Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
rodrigosiqueira | 1767 | 63.31% | 3 | 7.50% |
Roman Li | 373 | 13.36% | 4 | 10.00% |
Melissa Wen | 210 | 7.52% | 4 | 10.00% |
Tom Chung | 118 | 4.23% | 1 | 2.50% |
Simon Ser | 57 | 2.04% | 1 | 2.50% |
Harry Wentland | 50 | 1.79% | 2 | 5.00% |
Alan Liu | 42 | 1.50% | 2 | 5.00% |
Hamza Mahfooz | 26 | 0.93% | 1 | 2.50% |
Hersen Wu | 23 | 0.82% | 1 | 2.50% |
Alex Deucher | 22 | 0.79% | 2 | 5.00% |
Jude Shih | 18 | 0.64% | 2 | 5.00% |
Leo (Sunpeng) Li | 16 | 0.57% | 2 | 5.00% |
David Tadokoro | 13 | 0.47% | 1 | 2.50% |
Nikola Cornij | 13 | 0.47% | 2 | 5.00% |
Luben Tuikov | 8 | 0.29% | 1 | 2.50% |
Bhawanpreet Lakha | 8 | 0.29% | 1 | 2.50% |
David Francis | 6 | 0.21% | 2 | 5.00% |
Victor Lu | 5 | 0.18% | 1 | 2.50% |
Ken Wang | 4 | 0.14% | 1 | 2.50% |
Sam Ravnborg | 3 | 0.11% | 1 | 2.50% |
Pratik Vishwakarma | 3 | 0.11% | 1 | 2.50% |
Ville Syrjälä | 2 | 0.07% | 1 | 2.50% |
Nicholas Kazlauskas | 2 | 0.07% | 1 | 2.50% |
Srinivasan S | 1 | 0.04% | 1 | 2.50% |
Thomas Zimmermann | 1 | 0.04% | 1 | 2.50% |
Total | 2791 | 40 |
// SPDX-License-Identifier: MIT /* * Copyright 2022 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: AMD * */ #include <drm/drm_vblank.h> #include <drm/drm_atomic_helper.h> #include "dc.h" #include "amdgpu.h" #include "amdgpu_dm_psr.h" #include "amdgpu_dm_replay.h" #include "amdgpu_dm_crtc.h" #include "amdgpu_dm_plane.h" #include "amdgpu_dm_trace.h" #include "amdgpu_dm_debugfs.h" #define HPD_DETECTION_PERIOD_uS 5000000 #define HPD_DETECTION_TIME_uS 1000 void amdgpu_dm_crtc_handle_vblank(struct amdgpu_crtc *acrtc) { struct drm_crtc *crtc = &acrtc->base; struct drm_device *dev = crtc->dev; unsigned long flags; drm_crtc_handle_vblank(crtc); spin_lock_irqsave(&dev->event_lock, flags); /* Send completion event for cursor-only commits */ if (acrtc->event && acrtc->pflip_status != AMDGPU_FLIP_SUBMITTED) { drm_crtc_send_vblank_event(crtc, acrtc->event); drm_crtc_vblank_put(crtc); acrtc->event = NULL; } spin_unlock_irqrestore(&dev->event_lock, flags); } bool amdgpu_dm_crtc_modeset_required(struct drm_crtc_state *crtc_state, struct dc_stream_state *new_stream, struct dc_stream_state *old_stream) { return crtc_state->active && drm_atomic_crtc_needs_modeset(crtc_state); } bool amdgpu_dm_crtc_vrr_active_irq(struct amdgpu_crtc *acrtc) { return acrtc->dm_irq_params.freesync_config.state == VRR_STATE_ACTIVE_VARIABLE || acrtc->dm_irq_params.freesync_config.state == VRR_STATE_ACTIVE_FIXED; } int amdgpu_dm_crtc_set_vupdate_irq(struct drm_crtc *crtc, bool enable) { enum dc_irq_source irq_source; struct amdgpu_crtc *acrtc = to_amdgpu_crtc(crtc); struct amdgpu_device *adev = drm_to_adev(crtc->dev); int rc; if (acrtc->otg_inst == -1) return 0; irq_source = IRQ_TYPE_VUPDATE + acrtc->otg_inst; rc = dc_interrupt_set(adev->dm.dc, irq_source, enable) ? 0 : -EBUSY; DRM_DEBUG_VBL("crtc %d - vupdate irq %sabling: r=%d\n", acrtc->crtc_id, enable ? "en" : "dis", rc); return rc; } bool amdgpu_dm_crtc_vrr_active(struct dm_crtc_state *dm_state) { return dm_state->freesync_config.state == VRR_STATE_ACTIVE_VARIABLE || dm_state->freesync_config.state == VRR_STATE_ACTIVE_FIXED; } /** * amdgpu_dm_crtc_set_panel_sr_feature() - Manage panel self-refresh features. * * @vblank_work: is a pointer to a struct vblank_control_work object. * @vblank_enabled: indicates whether the DRM vblank counter is currently * enabled (true) or disabled (false). * @allow_sr_entry: represents whether entry into the self-refresh mode is * allowed (true) or not allowed (false). * * The DRM vblank counter enable/disable action is used as the trigger to enable * or disable various panel self-refresh features: * * Panel Replay and PSR SU * - Enable when: * - vblank counter is disabled * - entry is allowed: usermode demonstrates an adequate number of fast * commits) * - CRC capture window isn't active * - Keep enabled even when vblank counter gets enabled * * PSR1 * - Enable condition same as above * - Disable when vblank counter is enabled */ static void amdgpu_dm_crtc_set_panel_sr_feature( struct vblank_control_work *vblank_work, bool vblank_enabled, bool allow_sr_entry) { struct dc_link *link = vblank_work->stream->link; bool is_sr_active = (link->replay_settings.replay_allow_active || link->psr_settings.psr_allow_active); bool is_crc_window_active = false; #ifdef CONFIG_DRM_AMD_SECURE_DISPLAY is_crc_window_active = amdgpu_dm_crc_window_is_activated(&vblank_work->acrtc->base); #endif if (link->replay_settings.replay_feature_enabled && allow_sr_entry && !is_sr_active && !is_crc_window_active) { amdgpu_dm_replay_enable(vblank_work->stream, true); } else if (vblank_enabled) { if (link->psr_settings.psr_version < DC_PSR_VERSION_SU_1 && is_sr_active) amdgpu_dm_psr_disable(vblank_work->stream); } else if (link->psr_settings.psr_feature_enabled && allow_sr_entry && !is_sr_active && !is_crc_window_active) { struct amdgpu_dm_connector *aconn = (struct amdgpu_dm_connector *) vblank_work->stream->dm_stream_context; if (!aconn->disallow_edp_enter_psr) { struct amdgpu_display_manager *dm = vblank_work->dm; amdgpu_dm_psr_enable(vblank_work->stream); if (dm->idle_workqueue && dm->dc->idle_optimizations_allowed && dm->idle_workqueue->enable && !dm->idle_workqueue->running) schedule_work(&dm->idle_workqueue->work); } } } bool amdgpu_dm_is_headless(struct amdgpu_device *adev) { struct drm_connector *connector; struct drm_connector_list_iter iter; struct drm_device *dev; bool is_headless = true; if (adev == NULL) return true; dev = adev->dm.ddev; drm_connector_list_iter_begin(dev, &iter); drm_for_each_connector_iter(connector, &iter) { if (connector->connector_type == DRM_MODE_CONNECTOR_WRITEBACK) continue; if (connector->status == connector_status_connected) { is_headless = false; break; } } drm_connector_list_iter_end(&iter); return is_headless; } static void amdgpu_dm_idle_worker(struct work_struct *work) { struct idle_workqueue *idle_work; idle_work = container_of(work, struct idle_workqueue, work); idle_work->dm->idle_workqueue->running = true; while (idle_work->enable) { fsleep(HPD_DETECTION_PERIOD_uS); mutex_lock(&idle_work->dm->dc_lock); if (!idle_work->dm->dc->idle_optimizations_allowed) { mutex_unlock(&idle_work->dm->dc_lock); break; } dc_allow_idle_optimizations(idle_work->dm->dc, false); mutex_unlock(&idle_work->dm->dc_lock); fsleep(HPD_DETECTION_TIME_uS); mutex_lock(&idle_work->dm->dc_lock); if (!amdgpu_dm_is_headless(idle_work->dm->adev) && !amdgpu_dm_psr_is_active_allowed(idle_work->dm)) { mutex_unlock(&idle_work->dm->dc_lock); break; } if (idle_work->enable) dc_allow_idle_optimizations(idle_work->dm->dc, true); mutex_unlock(&idle_work->dm->dc_lock); } idle_work->dm->idle_workqueue->running = false; } struct idle_workqueue *idle_create_workqueue(struct amdgpu_device *adev) { struct idle_workqueue *idle_work; idle_work = kzalloc(sizeof(*idle_work), GFP_KERNEL); if (ZERO_OR_NULL_PTR(idle_work)) return NULL; idle_work->dm = &adev->dm; idle_work->enable = false; idle_work->running = false; INIT_WORK(&idle_work->work, amdgpu_dm_idle_worker); return idle_work; } static void amdgpu_dm_crtc_vblank_control_worker(struct work_struct *work) { struct vblank_control_work *vblank_work = container_of(work, struct vblank_control_work, work); struct amdgpu_display_manager *dm = vblank_work->dm; mutex_lock(&dm->dc_lock); if (vblank_work->enable) dm->active_vblank_irq_count++; else if (dm->active_vblank_irq_count) dm->active_vblank_irq_count--; dc_allow_idle_optimizations(dm->dc, dm->active_vblank_irq_count == 0); DRM_DEBUG_KMS("Allow idle optimizations (MALL): %d\n", dm->active_vblank_irq_count == 0); /* * Control PSR based on vblank requirements from OS * * If panel supports PSR SU, there's no need to disable PSR when OS is * submitting fast atomic commits (we infer this by whether the OS * requests vblank events). Fast atomic commits will simply trigger a * full-frame-update (FFU); a specific case of selective-update (SU) * where the SU region is the full hactive*vactive region. See * fill_dc_dirty_rects(). */ if (vblank_work->stream && vblank_work->stream->link) { amdgpu_dm_crtc_set_panel_sr_feature( vblank_work, vblank_work->enable, vblank_work->acrtc->dm_irq_params.allow_psr_entry || vblank_work->stream->link->replay_settings.replay_feature_enabled); } mutex_unlock(&dm->dc_lock); dc_stream_release(vblank_work->stream); kfree(vblank_work); } static inline int amdgpu_dm_crtc_set_vblank(struct drm_crtc *crtc, bool enable) { struct amdgpu_crtc *acrtc = to_amdgpu_crtc(crtc); struct amdgpu_device *adev = drm_to_adev(crtc->dev); struct dm_crtc_state *acrtc_state = to_dm_crtc_state(crtc->state); struct amdgpu_display_manager *dm = &adev->dm; struct vblank_control_work *work; int rc = 0; if (acrtc->otg_inst == -1) goto skip; if (enable) { /* vblank irq on -> Only need vupdate irq in vrr mode */ if (amdgpu_dm_crtc_vrr_active(acrtc_state)) rc = amdgpu_dm_crtc_set_vupdate_irq(crtc, true); } else { /* vblank irq off -> vupdate irq off */ rc = amdgpu_dm_crtc_set_vupdate_irq(crtc, false); } if (rc) return rc; rc = (enable) ? amdgpu_irq_get(adev, &adev->crtc_irq, acrtc->crtc_id) : amdgpu_irq_put(adev, &adev->crtc_irq, acrtc->crtc_id); if (rc) return rc; skip: if (amdgpu_in_reset(adev)) return 0; if (dm->vblank_control_workqueue) { work = kzalloc(sizeof(*work), GFP_ATOMIC); if (!work) return -ENOMEM; INIT_WORK(&work->work, amdgpu_dm_crtc_vblank_control_worker); work->dm = dm; work->acrtc = acrtc; work->enable = enable; if (acrtc_state->stream) { dc_stream_retain(acrtc_state->stream); work->stream = acrtc_state->stream; } queue_work(dm->vblank_control_workqueue, &work->work); } return 0; } int amdgpu_dm_crtc_enable_vblank(struct drm_crtc *crtc) { return amdgpu_dm_crtc_set_vblank(crtc, true); } void amdgpu_dm_crtc_disable_vblank(struct drm_crtc *crtc) { amdgpu_dm_crtc_set_vblank(crtc, false); } static void amdgpu_dm_crtc_destroy_state(struct drm_crtc *crtc, struct drm_crtc_state *state) { struct dm_crtc_state *cur = to_dm_crtc_state(state); /* TODO Destroy dc_stream objects are stream object is flattened */ if (cur->stream) dc_stream_release(cur->stream); __drm_atomic_helper_crtc_destroy_state(state); kfree(state); } static struct drm_crtc_state *amdgpu_dm_crtc_duplicate_state(struct drm_crtc *crtc) { struct dm_crtc_state *state, *cur; cur = to_dm_crtc_state(crtc->state); if (WARN_ON(!crtc->state)) return NULL; state = kzalloc(sizeof(*state), GFP_KERNEL); if (!state) return NULL; __drm_atomic_helper_crtc_duplicate_state(crtc, &state->base); if (cur->stream) { state->stream = cur->stream; dc_stream_retain(state->stream); } state->active_planes = cur->active_planes; state->vrr_infopacket = cur->vrr_infopacket; state->abm_level = cur->abm_level; state->vrr_supported = cur->vrr_supported; state->freesync_config = cur->freesync_config; state->cm_has_degamma = cur->cm_has_degamma; state->cm_is_degamma_srgb = cur->cm_is_degamma_srgb; state->regamma_tf = cur->regamma_tf; state->crc_skip_count = cur->crc_skip_count; state->mpo_requested = cur->mpo_requested; state->cursor_mode = cur->cursor_mode; /* TODO Duplicate dc_stream after objects are stream object is flattened */ return &state->base; } static void amdgpu_dm_crtc_destroy(struct drm_crtc *crtc) { drm_crtc_cleanup(crtc); kfree(crtc); } static void amdgpu_dm_crtc_reset_state(struct drm_crtc *crtc) { struct dm_crtc_state *state; if (crtc->state) amdgpu_dm_crtc_destroy_state(crtc, crtc->state); state = kzalloc(sizeof(*state), GFP_KERNEL); if (WARN_ON(!state)) return; __drm_atomic_helper_crtc_reset(crtc, &state->base); } #ifdef CONFIG_DEBUG_FS static int amdgpu_dm_crtc_late_register(struct drm_crtc *crtc) { crtc_debugfs_init(crtc); return 0; } #endif #ifdef AMD_PRIVATE_COLOR /** * dm_crtc_additional_color_mgmt - enable additional color properties * @crtc: DRM CRTC * * This function lets the driver enable post-blending CRTC regamma transfer * function property in addition to DRM CRTC gamma LUT. Default value means * linear transfer function, which is the default CRTC gamma LUT behaviour * without this property. */ static void dm_crtc_additional_color_mgmt(struct drm_crtc *crtc) { struct amdgpu_device *adev = drm_to_adev(crtc->dev); if (adev->dm.dc->caps.color.mpc.ogam_ram) drm_object_attach_property(&crtc->base, adev->mode_info.regamma_tf_property, AMDGPU_TRANSFER_FUNCTION_DEFAULT); } static int amdgpu_dm_atomic_crtc_set_property(struct drm_crtc *crtc, struct drm_crtc_state *state, struct drm_property *property, uint64_t val) { struct amdgpu_device *adev = drm_to_adev(crtc->dev); struct dm_crtc_state *acrtc_state = to_dm_crtc_state(state); if (property == adev->mode_info.regamma_tf_property) { if (acrtc_state->regamma_tf != val) { acrtc_state->regamma_tf = val; acrtc_state->base.color_mgmt_changed |= 1; } } else { drm_dbg_atomic(crtc->dev, "[CRTC:%d:%s] unknown property [PROP:%d:%s]]\n", crtc->base.id, crtc->name, property->base.id, property->name); return -EINVAL; } return 0; } static int amdgpu_dm_atomic_crtc_get_property(struct drm_crtc *crtc, const struct drm_crtc_state *state, struct drm_property *property, uint64_t *val) { struct amdgpu_device *adev = drm_to_adev(crtc->dev); struct dm_crtc_state *acrtc_state = to_dm_crtc_state(state); if (property == adev->mode_info.regamma_tf_property) *val = acrtc_state->regamma_tf; else return -EINVAL; return 0; } #endif /* Implemented only the options currently available for the driver */ static const struct drm_crtc_funcs amdgpu_dm_crtc_funcs = { .reset = amdgpu_dm_crtc_reset_state, .destroy = amdgpu_dm_crtc_destroy, .set_config = drm_atomic_helper_set_config, .page_flip = drm_atomic_helper_page_flip, .atomic_duplicate_state = amdgpu_dm_crtc_duplicate_state, .atomic_destroy_state = amdgpu_dm_crtc_destroy_state, .set_crc_source = amdgpu_dm_crtc_set_crc_source, .verify_crc_source = amdgpu_dm_crtc_verify_crc_source, .get_crc_sources = amdgpu_dm_crtc_get_crc_sources, .get_vblank_counter = amdgpu_get_vblank_counter_kms, .enable_vblank = amdgpu_dm_crtc_enable_vblank, .disable_vblank = amdgpu_dm_crtc_disable_vblank, .get_vblank_timestamp = drm_crtc_vblank_helper_get_vblank_timestamp, #if defined(CONFIG_DEBUG_FS) .late_register = amdgpu_dm_crtc_late_register, #endif #ifdef AMD_PRIVATE_COLOR .atomic_set_property = amdgpu_dm_atomic_crtc_set_property, .atomic_get_property = amdgpu_dm_atomic_crtc_get_property, #endif }; static void amdgpu_dm_crtc_helper_disable(struct drm_crtc *crtc) { } static int amdgpu_dm_crtc_count_crtc_active_planes(struct drm_crtc_state *new_crtc_state) { struct drm_atomic_state *state = new_crtc_state->state; struct drm_plane *plane; int num_active = 0; drm_for_each_plane_mask(plane, state->dev, new_crtc_state->plane_mask) { struct drm_plane_state *new_plane_state; /* Cursor planes are "fake". */ if (plane->type == DRM_PLANE_TYPE_CURSOR) continue; new_plane_state = drm_atomic_get_new_plane_state(state, plane); if (!new_plane_state) { /* * The plane is enable on the CRTC and hasn't changed * state. This means that it previously passed * validation and is therefore enabled. */ num_active += 1; continue; } /* We need a framebuffer to be considered enabled. */ num_active += (new_plane_state->fb != NULL); } return num_active; } static void amdgpu_dm_crtc_update_crtc_active_planes(struct drm_crtc *crtc, struct drm_crtc_state *new_crtc_state) { struct dm_crtc_state *dm_new_crtc_state = to_dm_crtc_state(new_crtc_state); dm_new_crtc_state->active_planes = 0; if (!dm_new_crtc_state->stream) return; dm_new_crtc_state->active_planes = amdgpu_dm_crtc_count_crtc_active_planes(new_crtc_state); } static bool amdgpu_dm_crtc_helper_mode_fixup(struct drm_crtc *crtc, const struct drm_display_mode *mode, struct drm_display_mode *adjusted_mode) { return true; } static int amdgpu_dm_crtc_helper_atomic_check(struct drm_crtc *crtc, struct drm_atomic_state *state) { struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state, crtc); struct amdgpu_device *adev = drm_to_adev(crtc->dev); struct dc *dc = adev->dm.dc; struct dm_crtc_state *dm_crtc_state = to_dm_crtc_state(crtc_state); int ret = -EINVAL; trace_amdgpu_dm_crtc_atomic_check(crtc_state); amdgpu_dm_crtc_update_crtc_active_planes(crtc, crtc_state); if (WARN_ON(unlikely(!dm_crtc_state->stream && amdgpu_dm_crtc_modeset_required(crtc_state, NULL, dm_crtc_state->stream)))) { return ret; } /* * We require the primary plane to be enabled whenever the CRTC is, otherwise * drm_mode_cursor_universal may end up trying to enable the cursor plane while all other * planes are disabled, which is not supported by the hardware. And there is legacy * userspace which stops using the HW cursor altogether in response to the resulting EINVAL. */ if (crtc_state->enable && !(crtc_state->plane_mask & drm_plane_mask(crtc->primary))) { DRM_DEBUG_ATOMIC("Can't enable a CRTC without enabling the primary plane\n"); return -EINVAL; } /* * Only allow async flips for fast updates that don't change the FB * pitch, the DCC state, rotation, etc. */ if (crtc_state->async_flip && dm_crtc_state->update_type != UPDATE_TYPE_FAST) { drm_dbg_atomic(crtc->dev, "[CRTC:%d:%s] async flips are only supported for fast updates\n", crtc->base.id, crtc->name); return -EINVAL; } /* In some use cases, like reset, no stream is attached */ if (!dm_crtc_state->stream) return 0; if (dc_validate_stream(dc, dm_crtc_state->stream) == DC_OK) return 0; DRM_DEBUG_ATOMIC("Failed DC stream validation\n"); return ret; } static const struct drm_crtc_helper_funcs amdgpu_dm_crtc_helper_funcs = { .disable = amdgpu_dm_crtc_helper_disable, .atomic_check = amdgpu_dm_crtc_helper_atomic_check, .mode_fixup = amdgpu_dm_crtc_helper_mode_fixup, .get_scanout_position = amdgpu_crtc_get_scanout_position, }; int amdgpu_dm_crtc_init(struct amdgpu_display_manager *dm, struct drm_plane *plane, uint32_t crtc_index) { struct amdgpu_crtc *acrtc = NULL; struct drm_plane *cursor_plane; bool is_dcn; int res = -ENOMEM; cursor_plane = kzalloc(sizeof(*cursor_plane), GFP_KERNEL); if (!cursor_plane) goto fail; cursor_plane->type = DRM_PLANE_TYPE_CURSOR; res = amdgpu_dm_plane_init(dm, cursor_plane, 0, NULL); acrtc = kzalloc(sizeof(struct amdgpu_crtc), GFP_KERNEL); if (!acrtc) goto fail; res = drm_crtc_init_with_planes( dm->ddev, &acrtc->base, plane, cursor_plane, &amdgpu_dm_crtc_funcs, NULL); if (res) goto fail; drm_crtc_helper_add(&acrtc->base, &amdgpu_dm_crtc_helper_funcs); /* Create (reset) the plane state */ if (acrtc->base.funcs->reset) acrtc->base.funcs->reset(&acrtc->base); acrtc->max_cursor_width = dm->adev->dm.dc->caps.max_cursor_size; acrtc->max_cursor_height = dm->adev->dm.dc->caps.max_cursor_size; acrtc->crtc_id = crtc_index; acrtc->base.enabled = false; acrtc->otg_inst = -1; dm->adev->mode_info.crtcs[crtc_index] = acrtc; /* Don't enable DRM CRTC degamma property for DCE since it doesn't * support programmable degamma anywhere. */ is_dcn = dm->adev->dm.dc->caps.color.dpp.dcn_arch; drm_crtc_enable_color_mgmt(&acrtc->base, is_dcn ? MAX_COLOR_LUT_ENTRIES : 0, true, MAX_COLOR_LUT_ENTRIES); drm_mode_crtc_set_gamma_size(&acrtc->base, MAX_COLOR_LEGACY_LUT_ENTRIES); #ifdef AMD_PRIVATE_COLOR dm_crtc_additional_color_mgmt(&acrtc->base); #endif return 0; fail: kfree(acrtc); kfree(cursor_plane); return res; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1