Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Aurabindo Pillai | 1355 | 21.50% | 2 | 2.20% |
Alvin lee | 1008 | 15.99% | 14 | 15.38% |
Bhawanpreet Lakha | 918 | 14.57% | 2 | 2.20% |
Dillon Varone | 662 | 10.50% | 9 | 9.89% |
Relja Vojvodic | 546 | 8.66% | 3 | 3.30% |
rodrigosiqueira | 492 | 7.81% | 4 | 4.40% |
Eric Yang | 244 | 3.87% | 2 | 2.20% |
Charlene Liu | 153 | 2.43% | 2 | 2.20% |
Jun Lei | 148 | 2.35% | 4 | 4.40% |
Austin Zheng | 126 | 2.00% | 1 | 1.10% |
Leo (Hanghong) Ma | 92 | 1.46% | 3 | 3.30% |
Ethan Bitnun | 91 | 1.44% | 2 | 2.20% |
Alex Deucher | 81 | 1.29% | 4 | 4.40% |
Joshua Aberback | 80 | 1.27% | 2 | 2.20% |
Samson Tam | 69 | 1.09% | 3 | 3.30% |
Harry Wentland | 51 | 0.81% | 4 | 4.40% |
Aric Cyr | 32 | 0.51% | 2 | 2.20% |
George Shen | 26 | 0.41% | 1 | 1.10% |
Dmytro Laktyushkin | 24 | 0.38% | 7 | 7.69% |
Hersen Wu | 17 | 0.27% | 2 | 2.20% |
Martin Leung | 13 | 0.21% | 2 | 2.20% |
Alex Hung | 11 | 0.17% | 2 | 2.20% |
Wenjing Liu | 11 | 0.17% | 2 | 2.20% |
Reza Amini | 10 | 0.16% | 1 | 1.10% |
Roman Li | 7 | 0.11% | 1 | 1.10% |
Anthony Koo | 7 | 0.11% | 1 | 1.10% |
Bindu Ramamurthy | 6 | 0.10% | 1 | 1.10% |
Chris Park | 6 | 0.10% | 1 | 1.10% |
Chaitanya Dhere | 6 | 0.10% | 2 | 2.20% |
Tony Cheng | 4 | 0.06% | 1 | 1.10% |
Yongqiang Sun | 2 | 0.03% | 1 | 1.10% |
Meera Patel | 2 | 0.03% | 1 | 1.10% |
Jerry (Fangzhi) Zuo | 1 | 0.02% | 1 | 1.10% |
Zaeem Mohamed | 1 | 0.02% | 1 | 1.10% |
Total | 6302 | 91 |
/* * Copyright 2021 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: AMD * */ #include "dccg.h" #include "clk_mgr_internal.h" #include "dcn32/dcn32_clk_mgr_smu_msg.h" #include "dcn20/dcn20_clk_mgr.h" #include "dce100/dce_clk_mgr.h" #include "dcn31/dcn31_clk_mgr.h" #include "dcn32/dcn32_clk_mgr.h" #include "reg_helper.h" #include "core_types.h" #include "dm_helpers.h" #include "link.h" #include "dc_state_priv.h" #include "atomfirmware.h" #include "dcn32_smu13_driver_if.h" #include "dcn/dcn_3_2_0_offset.h" #include "dcn/dcn_3_2_0_sh_mask.h" #include "dml/dcn32/dcn32_fpu.h" #define DCN_BASE__INST0_SEG1 0x000000C0 #define mmCLK1_CLK_PLL_REQ 0x16E37 #define mmCLK1_CLK0_DFS_CNTL 0x16E69 #define mmCLK1_CLK1_DFS_CNTL 0x16E6C #define mmCLK1_CLK2_DFS_CNTL 0x16E6F #define mmCLK1_CLK3_DFS_CNTL 0x16E72 #define mmCLK1_CLK4_DFS_CNTL 0x16E75 #define mmCLK1_CLK0_CURRENT_CNT 0x16EE7 #define mmCLK1_CLK1_CURRENT_CNT 0x16EE8 #define mmCLK1_CLK2_CURRENT_CNT 0x16EE9 #define mmCLK1_CLK3_CURRENT_CNT 0x16EEA #define mmCLK1_CLK4_CURRENT_CNT 0x16EEB #define mmCLK4_CLK0_CURRENT_CNT 0x1B0C9 #define CLK1_CLK_PLL_REQ__FbMult_int_MASK 0x000001ffUL #define CLK1_CLK_PLL_REQ__PllSpineDiv_MASK 0x0000f000UL #define CLK1_CLK_PLL_REQ__FbMult_frac_MASK 0xffff0000UL #define CLK1_CLK_PLL_REQ__FbMult_int__SHIFT 0x00000000 #define CLK1_CLK_PLL_REQ__PllSpineDiv__SHIFT 0x0000000c #define CLK1_CLK_PLL_REQ__FbMult_frac__SHIFT 0x00000010 #define mmCLK01_CLK0_CLK_PLL_REQ 0x16E37 #define mmCLK01_CLK0_CLK0_DFS_CNTL 0x16E64 #define mmCLK01_CLK0_CLK1_DFS_CNTL 0x16E67 #define mmCLK01_CLK0_CLK2_DFS_CNTL 0x16E6A #define mmCLK01_CLK0_CLK3_DFS_CNTL 0x16E6D #define mmCLK01_CLK0_CLK4_DFS_CNTL 0x16E70 #define CLK0_CLK_PLL_REQ__FbMult_int_MASK 0x000001ffL #define CLK0_CLK_PLL_REQ__PllSpineDiv_MASK 0x0000f000L #define CLK0_CLK_PLL_REQ__FbMult_frac_MASK 0xffff0000L #define CLK0_CLK_PLL_REQ__FbMult_int__SHIFT 0x00000000 #define CLK0_CLK_PLL_REQ__PllSpineDiv__SHIFT 0x0000000c #define CLK0_CLK_PLL_REQ__FbMult_frac__SHIFT 0x00000010 #undef FN #define FN(reg_name, field_name) \ clk_mgr->clk_mgr_shift->field_name, clk_mgr->clk_mgr_mask->field_name #define REG(reg) \ (clk_mgr->regs->reg) #define BASE_INNER(seg) DCN_BASE__INST0_SEG ## seg #define BASE(seg) BASE_INNER(seg) #define SR(reg_name)\ .reg_name = BASE(reg ## reg_name ## _BASE_IDX) + \ reg ## reg_name #define CLK_SR_DCN32(reg_name)\ .reg_name = mm ## reg_name static const struct clk_mgr_registers clk_mgr_regs_dcn32 = { CLK_REG_LIST_DCN32() }; static const struct clk_mgr_shift clk_mgr_shift_dcn32 = { CLK_COMMON_MASK_SH_LIST_DCN32(__SHIFT) }; static const struct clk_mgr_mask clk_mgr_mask_dcn32 = { CLK_COMMON_MASK_SH_LIST_DCN32(_MASK) }; #define CLK_SR_DCN321(reg_name, block, inst)\ .reg_name = mm ## block ## _ ## reg_name static const struct clk_mgr_registers clk_mgr_regs_dcn321 = { CLK_REG_LIST_DCN321() }; static const struct clk_mgr_shift clk_mgr_shift_dcn321 = { CLK_COMMON_MASK_SH_LIST_DCN321(__SHIFT) }; static const struct clk_mgr_mask clk_mgr_mask_dcn321 = { CLK_COMMON_MASK_SH_LIST_DCN321(_MASK) }; /* Query SMU for all clock states for a particular clock */ static void dcn32_init_single_clock(struct clk_mgr_internal *clk_mgr, PPCLK_e clk, unsigned int *entry_0, unsigned int *num_levels) { unsigned int i; char *entry_i = (char *)entry_0; uint32_t ret = dcn30_smu_get_dpm_freq_by_index(clk_mgr, clk, 0xFF); if (ret & (1 << 31)) /* fine-grained, only min and max */ *num_levels = 2; else /* discrete, a number of fixed states */ /* will set num_levels to 0 on failure */ *num_levels = ret & 0xFF; /* if the initial message failed, num_levels will be 0 */ for (i = 0; i < *num_levels; i++) { *((unsigned int *)entry_i) = (dcn30_smu_get_dpm_freq_by_index(clk_mgr, clk, i) & 0xFFFF); entry_i += sizeof(clk_mgr->base.bw_params->clk_table.entries[0]); } } static void dcn32_build_wm_range_table(struct clk_mgr_internal *clk_mgr) { DC_FP_START(); dcn32_build_wm_range_table_fpu(clk_mgr); DC_FP_END(); } void dcn32_init_clocks(struct clk_mgr *clk_mgr_base) { struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base); unsigned int num_levels; struct clk_limit_num_entries *num_entries_per_clk; unsigned int i; if (!clk_mgr_base->bw_params) return; num_entries_per_clk = &clk_mgr_base->bw_params->clk_table.num_entries_per_clk; memset(&(clk_mgr_base->clks), 0, sizeof(struct dc_clocks)); clk_mgr_base->clks.p_state_change_support = true; clk_mgr_base->clks.prev_p_state_change_support = true; clk_mgr_base->clks.fclk_prev_p_state_change_support = true; clk_mgr->smu_present = false; clk_mgr->dpm_present = false; if (!clk_mgr_base->force_smu_not_present && dcn30_smu_get_smu_version(clk_mgr, &clk_mgr->smu_ver)) clk_mgr->smu_present = true; if (!clk_mgr->smu_present) return; dcn30_smu_check_driver_if_version(clk_mgr); dcn30_smu_check_msg_header_version(clk_mgr); /* DCFCLK */ dcn32_init_single_clock(clk_mgr, PPCLK_DCFCLK, &clk_mgr_base->bw_params->clk_table.entries[0].dcfclk_mhz, &num_entries_per_clk->num_dcfclk_levels); clk_mgr_base->bw_params->dc_mode_limit.dcfclk_mhz = dcn30_smu_get_dc_mode_max_dpm_freq(clk_mgr, PPCLK_DCFCLK); /* SOCCLK */ dcn32_init_single_clock(clk_mgr, PPCLK_SOCCLK, &clk_mgr_base->bw_params->clk_table.entries[0].socclk_mhz, &num_entries_per_clk->num_socclk_levels); clk_mgr_base->bw_params->dc_mode_limit.socclk_mhz = dcn30_smu_get_dc_mode_max_dpm_freq(clk_mgr, PPCLK_SOCCLK); /* DTBCLK */ if (!clk_mgr->base.ctx->dc->debug.disable_dtb_ref_clk_switch) { dcn32_init_single_clock(clk_mgr, PPCLK_DTBCLK, &clk_mgr_base->bw_params->clk_table.entries[0].dtbclk_mhz, &num_entries_per_clk->num_dtbclk_levels); clk_mgr_base->bw_params->dc_mode_limit.dtbclk_mhz = dcn30_smu_get_dc_mode_max_dpm_freq(clk_mgr, PPCLK_DTBCLK); } /* DISPCLK */ dcn32_init_single_clock(clk_mgr, PPCLK_DISPCLK, &clk_mgr_base->bw_params->clk_table.entries[0].dispclk_mhz, &num_entries_per_clk->num_dispclk_levels); num_levels = num_entries_per_clk->num_dispclk_levels; clk_mgr_base->bw_params->dc_mode_limit.dispclk_mhz = dcn30_smu_get_dc_mode_max_dpm_freq(clk_mgr, PPCLK_DISPCLK); //HW recommends limit of 1950 MHz in display clock for all DCN3.2.x if (clk_mgr_base->bw_params->dc_mode_limit.dispclk_mhz > 1950) clk_mgr_base->bw_params->dc_mode_limit.dispclk_mhz = 1950; /* DPPCLK */ dcn32_init_single_clock(clk_mgr, PPCLK_DPPCLK, &clk_mgr_base->bw_params->clk_table.entries[0].dppclk_mhz, &num_entries_per_clk->num_dppclk_levels); num_levels = num_entries_per_clk->num_dppclk_levels; clk_mgr_base->bw_params->dc_mode_limit.dppclk_mhz = dcn30_smu_get_dc_mode_max_dpm_freq(clk_mgr, PPCLK_DPPCLK); //HW recommends limit of 1950 MHz in display clock for all DCN3.2.x if (clk_mgr_base->bw_params->dc_mode_limit.dppclk_mhz > 1950) clk_mgr_base->bw_params->dc_mode_limit.dppclk_mhz = 1950; if (num_entries_per_clk->num_dcfclk_levels && num_entries_per_clk->num_dtbclk_levels && num_entries_per_clk->num_dispclk_levels) clk_mgr->dpm_present = true; if (clk_mgr_base->ctx->dc->debug.min_disp_clk_khz) { for (i = 0; i < num_levels; i++) if (clk_mgr_base->bw_params->clk_table.entries[i].dispclk_mhz < khz_to_mhz_ceil(clk_mgr_base->ctx->dc->debug.min_disp_clk_khz)) clk_mgr_base->bw_params->clk_table.entries[i].dispclk_mhz = khz_to_mhz_ceil(clk_mgr_base->ctx->dc->debug.min_disp_clk_khz); } for (i = 0; i < num_levels; i++) if (clk_mgr_base->bw_params->clk_table.entries[i].dispclk_mhz > 1950) clk_mgr_base->bw_params->clk_table.entries[i].dispclk_mhz = 1950; if (clk_mgr_base->ctx->dc->debug.min_dpp_clk_khz) { for (i = 0; i < num_levels; i++) if (clk_mgr_base->bw_params->clk_table.entries[i].dppclk_mhz < khz_to_mhz_ceil(clk_mgr_base->ctx->dc->debug.min_dpp_clk_khz)) clk_mgr_base->bw_params->clk_table.entries[i].dppclk_mhz = khz_to_mhz_ceil(clk_mgr_base->ctx->dc->debug.min_dpp_clk_khz); } for (i = 0; i < num_levels; i++) if (clk_mgr_base->bw_params->clk_table.entries[i].dppclk_mhz > 1950) clk_mgr_base->bw_params->clk_table.entries[i].dppclk_mhz = 1950; /* Get UCLK, update bounding box */ clk_mgr_base->funcs->get_memclk_states_from_smu(clk_mgr_base); /* WM range table */ dcn32_build_wm_range_table(clk_mgr); } static void dcn32_update_clocks_update_dtb_dto(struct clk_mgr_internal *clk_mgr, struct dc_state *context, int ref_dtbclk_khz) { struct dccg *dccg = clk_mgr->dccg; uint32_t tg_mask = 0; int i; for (i = 0; i < clk_mgr->base.ctx->dc->res_pool->pipe_count; i++) { struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i]; struct dtbclk_dto_params dto_params = {0}; /* use mask to program DTO once per tg */ if (pipe_ctx->stream_res.tg && !(tg_mask & (1 << pipe_ctx->stream_res.tg->inst))) { tg_mask |= (1 << pipe_ctx->stream_res.tg->inst); dto_params.otg_inst = pipe_ctx->stream_res.tg->inst; dto_params.ref_dtbclk_khz = ref_dtbclk_khz; dccg->funcs->set_dtbclk_dto(clk_mgr->dccg, &dto_params); //dccg->funcs->set_audio_dtbclk_dto(clk_mgr->dccg, &dto_params); } } } /* Since DPPCLK request to PMFW needs to be exact (due to DPP DTO programming), * update DPPCLK to be the exact frequency that will be set after the DPPCLK * divider is updated. This will prevent rounding issues that could cause DPP * refclk and DPP DTO to not match up. */ static void dcn32_update_dppclk_dispclk_freq(struct clk_mgr_internal *clk_mgr, struct dc_clocks *new_clocks) { int dpp_divider = 0; int disp_divider = 0; if (new_clocks->dppclk_khz) { dpp_divider = DENTIST_DIVIDER_RANGE_SCALE_FACTOR * clk_mgr->base.dentist_vco_freq_khz / new_clocks->dppclk_khz; new_clocks->dppclk_khz = (DENTIST_DIVIDER_RANGE_SCALE_FACTOR * clk_mgr->base.dentist_vco_freq_khz) / dpp_divider; } if (new_clocks->dispclk_khz > 0) { disp_divider = DENTIST_DIVIDER_RANGE_SCALE_FACTOR * clk_mgr->base.dentist_vco_freq_khz / new_clocks->dispclk_khz; new_clocks->dispclk_khz = (DENTIST_DIVIDER_RANGE_SCALE_FACTOR * clk_mgr->base.dentist_vco_freq_khz) / disp_divider; } } void dcn32_update_clocks_update_dpp_dto(struct clk_mgr_internal *clk_mgr, struct dc_state *context, bool safe_to_lower) { int i; clk_mgr->dccg->ref_dppclk = clk_mgr->base.clks.dppclk_khz; for (i = 0; i < clk_mgr->base.ctx->dc->res_pool->pipe_count; i++) { int dpp_inst = 0, dppclk_khz, prev_dppclk_khz; dppclk_khz = context->res_ctx.pipe_ctx[i].plane_res.bw.dppclk_khz; if (context->res_ctx.pipe_ctx[i].plane_res.dpp) dpp_inst = context->res_ctx.pipe_ctx[i].plane_res.dpp->inst; else if (!context->res_ctx.pipe_ctx[i].plane_res.dpp && dppclk_khz == 0) { /* dpp == NULL && dppclk_khz == 0 is valid because of pipe harvesting. * In this case just continue in loop */ continue; } else if (!context->res_ctx.pipe_ctx[i].plane_res.dpp && dppclk_khz > 0) { /* The software state is not valid if dpp resource is NULL and * dppclk_khz > 0. */ ASSERT(false); continue; } prev_dppclk_khz = clk_mgr->dccg->pipe_dppclk_khz[i]; if (safe_to_lower || prev_dppclk_khz < dppclk_khz) clk_mgr->dccg->funcs->update_dpp_dto( clk_mgr->dccg, dpp_inst, dppclk_khz); } } static void dcn32_update_clocks_update_dentist( struct clk_mgr_internal *clk_mgr, struct dc_state *context) { uint32_t new_disp_divider = 0; uint32_t new_dispclk_wdivider = 0; uint32_t old_dispclk_wdivider = 0; uint32_t i; uint32_t dentist_dispclk_wdivider_readback = 0; struct dc *dc = clk_mgr->base.ctx->dc; if (clk_mgr->base.clks.dispclk_khz == 0) return; new_disp_divider = DENTIST_DIVIDER_RANGE_SCALE_FACTOR * clk_mgr->base.dentist_vco_freq_khz / clk_mgr->base.clks.dispclk_khz; new_dispclk_wdivider = dentist_get_did_from_divider(new_disp_divider); REG_GET(DENTIST_DISPCLK_CNTL, DENTIST_DISPCLK_WDIVIDER, &old_dispclk_wdivider); /* When changing divider to or from 127, some extra programming is required to prevent corruption */ if (old_dispclk_wdivider == 127 && new_dispclk_wdivider != 127) { for (i = 0; i < clk_mgr->base.ctx->dc->res_pool->pipe_count; i++) { struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i]; uint32_t fifo_level; struct dccg *dccg = clk_mgr->base.ctx->dc->res_pool->dccg; struct stream_encoder *stream_enc = pipe_ctx->stream_res.stream_enc; int32_t N; int32_t j; if (!resource_is_pipe_type(pipe_ctx, OTG_MASTER)) continue; /* Virtual encoders don't have this function */ if (!stream_enc->funcs->get_fifo_cal_average_level) continue; fifo_level = stream_enc->funcs->get_fifo_cal_average_level( stream_enc); N = fifo_level / 4; dccg->funcs->set_fifo_errdet_ovr_en( dccg, true); for (j = 0; j < N - 4; j++) dccg->funcs->otg_drop_pixel( dccg, pipe_ctx->stream_res.tg->inst); dccg->funcs->set_fifo_errdet_ovr_en( dccg, false); } } else if (new_dispclk_wdivider == 127 && old_dispclk_wdivider != 127) { /* request clock with 126 divider first */ uint32_t temp_disp_divider = dentist_get_divider_from_did(126); uint32_t temp_dispclk_khz = (DENTIST_DIVIDER_RANGE_SCALE_FACTOR * clk_mgr->base.dentist_vco_freq_khz) / temp_disp_divider; if (clk_mgr->smu_present) /* * SMU uses discrete dispclk presets. We applied * the same formula to increase our dppclk_khz * to the next matching discrete value. By * contract, we should use the preset dispclk * floored in Mhz to describe the intended clock. */ dcn32_smu_set_hard_min_by_freq(clk_mgr, PPCLK_DISPCLK, khz_to_mhz_floor(temp_dispclk_khz)); if (dc->debug.override_dispclk_programming) { REG_GET(DENTIST_DISPCLK_CNTL, DENTIST_DISPCLK_WDIVIDER, &dentist_dispclk_wdivider_readback); if (dentist_dispclk_wdivider_readback != 126) { REG_UPDATE(DENTIST_DISPCLK_CNTL, DENTIST_DISPCLK_WDIVIDER, 126); REG_WAIT(DENTIST_DISPCLK_CNTL, DENTIST_DISPCLK_CHG_DONE, 1, 50, 2000); } } for (i = 0; i < clk_mgr->base.ctx->dc->res_pool->pipe_count; i++) { struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i]; struct dccg *dccg = clk_mgr->base.ctx->dc->res_pool->dccg; struct stream_encoder *stream_enc = pipe_ctx->stream_res.stream_enc; uint32_t fifo_level; int32_t N; int32_t j; if (!resource_is_pipe_type(pipe_ctx, OTG_MASTER)) continue; /* Virtual encoders don't have this function */ if (!stream_enc->funcs->get_fifo_cal_average_level) continue; fifo_level = stream_enc->funcs->get_fifo_cal_average_level( stream_enc); N = fifo_level / 4; dccg->funcs->set_fifo_errdet_ovr_en(dccg, true); for (j = 0; j < 12 - N; j++) dccg->funcs->otg_add_pixel(dccg, pipe_ctx->stream_res.tg->inst); dccg->funcs->set_fifo_errdet_ovr_en(dccg, false); } } /* do requested DISPCLK updates*/ if (clk_mgr->smu_present) /* * SMU uses discrete dispclk presets. We applied * the same formula to increase our dppclk_khz * to the next matching discrete value. By * contract, we should use the preset dispclk * floored in Mhz to describe the intended clock. */ dcn32_smu_set_hard_min_by_freq(clk_mgr, PPCLK_DISPCLK, khz_to_mhz_floor(clk_mgr->base.clks.dispclk_khz)); if (dc->debug.override_dispclk_programming) { REG_GET(DENTIST_DISPCLK_CNTL, DENTIST_DISPCLK_WDIVIDER, &dentist_dispclk_wdivider_readback); if (dentist_dispclk_wdivider_readback > new_dispclk_wdivider) { REG_UPDATE(DENTIST_DISPCLK_CNTL, DENTIST_DISPCLK_WDIVIDER, new_dispclk_wdivider); REG_WAIT(DENTIST_DISPCLK_CNTL, DENTIST_DISPCLK_CHG_DONE, 1, 50, 2000); } } } static int dcn32_get_dispclk_from_dentist(struct clk_mgr *clk_mgr_base) { struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base); uint32_t dispclk_wdivider; int disp_divider; REG_GET(DENTIST_DISPCLK_CNTL, DENTIST_DISPCLK_WDIVIDER, &dispclk_wdivider); disp_divider = dentist_get_divider_from_did(dispclk_wdivider); /* Return DISPCLK freq in Khz */ if (disp_divider) return (DENTIST_DIVIDER_RANGE_SCALE_FACTOR * clk_mgr->base.dentist_vco_freq_khz) / disp_divider; return 0; } static bool dcn32_check_native_scaling(struct pipe_ctx *pipe) { bool is_native_scaling = false; int width = pipe->plane_state->src_rect.width; int height = pipe->plane_state->src_rect.height; if (pipe->stream->timing.h_addressable == width && pipe->stream->timing.v_addressable == height && pipe->plane_state->dst_rect.width == width && pipe->plane_state->dst_rect.height == height) is_native_scaling = true; return is_native_scaling; } static void dcn32_auto_dpm_test_log( struct dc_clocks *new_clocks, struct clk_mgr_internal *clk_mgr, struct dc_state *context) { unsigned int dispclk_khz_reg, dppclk_khz_reg, dprefclk_khz_reg, dcfclk_khz_reg, dtbclk_khz_reg, fclk_khz_reg, mall_ss_size_bytes; int dramclk_khz_override, fclk_khz_override, num_fclk_levels; struct pipe_ctx *pipe_ctx_list[MAX_PIPES]; int active_pipe_count = 0; for (int i = 0; i < MAX_PIPES; i++) { struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i]; if (pipe_ctx->stream && dc_state_get_pipe_subvp_type(context, pipe_ctx) != SUBVP_PHANTOM) { pipe_ctx_list[active_pipe_count] = pipe_ctx; active_pipe_count++; } } msleep(5); mall_ss_size_bytes = context->bw_ctx.bw.dcn.mall_ss_size_bytes; dispclk_khz_reg = REG_READ(CLK1_CLK0_CURRENT_CNT); // DISPCLK dppclk_khz_reg = REG_READ(CLK1_CLK1_CURRENT_CNT); // DPPCLK dprefclk_khz_reg = REG_READ(CLK1_CLK2_CURRENT_CNT); // DPREFCLK dcfclk_khz_reg = REG_READ(CLK1_CLK3_CURRENT_CNT); // DCFCLK dtbclk_khz_reg = REG_READ(CLK1_CLK4_CURRENT_CNT); // DTBCLK fclk_khz_reg = REG_READ(CLK4_CLK0_CURRENT_CNT); // FCLK // Overrides for these clocks in case there is no p_state change support dramclk_khz_override = new_clocks->dramclk_khz; fclk_khz_override = new_clocks->fclk_khz; num_fclk_levels = clk_mgr->base.bw_params->clk_table.num_entries_per_clk.num_fclk_levels - 1; if (!new_clocks->p_state_change_support) { dramclk_khz_override = clk_mgr->base.bw_params->max_memclk_mhz * 1000; } if (!new_clocks->fclk_p_state_change_support) { fclk_khz_override = clk_mgr->base.bw_params->clk_table.entries[num_fclk_levels].fclk_mhz * 1000; } //////////////////////////////////////////////////////////////////////////// // IMPORTANT: When adding more clocks to these logs, do NOT put a newline // anywhere other than at the very end of the string. // // Formatting example (make sure to have " - " between each entry): // // AutoDPMTest: clk1:%d - clk2:%d - clk3:%d - clk4:%d\n" //////////////////////////////////////////////////////////////////////////// if (active_pipe_count > 0 && new_clocks->dramclk_khz > 0 && new_clocks->fclk_khz > 0 && new_clocks->dcfclk_khz > 0 && new_clocks->dppclk_khz > 0) { uint32_t pix_clk_list[MAX_PIPES] = {0}; int p_state_list[MAX_PIPES] = {0}; int disp_src_width_list[MAX_PIPES] = {0}; int disp_src_height_list[MAX_PIPES] = {0}; uint64_t disp_src_refresh_list[MAX_PIPES] = {0}; bool is_scaled_list[MAX_PIPES] = {0}; for (int i = 0; i < active_pipe_count; i++) { struct pipe_ctx *curr_pipe_ctx = pipe_ctx_list[i]; uint64_t refresh_rate; pix_clk_list[i] = curr_pipe_ctx->stream->timing.pix_clk_100hz; p_state_list[i] = curr_pipe_ctx->p_state_type; refresh_rate = (curr_pipe_ctx->stream->timing.pix_clk_100hz * (uint64_t)100 + curr_pipe_ctx->stream->timing.v_total * (uint64_t)curr_pipe_ctx->stream->timing.h_total - (uint64_t)1); refresh_rate = div_u64(refresh_rate, curr_pipe_ctx->stream->timing.v_total); refresh_rate = div_u64(refresh_rate, curr_pipe_ctx->stream->timing.h_total); disp_src_refresh_list[i] = refresh_rate; if (curr_pipe_ctx->plane_state) { is_scaled_list[i] = !(dcn32_check_native_scaling(curr_pipe_ctx)); disp_src_width_list[i] = curr_pipe_ctx->plane_state->src_rect.width; disp_src_height_list[i] = curr_pipe_ctx->plane_state->src_rect.height; } } DC_LOG_AUTO_DPM_TEST("AutoDPMTest: dramclk:%d - fclk:%d - " "dcfclk:%d - dppclk:%d - dispclk_hw:%d - " "dppclk_hw:%d - dprefclk_hw:%d - dcfclk_hw:%d - " "dtbclk_hw:%d - fclk_hw:%d - pix_clk_0:%d - pix_clk_1:%d - " "pix_clk_2:%d - pix_clk_3:%d - mall_ss_size:%d - p_state_type_0:%d - " "p_state_type_1:%d - p_state_type_2:%d - p_state_type_3:%d - " "pix_width_0:%d - pix_height_0:%d - refresh_rate_0:%lld - is_scaled_0:%d - " "pix_width_1:%d - pix_height_1:%d - refresh_rate_1:%lld - is_scaled_1:%d - " "pix_width_2:%d - pix_height_2:%d - refresh_rate_2:%lld - is_scaled_2:%d - " "pix_width_3:%d - pix_height_3:%d - refresh_rate_3:%lld - is_scaled_3:%d - LOG_END\n", dramclk_khz_override, fclk_khz_override, new_clocks->dcfclk_khz, new_clocks->dppclk_khz, dispclk_khz_reg, dppclk_khz_reg, dprefclk_khz_reg, dcfclk_khz_reg, dtbclk_khz_reg, fclk_khz_reg, pix_clk_list[0], pix_clk_list[1], pix_clk_list[3], pix_clk_list[2], mall_ss_size_bytes, p_state_list[0], p_state_list[1], p_state_list[2], p_state_list[3], disp_src_width_list[0], disp_src_height_list[0], disp_src_refresh_list[0], is_scaled_list[0], disp_src_width_list[1], disp_src_height_list[1], disp_src_refresh_list[1], is_scaled_list[1], disp_src_width_list[2], disp_src_height_list[2], disp_src_refresh_list[2], is_scaled_list[2], disp_src_width_list[3], disp_src_height_list[3], disp_src_refresh_list[3], is_scaled_list[3]); } } static void dcn32_update_clocks(struct clk_mgr *clk_mgr_base, struct dc_state *context, bool safe_to_lower) { struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base); struct dc_clocks *new_clocks = &context->bw_ctx.bw.dcn.clk; struct dc *dc = clk_mgr_base->ctx->dc; int display_count; bool update_dppclk = false; bool update_dispclk = false; bool enter_display_off = false; bool dpp_clock_lowered = false; struct dmcu *dmcu = clk_mgr_base->ctx->dc->res_pool->dmcu; bool force_reset = false; bool update_uclk = false, update_fclk = false; bool p_state_change_support; bool fclk_p_state_change_support; if (clk_mgr_base->clks.dispclk_khz == 0 || (dc->debug.force_clock_mode & 0x1)) { /* This is from resume or boot up, if forced_clock cfg option used, * we bypass program dispclk and DPPCLK, but need set them for S3. */ force_reset = true; dcn2_read_clocks_from_hw_dentist(clk_mgr_base); /* Force_clock_mode 0x1: force reset the clock even it is the same clock * as long as it is in Passive level. */ } display_count = clk_mgr_helper_get_active_display_cnt(dc, context); if (display_count == 0) enter_display_off = true; if (clk_mgr->smu_present) { if (enter_display_off == safe_to_lower) dcn30_smu_set_num_of_displays(clk_mgr, display_count); clk_mgr_base->clks.fclk_prev_p_state_change_support = clk_mgr_base->clks.fclk_p_state_change_support; fclk_p_state_change_support = new_clocks->fclk_p_state_change_support; if (should_update_pstate_support(safe_to_lower, fclk_p_state_change_support, clk_mgr_base->clks.fclk_p_state_change_support) && !dc->work_arounds.clock_update_disable_mask.fclk) { clk_mgr_base->clks.fclk_p_state_change_support = fclk_p_state_change_support; /* To enable FCLK P-state switching, send FCLK_PSTATE_SUPPORTED message to PMFW */ if (clk_mgr_base->ctx->dce_version != DCN_VERSION_3_21 && clk_mgr_base->clks.fclk_p_state_change_support) { /* Handle the code for sending a message to PMFW that FCLK P-state change is supported */ dcn32_smu_send_fclk_pstate_message(clk_mgr, FCLK_PSTATE_SUPPORTED); } } if (dc->debug.force_min_dcfclk_mhz > 0) new_clocks->dcfclk_khz = (new_clocks->dcfclk_khz > (dc->debug.force_min_dcfclk_mhz * 1000)) ? new_clocks->dcfclk_khz : (dc->debug.force_min_dcfclk_mhz * 1000); if (should_set_clock(safe_to_lower, new_clocks->dcfclk_khz, clk_mgr_base->clks.dcfclk_khz) && !dc->work_arounds.clock_update_disable_mask.dcfclk) { clk_mgr_base->clks.dcfclk_khz = new_clocks->dcfclk_khz; dcn32_smu_set_hard_min_by_freq(clk_mgr, PPCLK_DCFCLK, khz_to_mhz_ceil(clk_mgr_base->clks.dcfclk_khz)); } if (should_set_clock(safe_to_lower, new_clocks->dcfclk_deep_sleep_khz, clk_mgr_base->clks.dcfclk_deep_sleep_khz) && !dc->work_arounds.clock_update_disable_mask.dcfclk_ds) { clk_mgr_base->clks.dcfclk_deep_sleep_khz = new_clocks->dcfclk_deep_sleep_khz; dcn30_smu_set_min_deep_sleep_dcef_clk(clk_mgr, khz_to_mhz_ceil(clk_mgr_base->clks.dcfclk_deep_sleep_khz)); } if (should_set_clock(safe_to_lower, new_clocks->socclk_khz, clk_mgr_base->clks.socclk_khz)) /* We don't actually care about socclk, don't notify SMU of hard min */ clk_mgr_base->clks.socclk_khz = new_clocks->socclk_khz; clk_mgr_base->clks.prev_p_state_change_support = clk_mgr_base->clks.p_state_change_support; clk_mgr_base->clks.prev_num_ways = clk_mgr_base->clks.num_ways; if (clk_mgr_base->clks.num_ways != new_clocks->num_ways && clk_mgr_base->clks.num_ways < new_clocks->num_ways) { clk_mgr_base->clks.num_ways = new_clocks->num_ways; dcn32_smu_send_cab_for_uclk_message(clk_mgr, clk_mgr_base->clks.num_ways); } p_state_change_support = new_clocks->p_state_change_support; if (should_update_pstate_support(safe_to_lower, p_state_change_support, clk_mgr_base->clks.p_state_change_support) && !dc->work_arounds.clock_update_disable_mask.uclk) { clk_mgr_base->clks.p_state_change_support = p_state_change_support; /* to disable P-State switching, set UCLK min = max */ if (!clk_mgr_base->clks.p_state_change_support) { if (dc->clk_mgr->dc_mode_softmax_enabled) { /* On DCN32x we will never have the functional UCLK min above the softmax * since we calculate mode support based on softmax being the max UCLK * frequency. */ if (dc->debug.disable_dc_mode_overwrite) { dcn30_smu_set_hard_max_by_freq(clk_mgr, PPCLK_UCLK, dc->clk_mgr->bw_params->max_memclk_mhz); dcn32_smu_set_hard_min_by_freq(clk_mgr, PPCLK_UCLK, dc->clk_mgr->bw_params->max_memclk_mhz); } else dcn32_smu_set_hard_min_by_freq(clk_mgr, PPCLK_UCLK, dc->clk_mgr->bw_params->dc_mode_softmax_memclk); } else { dcn32_smu_set_hard_min_by_freq(clk_mgr, PPCLK_UCLK, dc->clk_mgr->bw_params->max_memclk_mhz); } } } if (context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching) dcn32_smu_wait_for_dmub_ack_mclk(clk_mgr, true); else dcn32_smu_wait_for_dmub_ack_mclk(clk_mgr, false); /* Always update saved value, even if new value not set due to P-State switching unsupported. Also check safe_to_lower for FCLK */ if (safe_to_lower && (clk_mgr_base->clks.fclk_p_state_change_support != clk_mgr_base->clks.fclk_prev_p_state_change_support)) { update_fclk = true; } if (clk_mgr_base->ctx->dce_version != DCN_VERSION_3_21 && !clk_mgr_base->clks.fclk_p_state_change_support && update_fclk && !dc->work_arounds.clock_update_disable_mask.fclk) { /* Handle code for sending a message to PMFW that FCLK P-state change is not supported */ dcn32_smu_send_fclk_pstate_message(clk_mgr, FCLK_PSTATE_NOTSUPPORTED); } /* Always update saved value, even if new value not set due to P-State switching unsupported */ if (should_set_clock(safe_to_lower, new_clocks->dramclk_khz, clk_mgr_base->clks.dramclk_khz) && !dc->work_arounds.clock_update_disable_mask.uclk) { clk_mgr_base->clks.dramclk_khz = new_clocks->dramclk_khz; update_uclk = true; } /* set UCLK to requested value if P-State switching is supported, or to re-enable P-State switching */ if (clk_mgr_base->clks.p_state_change_support && (update_uclk || !clk_mgr_base->clks.prev_p_state_change_support) && !dc->work_arounds.clock_update_disable_mask.uclk) { if (dc->clk_mgr->dc_mode_softmax_enabled && dc->debug.disable_dc_mode_overwrite) dcn30_smu_set_hard_max_by_freq(clk_mgr, PPCLK_UCLK, max((int)dc->clk_mgr->bw_params->dc_mode_softmax_memclk, khz_to_mhz_ceil(clk_mgr_base->clks.dramclk_khz))); dcn32_smu_set_hard_min_by_freq(clk_mgr, PPCLK_UCLK, khz_to_mhz_ceil(clk_mgr_base->clks.dramclk_khz)); } if (clk_mgr_base->clks.num_ways != new_clocks->num_ways && clk_mgr_base->clks.num_ways > new_clocks->num_ways) { clk_mgr_base->clks.num_ways = new_clocks->num_ways; dcn32_smu_send_cab_for_uclk_message(clk_mgr, clk_mgr_base->clks.num_ways); } } dcn32_update_dppclk_dispclk_freq(clk_mgr, new_clocks); if (should_set_clock(safe_to_lower, new_clocks->dppclk_khz, clk_mgr_base->clks.dppclk_khz)) { if (clk_mgr_base->clks.dppclk_khz > new_clocks->dppclk_khz) dpp_clock_lowered = true; clk_mgr_base->clks.dppclk_khz = new_clocks->dppclk_khz; if (clk_mgr->smu_present && !dpp_clock_lowered) /* * SMU uses discrete dppclk presets. We applied * the same formula to increase our dppclk_khz * to the next matching discrete value. By * contract, we should use the preset dppclk * floored in Mhz to describe the intended clock. */ dcn32_smu_set_hard_min_by_freq(clk_mgr, PPCLK_DPPCLK, khz_to_mhz_floor(clk_mgr_base->clks.dppclk_khz)); update_dppclk = true; } if (should_set_clock(safe_to_lower, new_clocks->dispclk_khz, clk_mgr_base->clks.dispclk_khz)) { clk_mgr_base->clks.dispclk_khz = new_clocks->dispclk_khz; update_dispclk = true; } if (!new_clocks->dtbclk_en) { new_clocks->ref_dtbclk_khz = clk_mgr_base->bw_params->clk_table.entries[0].dtbclk_mhz * 1000; } /* clock limits are received with MHz precision, divide by 1000 to prevent setting clocks at every call */ if (!dc->debug.disable_dtb_ref_clk_switch && should_set_clock(safe_to_lower, new_clocks->ref_dtbclk_khz / 1000, clk_mgr_base->clks.ref_dtbclk_khz / 1000)) { /* DCCG requires KHz precision for DTBCLK */ clk_mgr_base->clks.ref_dtbclk_khz = dcn32_smu_set_hard_min_by_freq(clk_mgr, PPCLK_DTBCLK, khz_to_mhz_ceil(new_clocks->ref_dtbclk_khz)); dcn32_update_clocks_update_dtb_dto(clk_mgr, context, clk_mgr_base->clks.ref_dtbclk_khz); } if (dc->config.forced_clocks == false || (force_reset && safe_to_lower)) { if (dpp_clock_lowered) { /* if clock is being lowered, increase DTO before lowering refclk */ dcn32_update_clocks_update_dpp_dto(clk_mgr, context, safe_to_lower); dcn32_update_clocks_update_dentist(clk_mgr, context); if (clk_mgr->smu_present) /* * SMU uses discrete dppclk presets. We applied * the same formula to increase our dppclk_khz * to the next matching discrete value. By * contract, we should use the preset dppclk * floored in Mhz to describe the intended clock. */ dcn32_smu_set_hard_min_by_freq(clk_mgr, PPCLK_DPPCLK, khz_to_mhz_floor(clk_mgr_base->clks.dppclk_khz)); } else { /* if clock is being raised, increase refclk before lowering DTO */ if (update_dppclk || update_dispclk) dcn32_update_clocks_update_dentist(clk_mgr, context); /* There is a check inside dcn20_update_clocks_update_dpp_dto which ensures * that we do not lower dto when it is not safe to lower. We do not need to * compare the current and new dppclk before calling this function. */ dcn32_update_clocks_update_dpp_dto(clk_mgr, context, safe_to_lower); } } if (update_dispclk && dmcu && dmcu->funcs->is_dmcu_initialized(dmcu)) /*update dmcu for wait_loop count*/ dmcu->funcs->set_psr_wait_loop(dmcu, clk_mgr_base->clks.dispclk_khz / 1000 / 7); if (dc->config.enable_auto_dpm_test_logs) { dcn32_auto_dpm_test_log(new_clocks, clk_mgr, context); } } static uint32_t dcn32_get_vco_frequency_from_reg(struct clk_mgr_internal *clk_mgr) { struct fixed31_32 pll_req; uint32_t pll_req_reg = 0; /* get FbMult value */ if (ASICREV_IS_GC_11_0_2(clk_mgr->base.ctx->asic_id.hw_internal_rev)) pll_req_reg = REG_READ(CLK0_CLK_PLL_REQ); else pll_req_reg = REG_READ(CLK1_CLK_PLL_REQ); /* set up a fixed-point number * this works because the int part is on the right edge of the register * and the frac part is on the left edge */ pll_req = dc_fixpt_from_int(pll_req_reg & clk_mgr->clk_mgr_mask->FbMult_int); pll_req.value |= pll_req_reg & clk_mgr->clk_mgr_mask->FbMult_frac; /* multiply by REFCLK period */ pll_req = dc_fixpt_mul_int(pll_req, clk_mgr->dfs_ref_freq_khz); return dc_fixpt_floor(pll_req); } static void dcn32_dump_clk_registers(struct clk_state_registers_and_bypass *regs_and_bypass, struct clk_mgr *clk_mgr_base, struct clk_log_info *log_info) { struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base); uint32_t dprefclk_did = 0; uint32_t dcfclk_did = 0; uint32_t dtbclk_did = 0; uint32_t dispclk_did = 0; uint32_t dppclk_did = 0; uint32_t target_div = 0; if (ASICREV_IS_GC_11_0_2(clk_mgr->base.ctx->asic_id.hw_internal_rev)) { /* DFS Slice 0 is used for DISPCLK */ dispclk_did = REG_READ(CLK0_CLK0_DFS_CNTL); /* DFS Slice 1 is used for DPPCLK */ dppclk_did = REG_READ(CLK0_CLK1_DFS_CNTL); /* DFS Slice 2 is used for DPREFCLK */ dprefclk_did = REG_READ(CLK0_CLK2_DFS_CNTL); /* DFS Slice 3 is used for DCFCLK */ dcfclk_did = REG_READ(CLK0_CLK3_DFS_CNTL); /* DFS Slice 4 is used for DTBCLK */ dtbclk_did = REG_READ(CLK0_CLK4_DFS_CNTL); } else { /* DFS Slice 0 is used for DISPCLK */ dispclk_did = REG_READ(CLK1_CLK0_DFS_CNTL); /* DFS Slice 1 is used for DPPCLK */ dppclk_did = REG_READ(CLK1_CLK1_DFS_CNTL); /* DFS Slice 2 is used for DPREFCLK */ dprefclk_did = REG_READ(CLK1_CLK2_DFS_CNTL); /* DFS Slice 3 is used for DCFCLK */ dcfclk_did = REG_READ(CLK1_CLK3_DFS_CNTL); /* DFS Slice 4 is used for DTBCLK */ dtbclk_did = REG_READ(CLK1_CLK4_DFS_CNTL); } /* Convert DISPCLK DFS Slice DID to divider*/ target_div = dentist_get_divider_from_did(dispclk_did); //Get dispclk in khz regs_and_bypass->dispclk = (DENTIST_DIVIDER_RANGE_SCALE_FACTOR * clk_mgr->base.dentist_vco_freq_khz) / target_div; /* Convert DISPCLK DFS Slice DID to divider*/ target_div = dentist_get_divider_from_did(dppclk_did); //Get dppclk in khz regs_and_bypass->dppclk = (DENTIST_DIVIDER_RANGE_SCALE_FACTOR * clk_mgr->base.dentist_vco_freq_khz) / target_div; /* Convert DPREFCLK DFS Slice DID to divider*/ target_div = dentist_get_divider_from_did(dprefclk_did); //Get dprefclk in khz regs_and_bypass->dprefclk = (DENTIST_DIVIDER_RANGE_SCALE_FACTOR * clk_mgr->base.dentist_vco_freq_khz) / target_div; /* Convert DCFCLK DFS Slice DID to divider*/ target_div = dentist_get_divider_from_did(dcfclk_did); //Get dcfclk in khz regs_and_bypass->dcfclk = (DENTIST_DIVIDER_RANGE_SCALE_FACTOR * clk_mgr->base.dentist_vco_freq_khz) / target_div; /* Convert DTBCLK DFS Slice DID to divider*/ target_div = dentist_get_divider_from_did(dtbclk_did); //Get dtbclk in khz regs_and_bypass->dtbclk = (DENTIST_DIVIDER_RANGE_SCALE_FACTOR * clk_mgr->base.dentist_vco_freq_khz) / target_div; } static void dcn32_clock_read_ss_info(struct clk_mgr_internal *clk_mgr) { struct dc_bios *bp = clk_mgr->base.ctx->dc_bios; int ss_info_num = bp->funcs->get_ss_entry_number( bp, AS_SIGNAL_TYPE_GPU_PLL); if (ss_info_num) { struct spread_spectrum_info info = { { 0 } }; enum bp_result result = bp->funcs->get_spread_spectrum_info( bp, AS_SIGNAL_TYPE_GPU_PLL, 0, &info); /* SSInfo.spreadSpectrumPercentage !=0 would be sign * that SS is enabled */ if (result == BP_RESULT_OK && info.spread_spectrum_percentage != 0) { clk_mgr->ss_on_dprefclk = true; clk_mgr->dprefclk_ss_divider = info.spread_percentage_divider; if (info.type.CENTER_MODE == 0) { /* Currently for DP Reference clock we * need only SS percentage for * downspread */ clk_mgr->dprefclk_ss_percentage = info.spread_spectrum_percentage; } } } } static void dcn32_notify_wm_ranges(struct clk_mgr *clk_mgr_base) { unsigned int i; struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base); WatermarksExternal_t *table = (WatermarksExternal_t *) clk_mgr->wm_range_table; if (!clk_mgr->smu_present) return; if (!table) return; memset(table, 0, sizeof(*table)); /* collect valid ranges, place in pmfw table */ for (i = 0; i < WM_SET_COUNT; i++) if (clk_mgr->base.bw_params->wm_table.nv_entries[i].valid) { table->Watermarks.WatermarkRow[i].WmSetting = i; table->Watermarks.WatermarkRow[i].Flags = clk_mgr->base.bw_params->wm_table.nv_entries[i].pmfw_breakdown.wm_type; } dcn30_smu_set_dram_addr_high(clk_mgr, clk_mgr->wm_range_table_addr >> 32); dcn30_smu_set_dram_addr_low(clk_mgr, clk_mgr->wm_range_table_addr & 0xFFFFFFFF); dcn32_smu_transfer_wm_table_dram_2_smu(clk_mgr); } /* Set min memclk to minimum, either constrained by the current mode or DPM0 */ static void dcn32_set_hard_min_memclk(struct clk_mgr *clk_mgr_base, bool current_mode) { struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base); if (!clk_mgr->smu_present) return; if (current_mode) { if (clk_mgr_base->clks.p_state_change_support) dcn32_smu_set_hard_min_by_freq(clk_mgr, PPCLK_UCLK, khz_to_mhz_ceil(clk_mgr_base->clks.dramclk_khz)); else dcn32_smu_set_hard_min_by_freq(clk_mgr, PPCLK_UCLK, clk_mgr_base->bw_params->max_memclk_mhz); } else { dcn32_smu_set_hard_min_by_freq(clk_mgr, PPCLK_UCLK, clk_mgr_base->bw_params->clk_table.entries[0].memclk_mhz); } } /* Set max memclk to highest DPM value */ static void dcn32_set_hard_max_memclk(struct clk_mgr *clk_mgr_base) { struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base); if (!clk_mgr->smu_present) return; dcn30_smu_set_hard_max_by_freq(clk_mgr, PPCLK_UCLK, clk_mgr_base->bw_params->max_memclk_mhz); } /* Get current memclk states, update bounding box */ static void dcn32_get_memclk_states_from_smu(struct clk_mgr *clk_mgr_base) { struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base); struct clk_limit_num_entries *num_entries_per_clk = &clk_mgr_base->bw_params->clk_table.num_entries_per_clk; unsigned int num_levels; if (!clk_mgr->smu_present) return; /* Refresh memclk and fclk states */ dcn32_init_single_clock(clk_mgr, PPCLK_UCLK, &clk_mgr_base->bw_params->clk_table.entries[0].memclk_mhz, &num_entries_per_clk->num_memclk_levels); clk_mgr_base->bw_params->dc_mode_limit.memclk_mhz = dcn30_smu_get_dc_mode_max_dpm_freq(clk_mgr, PPCLK_UCLK); clk_mgr_base->bw_params->dc_mode_softmax_memclk = clk_mgr_base->bw_params->dc_mode_limit.memclk_mhz; /* memclk must have at least one level */ num_entries_per_clk->num_memclk_levels = num_entries_per_clk->num_memclk_levels ? num_entries_per_clk->num_memclk_levels : 1; dcn32_init_single_clock(clk_mgr, PPCLK_FCLK, &clk_mgr_base->bw_params->clk_table.entries[0].fclk_mhz, &num_entries_per_clk->num_fclk_levels); clk_mgr_base->bw_params->dc_mode_limit.fclk_mhz = dcn30_smu_get_dc_mode_max_dpm_freq(clk_mgr, PPCLK_FCLK); if (num_entries_per_clk->num_memclk_levels >= num_entries_per_clk->num_fclk_levels) { num_levels = num_entries_per_clk->num_memclk_levels; } else { num_levels = num_entries_per_clk->num_fclk_levels; } clk_mgr_base->bw_params->max_memclk_mhz = clk_mgr_base->bw_params->clk_table.entries[num_entries_per_clk->num_memclk_levels - 1].memclk_mhz; clk_mgr_base->bw_params->clk_table.num_entries = num_levels ? num_levels : 1; if (clk_mgr->dpm_present && !num_levels) clk_mgr->dpm_present = false; if (!clk_mgr->dpm_present) dcn32_patch_dpm_table(clk_mgr_base->bw_params); DC_FP_START(); /* Refresh bounding box */ clk_mgr_base->ctx->dc->res_pool->funcs->update_bw_bounding_box( clk_mgr->base.ctx->dc, clk_mgr_base->bw_params); DC_FP_END(); } static bool dcn32_are_clock_states_equal(struct dc_clocks *a, struct dc_clocks *b) { if (a->dispclk_khz != b->dispclk_khz) return false; else if (a->dppclk_khz != b->dppclk_khz) return false; else if (a->dcfclk_khz != b->dcfclk_khz) return false; else if (a->dcfclk_deep_sleep_khz != b->dcfclk_deep_sleep_khz) return false; else if (a->dramclk_khz != b->dramclk_khz) return false; else if (a->p_state_change_support != b->p_state_change_support) return false; else if (a->fclk_p_state_change_support != b->fclk_p_state_change_support) return false; return true; } static void dcn32_enable_pme_wa(struct clk_mgr *clk_mgr_base) { struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base); if (!clk_mgr->smu_present) return; dcn32_smu_set_pme_workaround(clk_mgr); } static bool dcn32_is_smu_present(struct clk_mgr *clk_mgr_base) { struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base); return clk_mgr->smu_present; } static void dcn32_set_max_memclk(struct clk_mgr *clk_mgr_base, unsigned int memclk_mhz) { struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base); if (!clk_mgr->smu_present) return; dcn30_smu_set_hard_max_by_freq(clk_mgr, PPCLK_UCLK, memclk_mhz); } static void dcn32_set_min_memclk(struct clk_mgr *clk_mgr_base, unsigned int memclk_mhz) { struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base); if (!clk_mgr->smu_present) return; dcn32_smu_set_hard_min_by_freq(clk_mgr, PPCLK_UCLK, memclk_mhz); } static struct clk_mgr_funcs dcn32_funcs = { .get_dp_ref_clk_frequency = dce12_get_dp_ref_freq_khz, .get_dtb_ref_clk_frequency = dcn31_get_dtb_ref_freq_khz, .update_clocks = dcn32_update_clocks, .dump_clk_registers = dcn32_dump_clk_registers, .init_clocks = dcn32_init_clocks, .notify_wm_ranges = dcn32_notify_wm_ranges, .set_hard_min_memclk = dcn32_set_hard_min_memclk, .set_hard_max_memclk = dcn32_set_hard_max_memclk, .set_max_memclk = dcn32_set_max_memclk, .set_min_memclk = dcn32_set_min_memclk, .get_memclk_states_from_smu = dcn32_get_memclk_states_from_smu, .are_clock_states_equal = dcn32_are_clock_states_equal, .enable_pme_wa = dcn32_enable_pme_wa, .is_smu_present = dcn32_is_smu_present, .get_dispclk_from_dentist = dcn32_get_dispclk_from_dentist, }; void dcn32_clk_mgr_construct( struct dc_context *ctx, struct clk_mgr_internal *clk_mgr, struct pp_smu_funcs *pp_smu, struct dccg *dccg) { struct clk_log_info log_info = {0}; clk_mgr->base.ctx = ctx; clk_mgr->base.funcs = &dcn32_funcs; if (ASICREV_IS_GC_11_0_2(clk_mgr->base.ctx->asic_id.hw_internal_rev)) { clk_mgr->regs = &clk_mgr_regs_dcn321; clk_mgr->clk_mgr_shift = &clk_mgr_shift_dcn321; clk_mgr->clk_mgr_mask = &clk_mgr_mask_dcn321; } else { clk_mgr->regs = &clk_mgr_regs_dcn32; clk_mgr->clk_mgr_shift = &clk_mgr_shift_dcn32; clk_mgr->clk_mgr_mask = &clk_mgr_mask_dcn32; } clk_mgr->dccg = dccg; clk_mgr->dfs_bypass_disp_clk = 0; clk_mgr->dprefclk_ss_percentage = 0; clk_mgr->dprefclk_ss_divider = 1000; clk_mgr->ss_on_dprefclk = false; clk_mgr->dfs_ref_freq_khz = 100000; /* Changed from DCN3.2_clock_frequency doc to match * dcn32_dump_clk_registers from 4 * dentist_vco_freq_khz / * dprefclk DID divider */ clk_mgr->base.dprefclk_khz = 716666; if (ctx->dc->debug.disable_dtb_ref_clk_switch) { //initialize DTB ref clock value if DPM disabled if (ctx->dce_version == DCN_VERSION_3_21) clk_mgr->base.clks.ref_dtbclk_khz = 477800; else clk_mgr->base.clks.ref_dtbclk_khz = 268750; } /* integer part is now VCO frequency in kHz */ clk_mgr->base.dentist_vco_freq_khz = dcn32_get_vco_frequency_from_reg(clk_mgr); /* in case we don't get a value from the register, use default */ if (clk_mgr->base.dentist_vco_freq_khz == 0) clk_mgr->base.dentist_vco_freq_khz = 4300000; /* Updated as per HW docs */ dcn32_dump_clk_registers(&clk_mgr->base.boot_snapshot, &clk_mgr->base, &log_info); if (ctx->dc->debug.disable_dtb_ref_clk_switch && clk_mgr->base.clks.ref_dtbclk_khz != clk_mgr->base.boot_snapshot.dtbclk) { clk_mgr->base.clks.ref_dtbclk_khz = clk_mgr->base.boot_snapshot.dtbclk; } if (clk_mgr->base.boot_snapshot.dprefclk != 0) { clk_mgr->base.dprefclk_khz = clk_mgr->base.boot_snapshot.dprefclk; } dcn32_clock_read_ss_info(clk_mgr); clk_mgr->dfs_bypass_enabled = false; clk_mgr->smu_present = false; clk_mgr->base.bw_params = kzalloc(sizeof(*clk_mgr->base.bw_params), GFP_KERNEL); if (!clk_mgr->base.bw_params) { BREAK_TO_DEBUGGER(); return; } /* need physical address of table to give to PMFW */ clk_mgr->wm_range_table = dm_helpers_allocate_gpu_mem(clk_mgr->base.ctx, DC_MEM_ALLOC_TYPE_GART, sizeof(WatermarksExternal_t), &clk_mgr->wm_range_table_addr); if (!clk_mgr->wm_range_table) { BREAK_TO_DEBUGGER(); return; } } void dcn32_clk_mgr_destroy(struct clk_mgr_internal *clk_mgr) { kfree(clk_mgr->base.bw_params); if (clk_mgr->wm_range_table) dm_helpers_free_gpu_mem(clk_mgr->base.ctx, DC_MEM_ALLOC_TYPE_GART, clk_mgr->wm_range_table); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1