map_process = pm_map_process_v9, .runlist = pm_runlist_v9, .set_resources = pm_set_resources_v9, .map_queues = pm_map_queues_v9, .unmap_queues = pm_unmap_queues_v9, .set_grace_period = pm_set_grace_period_v9, .query_status = pm_query_status_v9, .release_mem = NULL, .map_process_size = sizeof(struct pm4_mes_map_process), .runlist_size = sizeof(struct pm4_mes_runlist), .set_resources_size = sizeof(struct pm4_mes_set_resources), .map_queues_size = sizeof(struct pm4_mes_map_queues), .unmap_queues_size = sizeof(struct pm4_mes_unmap_queues), .set_grace_period_size = sizeof(struct pm4_mec_write_data_mmio), .query_status_size = sizeof(struct pm4_mes_query_status), .release_mem_size = 0, }; const struct packet_manager_funcs kfd_aldebaran_pm_funcs = { .map_process = pm_map_process_aldebaran, .runlist = pm_runlist_v9, .set_resources = pm_set_resources_v9, .map_queues = pm_map_queues_v9, .unmap_queues = pm_unmap_queues_v9, .set_grace_period = pm_set_grace_period_v9, .query_status = pm_query_status_v9, .release_mem = NULL, .map_process_size = sizeof(struct pm4_mes_map_process_aldebaran), .runlist_size = sizeof(struct pm4_mes_runlist), .set_resources_size = sizeof(struct pm4_mes_set_resources), .map_queues_size = sizeof(struct pm4_mes_map_queues), .unmap_queues_size = sizeof(struct pm4_mes_unmap_queues), .set_grace_period_size = sizeof(struct pm4_mec_write_data_mmio), .query_status_size = sizeof(struct pm4_mes_query_status), .release_mem_size = 0, };
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1