Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Bhawanpreet Lakha | 2219 | 76.97% | 3 | 7.32% |
Martin Leung | 144 | 4.99% | 2 | 4.88% |
Joshua Aberback | 126 | 4.37% | 3 | 7.32% |
Eric Yang | 123 | 4.27% | 2 | 4.88% |
Aric Cyr | 68 | 2.36% | 3 | 7.32% |
Harry Wentland | 57 | 1.98% | 4 | 9.76% |
Alex Deucher | 32 | 1.11% | 3 | 7.32% |
Dmytro Laktyushkin | 17 | 0.59% | 5 | 12.20% |
Hersen Wu | 17 | 0.59% | 2 | 4.88% |
Jun Lei | 16 | 0.55% | 2 | 4.88% |
Chris Park | 16 | 0.55% | 2 | 4.88% |
Melissa Wen | 11 | 0.38% | 1 | 2.44% |
Bindu Ramamurthy | 10 | 0.35% | 1 | 2.44% |
Alvin lee | 8 | 0.28% | 2 | 4.88% |
Bas Nieuwenhuizen | 6 | 0.21% | 1 | 2.44% |
Wesley Chalmers | 4 | 0.14% | 1 | 2.44% |
Tony Cheng | 4 | 0.14% | 1 | 2.44% |
David Galiffi | 2 | 0.07% | 1 | 2.44% |
Yongqiang Sun | 2 | 0.07% | 1 | 2.44% |
Aurabindo Pillai | 1 | 0.03% | 1 | 2.44% |
Total | 2883 | 41 |
/* * Copyright 2020 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: AMD * */ #include "dccg.h" #include "clk_mgr_internal.h" #include "dcn30_clk_mgr_smu_msg.h" #include "dcn20/dcn20_clk_mgr.h" #include "dce100/dce_clk_mgr.h" #include "dcn30/dcn30_clk_mgr.h" #include "dml/dcn30/dcn30_fpu.h" #include "reg_helper.h" #include "core_types.h" #include "dm_helpers.h" #include "atomfirmware.h" #include "sienna_cichlid_ip_offset.h" #include "dcn/dcn_3_0_0_offset.h" #include "dcn/dcn_3_0_0_sh_mask.h" #include "nbio/nbio_7_4_offset.h" #include "dpcs/dpcs_3_0_0_offset.h" #include "dpcs/dpcs_3_0_0_sh_mask.h" #include "mmhub/mmhub_2_0_0_offset.h" #include "mmhub/mmhub_2_0_0_sh_mask.h" #include "dcn30_smu11_driver_if.h" #undef FN #define FN(reg_name, field_name) \ clk_mgr->clk_mgr_shift->field_name, clk_mgr->clk_mgr_mask->field_name #define REG(reg) \ (clk_mgr->regs->reg) #define BASE_INNER(seg) DCN_BASE__INST0_SEG ## seg #define BASE(seg) BASE_INNER(seg) #define SR(reg_name)\ .reg_name = BASE(mm ## reg_name ## _BASE_IDX) + \ mm ## reg_name #undef CLK_SRI #define CLK_SRI(reg_name, block, inst)\ .reg_name = mm ## block ## _ ## reg_name static const struct clk_mgr_registers clk_mgr_regs = { CLK_REG_LIST_DCN3() }; static const struct clk_mgr_shift clk_mgr_shift = { CLK_COMMON_MASK_SH_LIST_DCN20_BASE(__SHIFT) }; static const struct clk_mgr_mask clk_mgr_mask = { CLK_COMMON_MASK_SH_LIST_DCN20_BASE(_MASK) }; /* Query SMU for all clock states for a particular clock */ static void dcn3_init_single_clock(struct clk_mgr_internal *clk_mgr, uint32_t clk, unsigned int *entry_0, unsigned int *num_levels) { unsigned int i; char *entry_i = (char *)entry_0; uint32_t ret = dcn30_smu_get_dpm_freq_by_index(clk_mgr, clk, 0xFF); if (ret & (1 << 31)) /* fine-grained, only min and max */ *num_levels = 2; else /* discrete, a number of fixed states */ /* will set num_levels to 0 on failure */ *num_levels = ret & 0xFF; /* if the initial message failed, num_levels will be 0 */ for (i = 0; i < *num_levels; i++) { *((unsigned int *)entry_i) = (dcn30_smu_get_dpm_freq_by_index(clk_mgr, clk, i) & 0xFFFF); entry_i += sizeof(clk_mgr->base.bw_params->clk_table.entries[0]); } } static void dcn3_build_wm_range_table(struct clk_mgr_internal *clk_mgr) { DC_FP_START(); dcn3_fpu_build_wm_range_table(&clk_mgr->base); DC_FP_END(); } void dcn3_init_clocks(struct clk_mgr *clk_mgr_base) { struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base); unsigned int num_levels; memset(&(clk_mgr_base->clks), 0, sizeof(struct dc_clocks)); clk_mgr_base->clks.p_state_change_support = true; clk_mgr_base->clks.prev_p_state_change_support = true; clk_mgr->smu_present = false; if (!clk_mgr_base->bw_params) return; if (!clk_mgr_base->force_smu_not_present && dcn30_smu_get_smu_version(clk_mgr, &clk_mgr->smu_ver)) clk_mgr->smu_present = true; if (!clk_mgr->smu_present) return; // do we fail if these fail? if so, how? do we not care to check? dcn30_smu_check_driver_if_version(clk_mgr); dcn30_smu_check_msg_header_version(clk_mgr); /* DCFCLK */ dcn3_init_single_clock(clk_mgr, PPCLK_DCEFCLK, &clk_mgr_base->bw_params->clk_table.entries[0].dcfclk_mhz, &num_levels); dcn30_smu_set_min_deep_sleep_dcef_clk(clk_mgr, 0); /* DTBCLK */ dcn3_init_single_clock(clk_mgr, PPCLK_DTBCLK, &clk_mgr_base->bw_params->clk_table.entries[0].dtbclk_mhz, &num_levels); /* SOCCLK */ dcn3_init_single_clock(clk_mgr, PPCLK_SOCCLK, &clk_mgr_base->bw_params->clk_table.entries[0].socclk_mhz, &num_levels); // DPREFCLK ??? /* DISPCLK */ dcn3_init_single_clock(clk_mgr, PPCLK_DISPCLK, &clk_mgr_base->bw_params->clk_table.entries[0].dispclk_mhz, &num_levels); /* DPPCLK */ dcn3_init_single_clock(clk_mgr, PPCLK_PIXCLK, &clk_mgr_base->bw_params->clk_table.entries[0].dppclk_mhz, &num_levels); /* PHYCLK */ dcn3_init_single_clock(clk_mgr, PPCLK_PHYCLK, &clk_mgr_base->bw_params->clk_table.entries[0].phyclk_mhz, &num_levels); /* Get UCLK, update bounding box */ clk_mgr_base->funcs->get_memclk_states_from_smu(clk_mgr_base); /* WM range table */ DC_FP_START(); dcn3_build_wm_range_table(clk_mgr); DC_FP_END(); } static int dcn30_get_vco_frequency_from_reg(struct clk_mgr_internal *clk_mgr) { /* get FbMult value */ struct fixed31_32 pll_req; /* get FbMult value */ uint32_t pll_req_reg = REG_READ(CLK0_CLK_PLL_REQ); /* set up a fixed-point number * this works because the int part is on the right edge of the register * and the frac part is on the left edge */ pll_req = dc_fixpt_from_int(pll_req_reg & clk_mgr->clk_mgr_mask->FbMult_int); pll_req.value |= pll_req_reg & clk_mgr->clk_mgr_mask->FbMult_frac; /* multiply by REFCLK period */ pll_req = dc_fixpt_mul_int(pll_req, clk_mgr->dfs_ref_freq_khz); return dc_fixpt_floor(pll_req); } static void dcn3_update_clocks(struct clk_mgr *clk_mgr_base, struct dc_state *context, bool safe_to_lower) { struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base); struct dc_clocks *new_clocks = &context->bw_ctx.bw.dcn.clk; struct dc *dc = clk_mgr_base->ctx->dc; int display_count; bool update_dppclk = false; bool update_dispclk = false; bool enter_display_off = false; bool dpp_clock_lowered = false; bool update_pstate_unsupported_clk = false; struct dmcu *dmcu = clk_mgr_base->ctx->dc->res_pool->dmcu; bool force_reset = false; bool update_uclk = false; bool p_state_change_support; if (dc->work_arounds.skip_clock_update || !clk_mgr->smu_present) return; if (clk_mgr_base->clks.dispclk_khz == 0 || (dc->debug.force_clock_mode & 0x1)) { /* this is from resume or boot up, if forced_clock cfg option used, we bypass program dispclk and DPPCLK, but need set them for S3. */ force_reset = true; dcn2_read_clocks_from_hw_dentist(clk_mgr_base); /* force_clock_mode 0x1: force reset the clock even it is the same clock as long as it is in Passive level. */ } display_count = clk_mgr_helper_get_active_display_cnt(dc, context); if (display_count == 0) enter_display_off = true; if (enter_display_off == safe_to_lower) dcn30_smu_set_num_of_displays(clk_mgr, display_count); if (dc->debug.force_min_dcfclk_mhz > 0) new_clocks->dcfclk_khz = (new_clocks->dcfclk_khz > (dc->debug.force_min_dcfclk_mhz * 1000)) ? new_clocks->dcfclk_khz : (dc->debug.force_min_dcfclk_mhz * 1000); if (should_set_clock(safe_to_lower, new_clocks->dcfclk_khz, clk_mgr_base->clks.dcfclk_khz)) { clk_mgr_base->clks.dcfclk_khz = new_clocks->dcfclk_khz; dcn30_smu_set_hard_min_by_freq(clk_mgr, PPCLK_DCEFCLK, khz_to_mhz_ceil(clk_mgr_base->clks.dcfclk_khz)); } if (should_set_clock(safe_to_lower, new_clocks->dcfclk_deep_sleep_khz, clk_mgr_base->clks.dcfclk_deep_sleep_khz)) { clk_mgr_base->clks.dcfclk_deep_sleep_khz = new_clocks->dcfclk_deep_sleep_khz; dcn30_smu_set_min_deep_sleep_dcef_clk(clk_mgr, khz_to_mhz_ceil(clk_mgr_base->clks.dcfclk_deep_sleep_khz)); } if (should_set_clock(safe_to_lower, new_clocks->socclk_khz, clk_mgr_base->clks.socclk_khz)) /* We don't actually care about socclk, don't notify SMU of hard min */ clk_mgr_base->clks.socclk_khz = new_clocks->socclk_khz; clk_mgr_base->clks.prev_p_state_change_support = clk_mgr_base->clks.p_state_change_support; p_state_change_support = new_clocks->p_state_change_support; // invalidate the current P-State forced min in certain dc_mode_softmax situations if (dc->clk_mgr->dc_mode_softmax_enabled && safe_to_lower && !p_state_change_support) { if ((new_clocks->dramclk_khz <= dc->clk_mgr->bw_params->dc_mode_softmax_memclk * 1000) != (clk_mgr_base->clks.dramclk_khz <= dc->clk_mgr->bw_params->dc_mode_softmax_memclk * 1000)) update_pstate_unsupported_clk = true; } if (should_update_pstate_support(safe_to_lower, p_state_change_support, clk_mgr_base->clks.p_state_change_support) || update_pstate_unsupported_clk) { clk_mgr_base->clks.p_state_change_support = p_state_change_support; /* to disable P-State switching, set UCLK min = max */ if (!clk_mgr_base->clks.p_state_change_support) { if (dc->clk_mgr->dc_mode_softmax_enabled && new_clocks->dramclk_khz <= dc->clk_mgr->bw_params->dc_mode_softmax_memclk * 1000) dcn30_smu_set_hard_min_by_freq(clk_mgr, PPCLK_UCLK, dc->clk_mgr->bw_params->dc_mode_softmax_memclk); else dcn30_smu_set_hard_min_by_freq(clk_mgr, PPCLK_UCLK, clk_mgr_base->bw_params->clk_table.entries[clk_mgr_base->bw_params->clk_table.num_entries - 1].memclk_mhz); } } /* Always update saved value, even if new value not set due to P-State switching unsupported */ if (should_set_clock(safe_to_lower, new_clocks->dramclk_khz, clk_mgr_base->clks.dramclk_khz)) { clk_mgr_base->clks.dramclk_khz = new_clocks->dramclk_khz; update_uclk = true; } /* set UCLK to requested value if P-State switching is supported, or to re-enable P-State switching */ if (clk_mgr_base->clks.p_state_change_support && (update_uclk || !clk_mgr_base->clks.prev_p_state_change_support)) dcn30_smu_set_hard_min_by_freq(clk_mgr, PPCLK_UCLK, khz_to_mhz_ceil(clk_mgr_base->clks.dramclk_khz)); if (should_set_clock(safe_to_lower, new_clocks->dppclk_khz, clk_mgr_base->clks.dppclk_khz)) { if (clk_mgr_base->clks.dppclk_khz > new_clocks->dppclk_khz) dpp_clock_lowered = true; clk_mgr_base->clks.dppclk_khz = new_clocks->dppclk_khz; dcn30_smu_set_hard_min_by_freq(clk_mgr, PPCLK_PIXCLK, khz_to_mhz_ceil(clk_mgr_base->clks.dppclk_khz)); update_dppclk = true; } if (should_set_clock(safe_to_lower, new_clocks->dispclk_khz, clk_mgr_base->clks.dispclk_khz)) { clk_mgr_base->clks.dispclk_khz = new_clocks->dispclk_khz; dcn30_smu_set_hard_min_by_freq(clk_mgr, PPCLK_DISPCLK, khz_to_mhz_ceil(clk_mgr_base->clks.dispclk_khz)); update_dispclk = true; } if (dc->config.forced_clocks == false || (force_reset && safe_to_lower)) { if (dpp_clock_lowered) { /* if clock is being lowered, increase DTO before lowering refclk */ dcn20_update_clocks_update_dpp_dto(clk_mgr, context, safe_to_lower); dcn20_update_clocks_update_dentist(clk_mgr, context); } else { /* if clock is being raised, increase refclk before lowering DTO */ if (update_dppclk || update_dispclk) dcn20_update_clocks_update_dentist(clk_mgr, context); /* There is a check inside dcn20_update_clocks_update_dpp_dto which ensures * that we do not lower dto when it is not safe to lower. We do not need to * compare the current and new dppclk before calling this function.*/ dcn20_update_clocks_update_dpp_dto(clk_mgr, context, safe_to_lower); } } if (update_dispclk && dmcu && dmcu->funcs->is_dmcu_initialized(dmcu)) /*update dmcu for wait_loop count*/ dmcu->funcs->set_psr_wait_loop(dmcu, clk_mgr_base->clks.dispclk_khz / 1000 / 7); } static void dcn3_notify_wm_ranges(struct clk_mgr *clk_mgr_base) { unsigned int i; struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base); WatermarksExternal_t *table = (WatermarksExternal_t *) clk_mgr->wm_range_table; if (!clk_mgr->smu_present) return; if (!table) // should log failure return; memset(table, 0, sizeof(*table)); /* collect valid ranges, place in pmfw table */ for (i = 0; i < WM_SET_COUNT; i++) if (clk_mgr->base.bw_params->wm_table.nv_entries[i].valid) { table->Watermarks.WatermarkRow[WM_DCEFCLK][i].MinClock = clk_mgr->base.bw_params->wm_table.nv_entries[i].pmfw_breakdown.min_dcfclk; table->Watermarks.WatermarkRow[WM_DCEFCLK][i].MaxClock = clk_mgr->base.bw_params->wm_table.nv_entries[i].pmfw_breakdown.max_dcfclk; table->Watermarks.WatermarkRow[WM_DCEFCLK][i].MinUclk = clk_mgr->base.bw_params->wm_table.nv_entries[i].pmfw_breakdown.min_uclk; table->Watermarks.WatermarkRow[WM_DCEFCLK][i].MaxUclk = clk_mgr->base.bw_params->wm_table.nv_entries[i].pmfw_breakdown.max_uclk; table->Watermarks.WatermarkRow[WM_DCEFCLK][i].WmSetting = i; table->Watermarks.WatermarkRow[WM_DCEFCLK][i].Flags = clk_mgr->base.bw_params->wm_table.nv_entries[i].pmfw_breakdown.wm_type; } dcn30_smu_set_dram_addr_high(clk_mgr, clk_mgr->wm_range_table_addr >> 32); dcn30_smu_set_dram_addr_low(clk_mgr, clk_mgr->wm_range_table_addr & 0xFFFFFFFF); dcn30_smu_transfer_wm_table_dram_2_smu(clk_mgr); } /* Set min memclk to minimum, either constrained by the current mode or DPM0 */ static void dcn3_set_hard_min_memclk(struct clk_mgr *clk_mgr_base, bool current_mode) { struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base); if (!clk_mgr->smu_present) return; if (current_mode) { if (clk_mgr_base->clks.p_state_change_support) dcn30_smu_set_hard_min_by_freq(clk_mgr, PPCLK_UCLK, khz_to_mhz_ceil(clk_mgr_base->clks.dramclk_khz)); else dcn30_smu_set_hard_min_by_freq(clk_mgr, PPCLK_UCLK, clk_mgr_base->bw_params->clk_table.entries[clk_mgr_base->bw_params->clk_table.num_entries - 1].memclk_mhz); } else { dcn30_smu_set_hard_min_by_freq(clk_mgr, PPCLK_UCLK, clk_mgr_base->bw_params->clk_table.entries[0].memclk_mhz); } } /* Set max memclk to highest DPM value */ static void dcn3_set_hard_max_memclk(struct clk_mgr *clk_mgr_base) { struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base); if (!clk_mgr->smu_present) return; dcn30_smu_set_hard_max_by_freq(clk_mgr, PPCLK_UCLK, clk_mgr_base->bw_params->clk_table.entries[clk_mgr_base->bw_params->clk_table.num_entries - 1].memclk_mhz); } static void dcn3_set_max_memclk(struct clk_mgr *clk_mgr_base, unsigned int memclk_mhz) { struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base); if (!clk_mgr->smu_present) return; dcn30_smu_set_hard_max_by_freq(clk_mgr, PPCLK_UCLK, memclk_mhz); } static void dcn3_set_min_memclk(struct clk_mgr *clk_mgr_base, unsigned int memclk_mhz) { struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base); if (!clk_mgr->smu_present) return; dcn30_smu_set_hard_min_by_freq(clk_mgr, PPCLK_UCLK, memclk_mhz); } /* Get current memclk states, update bounding box */ static void dcn3_get_memclk_states_from_smu(struct clk_mgr *clk_mgr_base) { struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base); unsigned int num_levels; if (!clk_mgr->smu_present) return; /* Refresh memclk states */ dcn3_init_single_clock(clk_mgr, PPCLK_UCLK, &clk_mgr_base->bw_params->clk_table.entries[0].memclk_mhz, &num_levels); clk_mgr_base->bw_params->clk_table.num_entries = num_levels ? num_levels : 1; clk_mgr_base->bw_params->dc_mode_softmax_memclk = dcn30_smu_get_dc_mode_max_dpm_freq(clk_mgr, PPCLK_UCLK); /* Refresh bounding box */ DC_FP_START(); clk_mgr_base->ctx->dc->res_pool->funcs->update_bw_bounding_box( clk_mgr->base.ctx->dc, clk_mgr_base->bw_params); DC_FP_END(); } static bool dcn3_is_smu_present(struct clk_mgr *clk_mgr_base) { struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base); return clk_mgr->smu_present; } static bool dcn3_are_clock_states_equal(struct dc_clocks *a, struct dc_clocks *b) { if (a->dispclk_khz != b->dispclk_khz) return false; else if (a->dppclk_khz != b->dppclk_khz) return false; else if (a->dcfclk_khz != b->dcfclk_khz) return false; else if (a->dcfclk_deep_sleep_khz != b->dcfclk_deep_sleep_khz) return false; else if (a->dramclk_khz != b->dramclk_khz) return false; else if (a->p_state_change_support != b->p_state_change_support) return false; return true; } static void dcn3_enable_pme_wa(struct clk_mgr *clk_mgr_base) { struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base); if (!clk_mgr->smu_present) return; dcn30_smu_set_pme_workaround(clk_mgr); } /* Notify clk_mgr of a change in link rate, update phyclk frequency if necessary */ static void dcn30_notify_link_rate_change(struct clk_mgr *clk_mgr_base, struct dc_link *link) { struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base); unsigned int i, max_phyclk_req = clk_mgr_base->bw_params->clk_table.entries[0].phyclk_mhz * 1000; if (!clk_mgr->smu_present) return; /* TODO - DP2.0 HW: calculate link 128b/132 link rate in clock manager with new formula */ clk_mgr->cur_phyclk_req_table[link->link_index] = link->cur_link_settings.link_rate * LINK_RATE_REF_FREQ_IN_KHZ; for (i = 0; i < MAX_LINKS; i++) { if (clk_mgr->cur_phyclk_req_table[i] > max_phyclk_req) max_phyclk_req = clk_mgr->cur_phyclk_req_table[i]; } if (max_phyclk_req != clk_mgr_base->clks.phyclk_khz) { clk_mgr_base->clks.phyclk_khz = max_phyclk_req; dcn30_smu_set_hard_min_by_freq(clk_mgr, PPCLK_PHYCLK, khz_to_mhz_ceil(clk_mgr_base->clks.phyclk_khz)); } } static struct clk_mgr_funcs dcn3_funcs = { .get_dp_ref_clk_frequency = dce12_get_dp_ref_freq_khz, .update_clocks = dcn3_update_clocks, .init_clocks = dcn3_init_clocks, .notify_wm_ranges = dcn3_notify_wm_ranges, .set_hard_min_memclk = dcn3_set_hard_min_memclk, .set_hard_max_memclk = dcn3_set_hard_max_memclk, .set_max_memclk = dcn3_set_max_memclk, .set_min_memclk = dcn3_set_min_memclk, .get_memclk_states_from_smu = dcn3_get_memclk_states_from_smu, .are_clock_states_equal = dcn3_are_clock_states_equal, .enable_pme_wa = dcn3_enable_pme_wa, .notify_link_rate_change = dcn30_notify_link_rate_change, .is_smu_present = dcn3_is_smu_present }; static void dcn3_init_clocks_fpga(struct clk_mgr *clk_mgr) { dcn2_init_clocks(clk_mgr); /* TODO: Implement the functions and remove the ifndef guard */ } struct clk_mgr_funcs dcn3_fpga_funcs = { .get_dp_ref_clk_frequency = dce12_get_dp_ref_freq_khz, .update_clocks = dcn2_update_clocks_fpga, .init_clocks = dcn3_init_clocks_fpga, }; /*todo for dcn30 for clk register offset*/ void dcn3_clk_mgr_construct( struct dc_context *ctx, struct clk_mgr_internal *clk_mgr, struct pp_smu_funcs *pp_smu, struct dccg *dccg) { struct clk_state_registers_and_bypass s = { 0 }; clk_mgr->base.ctx = ctx; clk_mgr->base.funcs = &dcn3_funcs; clk_mgr->regs = &clk_mgr_regs; clk_mgr->clk_mgr_shift = &clk_mgr_shift; clk_mgr->clk_mgr_mask = &clk_mgr_mask; clk_mgr->dccg = dccg; clk_mgr->dfs_bypass_disp_clk = 0; clk_mgr->dprefclk_ss_percentage = 0; clk_mgr->dprefclk_ss_divider = 1000; clk_mgr->ss_on_dprefclk = false; clk_mgr->dfs_ref_freq_khz = 100000; clk_mgr->base.dprefclk_khz = 730000; // 700 MHz planned if VCO is 3.85 GHz, will be retrieved /* integer part is now VCO frequency in kHz */ clk_mgr->base.dentist_vco_freq_khz = dcn30_get_vco_frequency_from_reg(clk_mgr); /* in case we don't get a value from the register, use default */ if (clk_mgr->base.dentist_vco_freq_khz == 0) clk_mgr->base.dentist_vco_freq_khz = 3650000; /* Convert dprefclk units from MHz to KHz */ /* Value already divided by 10, some resolution lost */ /*TODO: uncomment assert once dcn3_dump_clk_registers is implemented */ //ASSERT(s.dprefclk != 0); if (s.dprefclk != 0) clk_mgr->base.dprefclk_khz = s.dprefclk * 1000; clk_mgr->dfs_bypass_enabled = false; clk_mgr->smu_present = false; dce_clock_read_ss_info(clk_mgr); clk_mgr->base.bw_params = kzalloc(sizeof(*clk_mgr->base.bw_params), GFP_KERNEL); if (!clk_mgr->base.bw_params) { BREAK_TO_DEBUGGER(); return; } /* need physical address of table to give to PMFW */ clk_mgr->wm_range_table = dm_helpers_allocate_gpu_mem(clk_mgr->base.ctx, DC_MEM_ALLOC_TYPE_GART, sizeof(WatermarksExternal_t), &clk_mgr->wm_range_table_addr); if (!clk_mgr->wm_range_table) { BREAK_TO_DEBUGGER(); return; } } void dcn3_clk_mgr_destroy(struct clk_mgr_internal *clk_mgr) { kfree(clk_mgr->base.bw_params); if (clk_mgr->wm_range_table) dm_helpers_free_gpu_mem(clk_mgr->base.ctx, DC_MEM_ALLOC_TYPE_GART, clk_mgr->wm_range_table); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1