Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Harry Wentland | 991 | 32.45% | 3 | 4.23% |
Wesley Chalmers | 435 | 14.24% | 3 | 4.23% |
Dmytro Laktyushkin | 355 | 11.62% | 12 | 16.90% |
Jun Lei | 354 | 11.59% | 8 | 11.27% |
Charlene Liu | 144 | 4.72% | 4 | 5.63% |
Eric Yang | 135 | 4.42% | 5 | 7.04% |
Joshua Aberback | 115 | 3.77% | 2 | 2.82% |
Martin Leung | 76 | 2.49% | 2 | 2.82% |
David Francis | 61 | 2.00% | 2 | 2.82% |
Brandon Syu | 60 | 1.96% | 1 | 1.41% |
Ian Chen | 41 | 1.34% | 1 | 1.41% |
Su Sung Chung | 39 | 1.28% | 1 | 1.41% |
Samson Tam | 37 | 1.21% | 2 | 2.82% |
Alex Deucher | 31 | 1.02% | 2 | 2.82% |
Nicholas Kazlauskas | 31 | 1.02% | 2 | 2.82% |
Sung Lee | 26 | 0.85% | 1 | 1.41% |
Qingqing Zhuo | 20 | 0.65% | 1 | 1.41% |
Aric Cyr | 18 | 0.59% | 1 | 1.41% |
Fatemeh Darbehani | 18 | 0.59% | 3 | 4.23% |
Anthony Koo | 17 | 0.56% | 1 | 1.41% |
Aidan Wood | 10 | 0.33% | 1 | 1.41% |
Jaehyun Chung | 9 | 0.29% | 1 | 1.41% |
Amy Zhang | 6 | 0.20% | 1 | 1.41% |
Alvin lee | 6 | 0.20% | 1 | 1.41% |
Tyler DiBattista | 3 | 0.10% | 1 | 1.41% |
Bhawanpreet Lakha | 3 | 0.10% | 2 | 2.82% |
Yongqiang Sun | 2 | 0.07% | 1 | 1.41% |
Vladimir Stempen | 2 | 0.07% | 1 | 1.41% |
Noah Abradjian | 2 | 0.07% | 1 | 1.41% |
Hugo Hu | 2 | 0.07% | 1 | 1.41% |
Hersen Wu | 2 | 0.07% | 1 | 1.41% |
Dale Zhao | 2 | 0.07% | 1 | 1.41% |
Isabella Basso | 1 | 0.03% | 1 | 1.41% |
Total | 3054 | 71 |
/* * Copyright 2018 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: AMD * */ #include "dccg.h" #include "clk_mgr_internal.h" #include "dce100/dce_clk_mgr.h" #include "dcn20_clk_mgr.h" #include "reg_helper.h" #include "core_types.h" #include "dm_helpers.h" #include "navi10_ip_offset.h" #include "dcn/dcn_2_0_0_offset.h" #include "dcn/dcn_2_0_0_sh_mask.h" #include "clk/clk_11_0_0_offset.h" #include "clk/clk_11_0_0_sh_mask.h" #undef FN #define FN(reg_name, field_name) \ clk_mgr->clk_mgr_shift->field_name, clk_mgr->clk_mgr_mask->field_name #define REG(reg) \ (clk_mgr->regs->reg) #define BASE_INNER(seg) DCN_BASE__INST0_SEG ## seg #define BASE(seg) BASE_INNER(seg) #define SR(reg_name)\ .reg_name = BASE(mm ## reg_name ## _BASE_IDX) + \ mm ## reg_name #define CLK_BASE_INNER(seg) \ CLK_BASE__INST0_SEG ## seg static const struct clk_mgr_registers clk_mgr_regs = { CLK_REG_LIST_NV10() }; static const struct clk_mgr_shift clk_mgr_shift = { CLK_MASK_SH_LIST_NV10(__SHIFT) }; static const struct clk_mgr_mask clk_mgr_mask = { CLK_MASK_SH_LIST_NV10(_MASK) }; uint32_t dentist_get_did_from_divider(int divider) { uint32_t divider_id; /* we want to floor here to get higher clock than required rather than lower */ if (divider < DENTIST_DIVIDER_RANGE_2_START) { if (divider < DENTIST_DIVIDER_RANGE_1_START) divider_id = DENTIST_BASE_DID_1; else divider_id = DENTIST_BASE_DID_1 + (divider - DENTIST_DIVIDER_RANGE_1_START) / DENTIST_DIVIDER_RANGE_1_STEP; } else if (divider < DENTIST_DIVIDER_RANGE_3_START) { divider_id = DENTIST_BASE_DID_2 + (divider - DENTIST_DIVIDER_RANGE_2_START) / DENTIST_DIVIDER_RANGE_2_STEP; } else if (divider < DENTIST_DIVIDER_RANGE_4_START) { divider_id = DENTIST_BASE_DID_3 + (divider - DENTIST_DIVIDER_RANGE_3_START) / DENTIST_DIVIDER_RANGE_3_STEP; } else { divider_id = DENTIST_BASE_DID_4 + (divider - DENTIST_DIVIDER_RANGE_4_START) / DENTIST_DIVIDER_RANGE_4_STEP; if (divider_id > DENTIST_MAX_DID) divider_id = DENTIST_MAX_DID; } return divider_id; } void dcn20_update_clocks_update_dpp_dto(struct clk_mgr_internal *clk_mgr, struct dc_state *context, bool safe_to_lower) { int i; clk_mgr->dccg->ref_dppclk = clk_mgr->base.clks.dppclk_khz; for (i = 0; i < clk_mgr->base.ctx->dc->res_pool->pipe_count; i++) { int dpp_inst, dppclk_khz, prev_dppclk_khz; /* Loop index will match dpp->inst if resource exists, * and we want to avoid dependency on dpp object */ dpp_inst = i; dppclk_khz = context->res_ctx.pipe_ctx[i].plane_res.bw.dppclk_khz; prev_dppclk_khz = clk_mgr->dccg->pipe_dppclk_khz[i]; if (safe_to_lower || prev_dppclk_khz < dppclk_khz) clk_mgr->dccg->funcs->update_dpp_dto( clk_mgr->dccg, dpp_inst, dppclk_khz); } } void dcn20_update_clocks_update_dentist(struct clk_mgr_internal *clk_mgr, struct dc_state *context) { int dpp_divider = 0; int disp_divider = 0; uint32_t dppclk_wdivider = 0; uint32_t dispclk_wdivider = 0; uint32_t current_dispclk_wdivider; uint32_t i; if (clk_mgr->base.clks.dppclk_khz == 0 || clk_mgr->base.clks.dispclk_khz == 0) return; dpp_divider = DENTIST_DIVIDER_RANGE_SCALE_FACTOR * clk_mgr->base.dentist_vco_freq_khz / clk_mgr->base.clks.dppclk_khz; disp_divider = DENTIST_DIVIDER_RANGE_SCALE_FACTOR * clk_mgr->base.dentist_vco_freq_khz / clk_mgr->base.clks.dispclk_khz; dppclk_wdivider = dentist_get_did_from_divider(dpp_divider); dispclk_wdivider = dentist_get_did_from_divider(disp_divider); REG_GET(DENTIST_DISPCLK_CNTL, DENTIST_DISPCLK_WDIVIDER, ¤t_dispclk_wdivider); /* When changing divider to or from 127, some extra programming is required to prevent corruption */ if (current_dispclk_wdivider == 127 && dispclk_wdivider != 127) { for (i = 0; i < clk_mgr->base.ctx->dc->res_pool->pipe_count; i++) { struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i]; uint32_t fifo_level; struct dccg *dccg = clk_mgr->base.ctx->dc->res_pool->dccg; struct stream_encoder *stream_enc = pipe_ctx->stream_res.stream_enc; int32_t N; int32_t j; if (!resource_is_pipe_type(pipe_ctx, OTG_MASTER)) continue; /* Virtual encoders don't have this function */ if (!stream_enc->funcs->get_fifo_cal_average_level) continue; fifo_level = stream_enc->funcs->get_fifo_cal_average_level( stream_enc); N = fifo_level / 4; dccg->funcs->set_fifo_errdet_ovr_en( dccg, true); for (j = 0; j < N - 4; j++) dccg->funcs->otg_drop_pixel( dccg, pipe_ctx->stream_res.tg->inst); dccg->funcs->set_fifo_errdet_ovr_en( dccg, false); } } else if (dispclk_wdivider == 127 && current_dispclk_wdivider != 127) { REG_UPDATE(DENTIST_DISPCLK_CNTL, DENTIST_DISPCLK_WDIVIDER, 126); REG_WAIT(DENTIST_DISPCLK_CNTL, DENTIST_DISPCLK_CHG_DONE, 1, 50, 2000); for (i = 0; i < clk_mgr->base.ctx->dc->res_pool->pipe_count; i++) { struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i]; struct dccg *dccg = clk_mgr->base.ctx->dc->res_pool->dccg; struct stream_encoder *stream_enc = pipe_ctx->stream_res.stream_enc; uint32_t fifo_level; int32_t N; int32_t j; if (!resource_is_pipe_type(pipe_ctx, OTG_MASTER)) continue; /* Virtual encoders don't have this function */ if (!stream_enc->funcs->get_fifo_cal_average_level) continue; fifo_level = stream_enc->funcs->get_fifo_cal_average_level( stream_enc); N = fifo_level / 4; dccg->funcs->set_fifo_errdet_ovr_en(dccg, true); for (j = 0; j < 12 - N; j++) dccg->funcs->otg_add_pixel(dccg, pipe_ctx->stream_res.tg->inst); dccg->funcs->set_fifo_errdet_ovr_en(dccg, false); } } REG_UPDATE(DENTIST_DISPCLK_CNTL, DENTIST_DISPCLK_WDIVIDER, dispclk_wdivider); REG_WAIT(DENTIST_DISPCLK_CNTL, DENTIST_DISPCLK_CHG_DONE, 1, 50, 2000); REG_UPDATE(DENTIST_DISPCLK_CNTL, DENTIST_DPPCLK_WDIVIDER, dppclk_wdivider); REG_WAIT(DENTIST_DISPCLK_CNTL, DENTIST_DPPCLK_CHG_DONE, 1, 5, 100); } void dcn2_update_clocks(struct clk_mgr *clk_mgr_base, struct dc_state *context, bool safe_to_lower) { struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base); struct dc_clocks *new_clocks = &context->bw_ctx.bw.dcn.clk; struct dc *dc = clk_mgr_base->ctx->dc; struct pp_smu_funcs_nv *pp_smu = NULL; int display_count; bool update_dppclk = false; bool update_dispclk = false; bool enter_display_off = false; bool dpp_clock_lowered = false; struct dmcu *dmcu = clk_mgr_base->ctx->dc->res_pool->dmcu; bool force_reset = false; bool p_state_change_support; int total_plane_count; if (dc->work_arounds.skip_clock_update) return; if (clk_mgr_base->clks.dispclk_khz == 0 || dc->debug.force_clock_mode & 0x1) { //this is from resume or boot up, if forced_clock cfg option used, we bypass program dispclk and DPPCLK, but need set them for S3. force_reset = true; dcn2_read_clocks_from_hw_dentist(clk_mgr_base); //force_clock_mode 0x1: force reset the clock even it is the same clock as long as it is in Passive level. } display_count = clk_mgr_helper_get_active_display_cnt(dc, context); if (dc->res_pool->pp_smu) pp_smu = &dc->res_pool->pp_smu->nv_funcs; if (display_count == 0) enter_display_off = true; if (enter_display_off == safe_to_lower) { if (pp_smu && pp_smu->set_display_count) pp_smu->set_display_count(&pp_smu->pp_smu, display_count); } if (dc->debug.force_min_dcfclk_mhz > 0) new_clocks->dcfclk_khz = (new_clocks->dcfclk_khz > (dc->debug.force_min_dcfclk_mhz * 1000)) ? new_clocks->dcfclk_khz : (dc->debug.force_min_dcfclk_mhz * 1000); if (should_set_clock(safe_to_lower, new_clocks->dcfclk_khz, clk_mgr_base->clks.dcfclk_khz)) { clk_mgr_base->clks.dcfclk_khz = new_clocks->dcfclk_khz; if (pp_smu && pp_smu->set_hard_min_dcfclk_by_freq) pp_smu->set_hard_min_dcfclk_by_freq(&pp_smu->pp_smu, khz_to_mhz_ceil(clk_mgr_base->clks.dcfclk_khz)); } if (should_set_clock(safe_to_lower, new_clocks->dcfclk_deep_sleep_khz, clk_mgr_base->clks.dcfclk_deep_sleep_khz)) { clk_mgr_base->clks.dcfclk_deep_sleep_khz = new_clocks->dcfclk_deep_sleep_khz; if (pp_smu && pp_smu->set_min_deep_sleep_dcfclk) pp_smu->set_min_deep_sleep_dcfclk(&pp_smu->pp_smu, khz_to_mhz_ceil(clk_mgr_base->clks.dcfclk_deep_sleep_khz)); } if (should_set_clock(safe_to_lower, new_clocks->socclk_khz, clk_mgr_base->clks.socclk_khz)) { clk_mgr_base->clks.socclk_khz = new_clocks->socclk_khz; if (pp_smu && pp_smu->set_hard_min_socclk_by_freq) pp_smu->set_hard_min_socclk_by_freq(&pp_smu->pp_smu, khz_to_mhz_ceil(clk_mgr_base->clks.socclk_khz)); } total_plane_count = clk_mgr_helper_get_active_plane_cnt(dc, context); p_state_change_support = new_clocks->p_state_change_support || (total_plane_count == 0); if (should_update_pstate_support(safe_to_lower, p_state_change_support, clk_mgr_base->clks.p_state_change_support)) { clk_mgr_base->clks.prev_p_state_change_support = clk_mgr_base->clks.p_state_change_support; clk_mgr_base->clks.p_state_change_support = p_state_change_support; if (pp_smu && pp_smu->set_pstate_handshake_support) pp_smu->set_pstate_handshake_support(&pp_smu->pp_smu, clk_mgr_base->clks.p_state_change_support); } if (should_set_clock(safe_to_lower, new_clocks->dramclk_khz, clk_mgr_base->clks.dramclk_khz)) { clk_mgr_base->clks.dramclk_khz = new_clocks->dramclk_khz; if (pp_smu && pp_smu->set_hard_min_uclk_by_freq) pp_smu->set_hard_min_uclk_by_freq(&pp_smu->pp_smu, khz_to_mhz_ceil(clk_mgr_base->clks.dramclk_khz)); } if (should_set_clock(safe_to_lower, new_clocks->dppclk_khz, clk_mgr->base.clks.dppclk_khz)) { if (clk_mgr->base.clks.dppclk_khz > new_clocks->dppclk_khz) dpp_clock_lowered = true; clk_mgr->base.clks.dppclk_khz = new_clocks->dppclk_khz; update_dppclk = true; } if (should_set_clock(safe_to_lower, new_clocks->dispclk_khz, clk_mgr_base->clks.dispclk_khz)) { clk_mgr_base->clks.dispclk_khz = new_clocks->dispclk_khz; update_dispclk = true; } if (update_dppclk || update_dispclk) { new_clocks->disp_dpp_voltage_level_khz = new_clocks->dppclk_khz; if (update_dispclk) new_clocks->disp_dpp_voltage_level_khz = new_clocks->dispclk_khz > new_clocks->dppclk_khz ? new_clocks->dispclk_khz : new_clocks->dppclk_khz; clk_mgr_base->clks.disp_dpp_voltage_level_khz = new_clocks->disp_dpp_voltage_level_khz; if (pp_smu && pp_smu->set_voltage_by_freq) pp_smu->set_voltage_by_freq(&pp_smu->pp_smu, PP_SMU_NV_DISPCLK, khz_to_mhz_ceil(clk_mgr_base->clks.disp_dpp_voltage_level_khz)); } if (dc->config.forced_clocks == false || (force_reset && safe_to_lower)) { if (dpp_clock_lowered) { // if clock is being lowered, increase DTO before lowering refclk dcn20_update_clocks_update_dpp_dto(clk_mgr, context, safe_to_lower); dcn20_update_clocks_update_dentist(clk_mgr, context); } else { // if clock is being raised, increase refclk before lowering DTO if (update_dppclk || update_dispclk) dcn20_update_clocks_update_dentist(clk_mgr, context); // always update dtos unless clock is lowered and not safe to lower dcn20_update_clocks_update_dpp_dto(clk_mgr, context, safe_to_lower); } } if (update_dispclk && dmcu && dmcu->funcs->is_dmcu_initialized(dmcu)) { /*update dmcu for wait_loop count*/ dmcu->funcs->set_psr_wait_loop(dmcu, clk_mgr_base->clks.dispclk_khz / 1000 / 7); } } void dcn2_update_clocks_fpga(struct clk_mgr *clk_mgr, struct dc_state *context, bool safe_to_lower) { struct clk_mgr_internal *clk_mgr_int = TO_CLK_MGR_INTERNAL(clk_mgr); struct dc_clocks *new_clocks = &context->bw_ctx.bw.dcn.clk; /* Min fclk = 1.2GHz since all the extra scemi logic seems to run off of it */ int fclk_adj = new_clocks->fclk_khz > 1200000 ? new_clocks->fclk_khz : 1200000; if (should_set_clock(safe_to_lower, new_clocks->phyclk_khz, clk_mgr->clks.phyclk_khz)) { clk_mgr->clks.phyclk_khz = new_clocks->phyclk_khz; } if (should_set_clock(safe_to_lower, new_clocks->dcfclk_khz, clk_mgr->clks.dcfclk_khz)) { clk_mgr->clks.dcfclk_khz = new_clocks->dcfclk_khz; } if (should_set_clock(safe_to_lower, new_clocks->dcfclk_deep_sleep_khz, clk_mgr->clks.dcfclk_deep_sleep_khz)) { clk_mgr->clks.dcfclk_deep_sleep_khz = new_clocks->dcfclk_deep_sleep_khz; } if (should_set_clock(safe_to_lower, new_clocks->socclk_khz, clk_mgr->clks.socclk_khz)) { clk_mgr->clks.socclk_khz = new_clocks->socclk_khz; } if (should_set_clock(safe_to_lower, new_clocks->dramclk_khz, clk_mgr->clks.dramclk_khz)) { clk_mgr->clks.dramclk_khz = new_clocks->dramclk_khz; } if (should_set_clock(safe_to_lower, new_clocks->dppclk_khz, clk_mgr->clks.dppclk_khz)) { clk_mgr->clks.dppclk_khz = new_clocks->dppclk_khz; } if (should_set_clock(safe_to_lower, fclk_adj, clk_mgr->clks.fclk_khz)) { clk_mgr->clks.fclk_khz = fclk_adj; } if (should_set_clock(safe_to_lower, new_clocks->dispclk_khz, clk_mgr->clks.dispclk_khz)) { clk_mgr->clks.dispclk_khz = new_clocks->dispclk_khz; } /* Both fclk and ref_dppclk run on the same scemi clock. * So take the higher value since the DPP DTO is typically programmed * such that max dppclk is 1:1 with ref_dppclk. */ if (clk_mgr->clks.fclk_khz > clk_mgr->clks.dppclk_khz) clk_mgr->clks.dppclk_khz = clk_mgr->clks.fclk_khz; if (clk_mgr->clks.dppclk_khz > clk_mgr->clks.fclk_khz) clk_mgr->clks.fclk_khz = clk_mgr->clks.dppclk_khz; // Both fclk and ref_dppclk run on the same scemi clock. clk_mgr_int->dccg->ref_dppclk = clk_mgr->clks.fclk_khz; /* TODO: set dtbclk in correct place */ clk_mgr->clks.dtbclk_en = false; dm_set_dcn_clocks(clk_mgr->ctx, &clk_mgr->clks); } void dcn2_init_clocks(struct clk_mgr *clk_mgr) { memset(&(clk_mgr->clks), 0, sizeof(struct dc_clocks)); // Assumption is that boot state always supports pstate clk_mgr->clks.p_state_change_support = true; clk_mgr->clks.prev_p_state_change_support = true; } static void dcn2_enable_pme_wa(struct clk_mgr *clk_mgr_base) { struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base); struct pp_smu_funcs_nv *pp_smu = NULL; if (clk_mgr->pp_smu) { pp_smu = &clk_mgr->pp_smu->nv_funcs; if (pp_smu->set_pme_wa_enable) pp_smu->set_pme_wa_enable(&pp_smu->pp_smu); } } void dcn2_read_clocks_from_hw_dentist(struct clk_mgr *clk_mgr_base) { struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base); uint32_t dispclk_wdivider; uint32_t dppclk_wdivider; int disp_divider; int dpp_divider; REG_GET(DENTIST_DISPCLK_CNTL, DENTIST_DISPCLK_WDIVIDER, &dispclk_wdivider); REG_GET(DENTIST_DISPCLK_CNTL, DENTIST_DPPCLK_WDIVIDER, &dppclk_wdivider); disp_divider = dentist_get_divider_from_did(dispclk_wdivider); dpp_divider = dentist_get_divider_from_did(dppclk_wdivider); if (disp_divider && dpp_divider) { /* Calculate the current DFS clock, in kHz.*/ clk_mgr_base->clks.dispclk_khz = (DENTIST_DIVIDER_RANGE_SCALE_FACTOR * clk_mgr->base.dentist_vco_freq_khz) / disp_divider; clk_mgr_base->clks.dppclk_khz = (DENTIST_DIVIDER_RANGE_SCALE_FACTOR * clk_mgr->base.dentist_vco_freq_khz) / dpp_divider; } } void dcn2_get_clock(struct clk_mgr *clk_mgr, struct dc_state *context, enum dc_clock_type clock_type, struct dc_clock_config *clock_cfg) { if (clock_type == DC_CLOCK_TYPE_DISPCLK) { clock_cfg->max_clock_khz = context->bw_ctx.bw.dcn.clk.max_supported_dispclk_khz; clock_cfg->min_clock_khz = DCN_MINIMUM_DISPCLK_Khz; clock_cfg->current_clock_khz = clk_mgr->clks.dispclk_khz; clock_cfg->bw_requirequired_clock_khz = context->bw_ctx.bw.dcn.clk.bw_dispclk_khz; } if (clock_type == DC_CLOCK_TYPE_DPPCLK) { clock_cfg->max_clock_khz = context->bw_ctx.bw.dcn.clk.max_supported_dppclk_khz; clock_cfg->min_clock_khz = DCN_MINIMUM_DPPCLK_Khz; clock_cfg->current_clock_khz = clk_mgr->clks.dppclk_khz; clock_cfg->bw_requirequired_clock_khz = context->bw_ctx.bw.dcn.clk.bw_dppclk_khz; } } static bool dcn2_are_clock_states_equal(struct dc_clocks *a, struct dc_clocks *b) { if (a->dispclk_khz != b->dispclk_khz) return false; else if (a->dppclk_khz != b->dppclk_khz) return false; else if (a->disp_dpp_voltage_level_khz != b->disp_dpp_voltage_level_khz) return false; else if (a->dcfclk_khz != b->dcfclk_khz) return false; else if (a->socclk_khz != b->socclk_khz) return false; else if (a->dcfclk_deep_sleep_khz != b->dcfclk_deep_sleep_khz) return false; else if (a->dramclk_khz != b->dramclk_khz) return false; else if (a->p_state_change_support != b->p_state_change_support) return false; return true; } /* Notify clk_mgr of a change in link rate, update phyclk frequency if necessary */ static void dcn2_notify_link_rate_change(struct clk_mgr *clk_mgr_base, struct dc_link *link) { struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base); unsigned int i, max_phyclk_req = 0; struct pp_smu_funcs_nv *pp_smu = NULL; if (!clk_mgr->pp_smu || !clk_mgr->pp_smu->nv_funcs.set_voltage_by_freq) return; pp_smu = &clk_mgr->pp_smu->nv_funcs; clk_mgr->cur_phyclk_req_table[link->link_index] = link->cur_link_settings.link_rate * LINK_RATE_REF_FREQ_IN_KHZ; for (i = 0; i < MAX_LINKS; i++) { if (clk_mgr->cur_phyclk_req_table[i] > max_phyclk_req) max_phyclk_req = clk_mgr->cur_phyclk_req_table[i]; } if (max_phyclk_req != clk_mgr_base->clks.phyclk_khz) { clk_mgr_base->clks.phyclk_khz = max_phyclk_req; pp_smu->set_voltage_by_freq(&pp_smu->pp_smu, PP_SMU_NV_PHYCLK, khz_to_mhz_ceil(clk_mgr_base->clks.phyclk_khz)); } } static struct clk_mgr_funcs dcn2_funcs = { .get_dp_ref_clk_frequency = dce12_get_dp_ref_freq_khz, .update_clocks = dcn2_update_clocks, .init_clocks = dcn2_init_clocks, .enable_pme_wa = dcn2_enable_pme_wa, .get_clock = dcn2_get_clock, .are_clock_states_equal = dcn2_are_clock_states_equal, .notify_link_rate_change = dcn2_notify_link_rate_change, }; void dcn20_clk_mgr_construct( struct dc_context *ctx, struct clk_mgr_internal *clk_mgr, struct pp_smu_funcs *pp_smu, struct dccg *dccg) { int dprefclk_did; int target_div; uint32_t pll_req_reg; struct fixed31_32 pll_req; clk_mgr->base.ctx = ctx; clk_mgr->pp_smu = pp_smu; clk_mgr->base.funcs = &dcn2_funcs; clk_mgr->regs = &clk_mgr_regs; clk_mgr->clk_mgr_shift = &clk_mgr_shift; clk_mgr->clk_mgr_mask = &clk_mgr_mask; clk_mgr->dccg = dccg; clk_mgr->dfs_bypass_disp_clk = 0; clk_mgr->dprefclk_ss_percentage = 0; clk_mgr->dprefclk_ss_divider = 1000; clk_mgr->ss_on_dprefclk = false; clk_mgr->base.dprefclk_khz = 700000; // 700 MHz planned if VCO is 3.85 GHz, will be retrieved /* DFS Slice 2 should be used for DPREFCLK */ dprefclk_did = REG_READ(CLK3_CLK2_DFS_CNTL); /* Convert DPREFCLK DFS Slice DID to actual divider */ target_div = dentist_get_divider_from_did(dprefclk_did); /* get FbMult value */ pll_req_reg = REG_READ(CLK3_CLK_PLL_REQ); /* set up a fixed-point number * this works because the int part is on the right edge of the register * and the frac part is on the left edge */ pll_req = dc_fixpt_from_int(pll_req_reg & clk_mgr->clk_mgr_mask->FbMult_int); pll_req.value |= pll_req_reg & clk_mgr->clk_mgr_mask->FbMult_frac; /* multiply by REFCLK period */ pll_req = dc_fixpt_mul_int(pll_req, 100000); /* integer part is now VCO frequency in kHz */ clk_mgr->base.dentist_vco_freq_khz = dc_fixpt_floor(pll_req); /* in case we don't get a value from the register, use default */ if (clk_mgr->base.dentist_vco_freq_khz == 0) clk_mgr->base.dentist_vco_freq_khz = 3850000; /* Calculate the DPREFCLK in kHz.*/ clk_mgr->base.dprefclk_khz = (DENTIST_DIVIDER_RANGE_SCALE_FACTOR * clk_mgr->base.dentist_vco_freq_khz) / target_div; //Integrated_info table does not exist on dGPU projects so should not be referenced //anywhere in code for dGPUs. //Also there is no plan for now that DFS BYPASS will be used on NV10/12/14. clk_mgr->dfs_bypass_enabled = false; dce_clock_read_ss_info(clk_mgr); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1