Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Harry Wentland | 1330 | 25.87% | 13 | 11.30% |
Ethan Bitnun | 1278 | 24.85% | 2 | 1.74% |
Aric Cyr | 403 | 7.84% | 2 | 1.74% |
Alex Hung | 277 | 5.39% | 6 | 5.22% |
Roy Chan | 200 | 3.89% | 1 | 0.87% |
Ryan Seto | 148 | 2.88% | 1 | 0.87% |
Leo (Hanghong) Ma | 121 | 2.35% | 3 | 2.61% |
Charlene Liu | 113 | 2.20% | 4 | 3.48% |
Jerry (Fangzhi) Zuo | 90 | 1.75% | 3 | 2.61% |
Alex Deucher | 88 | 1.71% | 1 | 0.87% |
Nicholas Kazlauskas | 83 | 1.61% | 4 | 3.48% |
Hersen Wu | 66 | 1.28% | 1 | 0.87% |
Jun Lei | 66 | 1.28% | 2 | 1.74% |
Bhawanpreet Lakha | 64 | 1.24% | 6 | 5.22% |
Alvin lee | 58 | 1.13% | 8 | 6.96% |
Martin Tsai | 52 | 1.01% | 1 | 0.87% |
Duke Du | 48 | 0.93% | 1 | 0.87% |
Leo (Sunpeng) Li | 48 | 0.93% | 4 | 3.48% |
Dave Airlie | 45 | 0.88% | 2 | 1.74% |
Paul Hsieh | 44 | 0.86% | 1 | 0.87% |
Sylvia Tsai | 41 | 0.80% | 1 | 0.87% |
Aurabindo Pillai | 41 | 0.80% | 1 | 0.87% |
Yue Hin Lau | 38 | 0.74% | 4 | 3.48% |
Wenjing Liu | 38 | 0.74% | 2 | 1.74% |
Julian Parkin | 38 | 0.74% | 1 | 0.87% |
Wen Yang | 35 | 0.68% | 1 | 0.87% |
Anthony Koo | 33 | 0.64% | 4 | 3.48% |
Samson Tam | 30 | 0.58% | 1 | 0.87% |
Yongqiang Sun | 29 | 0.56% | 2 | 1.74% |
Josip Pavic | 26 | 0.51% | 2 | 1.74% |
Dmytro Laktyushkin | 22 | 0.43% | 1 | 0.87% |
Jimmy Kizito | 21 | 0.41% | 1 | 0.87% |
Dillon Varone | 19 | 0.37% | 2 | 1.74% |
Max Tseng | 17 | 0.33% | 2 | 1.74% |
Shirish S | 12 | 0.23% | 2 | 1.74% |
Vladimir Stempen | 12 | 0.23% | 1 | 0.87% |
Chris Park | 8 | 0.16% | 1 | 0.87% |
Ken Chalmers | 8 | 0.16% | 1 | 0.87% |
Srinivasan S | 8 | 0.16% | 1 | 0.87% |
Wayne Lin | 6 | 0.12% | 1 | 0.87% |
Andrey Grodzovsky | 6 | 0.12% | 1 | 0.87% |
Linus Torvalds | 5 | 0.10% | 1 | 0.87% |
Fuqian Huang | 3 | 0.06% | 1 | 0.87% |
David Francis | 3 | 0.06% | 1 | 0.87% |
Colin Ian King | 3 | 0.06% | 2 | 1.74% |
Joshua Aberback | 3 | 0.06% | 1 | 0.87% |
Guenter Roeck | 2 | 0.04% | 1 | 0.87% |
Krunoslav Kovac | 2 | 0.04% | 1 | 0.87% |
Eric Cook | 2 | 0.04% | 1 | 0.87% |
Eric Yang | 2 | 0.04% | 1 | 0.87% |
Martin Leung | 2 | 0.04% | 1 | 0.87% |
Lee Jones | 1 | 0.02% | 1 | 0.87% |
Eric Bernstein | 1 | 0.02% | 1 | 0.87% |
rodrigosiqueira | 1 | 0.02% | 1 | 0.87% |
Andrew Jiang | 1 | 0.02% | 1 | 0.87% |
Tony Cheng | 1 | 0.02% | 1 | 0.87% |
Total | 5142 | 115 |
/* * Copyright 2012-15 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: AMD * */ #include "dm_services.h" #include "basics/dc_common.h" #include "dc.h" #include "core_types.h" #include "resource.h" #include "ipp.h" #include "timing_generator.h" #include "dc_dmub_srv.h" #include "dc_state_priv.h" #include "dc_stream_priv.h" #define DC_LOGGER dc->ctx->logger #ifndef MIN #define MIN(X, Y) ((X) < (Y) ? (X) : (Y)) #define MAX(x, y) ((x > y) ? x : y) #endif /******************************************************************************* * Private functions ******************************************************************************/ void update_stream_signal(struct dc_stream_state *stream, struct dc_sink *sink) { if (sink->sink_signal == SIGNAL_TYPE_NONE) stream->signal = stream->link->connector_signal; else stream->signal = sink->sink_signal; if (dc_is_dvi_signal(stream->signal)) { if (stream->ctx->dc->caps.dual_link_dvi && (stream->timing.pix_clk_100hz / 10) > TMDS_MAX_PIXEL_CLOCK && sink->sink_signal != SIGNAL_TYPE_DVI_SINGLE_LINK) stream->signal = SIGNAL_TYPE_DVI_DUAL_LINK; else stream->signal = SIGNAL_TYPE_DVI_SINGLE_LINK; } } bool dc_stream_construct(struct dc_stream_state *stream, struct dc_sink *dc_sink_data) { uint32_t i = 0; stream->sink = dc_sink_data; dc_sink_retain(dc_sink_data); stream->ctx = dc_sink_data->ctx; stream->link = dc_sink_data->link; stream->sink_patches = dc_sink_data->edid_caps.panel_patch; stream->converter_disable_audio = dc_sink_data->converter_disable_audio; stream->qs_bit = dc_sink_data->edid_caps.qs_bit; stream->qy_bit = dc_sink_data->edid_caps.qy_bit; /* Copy audio modes */ /* TODO - Remove this translation */ for (i = 0; i < (dc_sink_data->edid_caps.audio_mode_count); i++) { stream->audio_info.modes[i].channel_count = dc_sink_data->edid_caps.audio_modes[i].channel_count; stream->audio_info.modes[i].format_code = dc_sink_data->edid_caps.audio_modes[i].format_code; stream->audio_info.modes[i].sample_rates.all = dc_sink_data->edid_caps.audio_modes[i].sample_rate; stream->audio_info.modes[i].sample_size = dc_sink_data->edid_caps.audio_modes[i].sample_size; } stream->audio_info.mode_count = dc_sink_data->edid_caps.audio_mode_count; stream->audio_info.audio_latency = dc_sink_data->edid_caps.audio_latency; stream->audio_info.video_latency = dc_sink_data->edid_caps.video_latency; memmove( stream->audio_info.display_name, dc_sink_data->edid_caps.display_name, AUDIO_INFO_DISPLAY_NAME_SIZE_IN_CHARS); stream->audio_info.manufacture_id = dc_sink_data->edid_caps.manufacturer_id; stream->audio_info.product_id = dc_sink_data->edid_caps.product_id; stream->audio_info.flags.all = dc_sink_data->edid_caps.speaker_flags; if (dc_sink_data->dc_container_id != NULL) { struct dc_container_id *dc_container_id = dc_sink_data->dc_container_id; stream->audio_info.port_id[0] = dc_container_id->portId[0]; stream->audio_info.port_id[1] = dc_container_id->portId[1]; } else { /* TODO - WindowDM has implemented, other DMs need Unhardcode port_id */ stream->audio_info.port_id[0] = 0x5558859e; stream->audio_info.port_id[1] = 0xd989449; } /* EDID CAP translation for HDMI 2.0 */ stream->timing.flags.LTE_340MCSC_SCRAMBLE = dc_sink_data->edid_caps.lte_340mcsc_scramble; memset(&stream->timing.dsc_cfg, 0, sizeof(stream->timing.dsc_cfg)); stream->timing.dsc_cfg.num_slices_h = 0; stream->timing.dsc_cfg.num_slices_v = 0; stream->timing.dsc_cfg.bits_per_pixel = 128; stream->timing.dsc_cfg.block_pred_enable = 1; stream->timing.dsc_cfg.linebuf_depth = 9; stream->timing.dsc_cfg.version_minor = 2; stream->timing.dsc_cfg.ycbcr422_simple = 0; update_stream_signal(stream, dc_sink_data); stream->out_transfer_func.type = TF_TYPE_BYPASS; dc_stream_assign_stream_id(stream); return true; } void dc_stream_destruct(struct dc_stream_state *stream) { dc_sink_release(stream->sink); } void dc_stream_assign_stream_id(struct dc_stream_state *stream) { /* MSB is reserved to indicate phantoms */ stream->stream_id = stream->ctx->dc_stream_id_count; stream->ctx->dc_stream_id_count++; } void dc_stream_retain(struct dc_stream_state *stream) { kref_get(&stream->refcount); } static void dc_stream_free(struct kref *kref) { struct dc_stream_state *stream = container_of(kref, struct dc_stream_state, refcount); dc_stream_destruct(stream); kfree(stream); } void dc_stream_release(struct dc_stream_state *stream) { if (stream != NULL) { kref_put(&stream->refcount, dc_stream_free); } } struct dc_stream_state *dc_create_stream_for_sink( struct dc_sink *sink) { struct dc_stream_state *stream; if (sink == NULL) return NULL; stream = kzalloc(sizeof(struct dc_stream_state), GFP_KERNEL); if (stream == NULL) goto alloc_fail; if (dc_stream_construct(stream, sink) == false) goto construct_fail; kref_init(&stream->refcount); return stream; construct_fail: kfree(stream); alloc_fail: return NULL; } struct dc_stream_state *dc_copy_stream(const struct dc_stream_state *stream) { struct dc_stream_state *new_stream; new_stream = kmemdup(stream, sizeof(struct dc_stream_state), GFP_KERNEL); if (!new_stream) return NULL; if (new_stream->sink) dc_sink_retain(new_stream->sink); dc_stream_assign_stream_id(new_stream); /* If using dynamic encoder assignment, wait till stream committed to assign encoder. */ if (new_stream->ctx->dc->res_pool->funcs->link_encs_assign) new_stream->link_enc = NULL; kref_init(&new_stream->refcount); return new_stream; } /** * dc_stream_get_status() - Get current stream status of the given stream state * @stream: The stream to get the stream status for. * * The given stream is expected to exist in dc->current_state. Otherwise, NULL * will be returned. */ struct dc_stream_status *dc_stream_get_status( struct dc_stream_state *stream) { struct dc *dc = stream->ctx->dc; return dc_state_get_stream_status(dc->current_state, stream); } void program_cursor_attributes( struct dc *dc, struct dc_stream_state *stream) { int i; struct resource_context *res_ctx; struct pipe_ctx *pipe_to_program = NULL; if (!stream) return; res_ctx = &dc->current_state->res_ctx; for (i = 0; i < MAX_PIPES; i++) { struct pipe_ctx *pipe_ctx = &res_ctx->pipe_ctx[i]; if (pipe_ctx->stream != stream) continue; if (!pipe_to_program) { pipe_to_program = pipe_ctx; dc->hwss.cursor_lock(dc, pipe_to_program, true); if (pipe_to_program->next_odm_pipe) dc->hwss.cursor_lock(dc, pipe_to_program->next_odm_pipe, true); } dc->hwss.set_cursor_attribute(pipe_ctx); if (dc->ctx->dmub_srv) dc_send_update_cursor_info_to_dmu(pipe_ctx, i); if (dc->hwss.set_cursor_sdr_white_level) dc->hwss.set_cursor_sdr_white_level(pipe_ctx); } if (pipe_to_program) { dc->hwss.cursor_lock(dc, pipe_to_program, false); if (pipe_to_program->next_odm_pipe) dc->hwss.cursor_lock(dc, pipe_to_program->next_odm_pipe, false); } } /* * dc_stream_set_cursor_attributes() - Update cursor attributes and set cursor surface address */ bool dc_stream_set_cursor_attributes( struct dc_stream_state *stream, const struct dc_cursor_attributes *attributes) { struct dc *dc; if (NULL == stream) { dm_error("DC: dc_stream is NULL!\n"); return false; } if (NULL == attributes) { dm_error("DC: attributes is NULL!\n"); return false; } if (attributes->address.quad_part == 0) { dm_output_to_console("DC: Cursor address is 0!\n"); return false; } dc = stream->ctx->dc; /* SubVP is not compatible with HW cursor larger than 64 x 64 x 4. * Therefore, if cursor is greater than 64 x 64 x 4, fallback to SW cursor in the following case: * 1. If the config is a candidate for SubVP high refresh (both single an dual display configs) * 2. If not subvp high refresh, for single display cases, if resolution is >= 5K and refresh rate < 120hz * 3. If not subvp high refresh, for multi display cases, if resolution is >= 4K and refresh rate < 120hz */ if (dc->debug.allow_sw_cursor_fallback && attributes->height * attributes->width * 4 > 16384) { if (check_subvp_sw_cursor_fallback_req(dc, stream)) return false; } stream->cursor_attributes = *attributes; return true; } bool dc_stream_program_cursor_attributes( struct dc_stream_state *stream, const struct dc_cursor_attributes *attributes) { struct dc *dc; bool reset_idle_optimizations = false; dc = stream ? stream->ctx->dc : NULL; if (dc_stream_set_cursor_attributes(stream, attributes)) { dc_z10_restore(dc); /* disable idle optimizations while updating cursor */ if (dc->idle_optimizations_allowed) { dc_allow_idle_optimizations(dc, false); reset_idle_optimizations = true; } program_cursor_attributes(dc, stream); /* re-enable idle optimizations if necessary */ if (reset_idle_optimizations && !dc->debug.disable_dmub_reallow_idle) dc_allow_idle_optimizations(dc, true); return true; } return false; } void program_cursor_position( struct dc *dc, struct dc_stream_state *stream) { int i; struct resource_context *res_ctx; struct pipe_ctx *pipe_to_program = NULL; if (!stream) return; res_ctx = &dc->current_state->res_ctx; for (i = 0; i < MAX_PIPES; i++) { struct pipe_ctx *pipe_ctx = &res_ctx->pipe_ctx[i]; if (pipe_ctx->stream != stream || (!pipe_ctx->plane_res.mi && !pipe_ctx->plane_res.hubp) || !pipe_ctx->plane_state || (!pipe_ctx->plane_res.xfm && !pipe_ctx->plane_res.dpp) || (!pipe_ctx->plane_res.ipp && !pipe_ctx->plane_res.dpp)) continue; if (!pipe_to_program) { pipe_to_program = pipe_ctx; dc->hwss.cursor_lock(dc, pipe_to_program, true); } dc->hwss.set_cursor_position(pipe_ctx); if (dc->ctx->dmub_srv) dc_send_update_cursor_info_to_dmu(pipe_ctx, i); } if (pipe_to_program) dc->hwss.cursor_lock(dc, pipe_to_program, false); } bool dc_stream_set_cursor_position( struct dc_stream_state *stream, const struct dc_cursor_position *position) { if (NULL == stream) { dm_error("DC: dc_stream is NULL!\n"); return false; } if (NULL == position) { dm_error("DC: cursor position is NULL!\n"); return false; } stream->cursor_position = *position; return true; } bool dc_stream_program_cursor_position( struct dc_stream_state *stream, const struct dc_cursor_position *position) { struct dc *dc; bool reset_idle_optimizations = false; const struct dc_cursor_position *old_position; if (!stream) return false; old_position = &stream->cursor_position; dc = stream->ctx->dc; if (dc_stream_set_cursor_position(stream, position)) { dc_z10_restore(dc); /* disable idle optimizations if enabling cursor */ if (dc->idle_optimizations_allowed && (!old_position->enable || dc->debug.exit_idle_opt_for_cursor_updates) && position->enable) { dc_allow_idle_optimizations(dc, false); reset_idle_optimizations = true; } program_cursor_position(dc, stream); /* re-enable idle optimizations if necessary */ if (reset_idle_optimizations && !dc->debug.disable_dmub_reallow_idle) dc_allow_idle_optimizations(dc, true); /* apply/update visual confirm */ if (dc->debug.visual_confirm == VISUAL_CONFIRM_HW_CURSOR) { /* update software state */ uint32_t color_value = MAX_TG_COLOR_VALUE; int i; for (i = 0; i < dc->res_pool->pipe_count; i++) { struct pipe_ctx *pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i]; /* adjust visual confirm color for all pipes with current stream */ if (stream == pipe_ctx->stream) { if (stream->cursor_position.enable) { pipe_ctx->visual_confirm_color.color_r_cr = color_value; pipe_ctx->visual_confirm_color.color_g_y = 0; pipe_ctx->visual_confirm_color.color_b_cb = 0; } else { pipe_ctx->visual_confirm_color.color_r_cr = 0; pipe_ctx->visual_confirm_color.color_g_y = 0; pipe_ctx->visual_confirm_color.color_b_cb = color_value; } /* programming hardware */ if (pipe_ctx->plane_state) dc->hwss.update_visual_confirm_color(dc, pipe_ctx, pipe_ctx->plane_res.hubp->mpcc_id); } } } return true; } return false; } bool dc_stream_add_writeback(struct dc *dc, struct dc_stream_state *stream, struct dc_writeback_info *wb_info) { bool isDrc = false; int i = 0; struct dwbc *dwb; if (stream == NULL) { dm_error("DC: dc_stream is NULL!\n"); return false; } if (wb_info == NULL) { dm_error("DC: dc_writeback_info is NULL!\n"); return false; } if (wb_info->dwb_pipe_inst >= MAX_DWB_PIPES) { dm_error("DC: writeback pipe is invalid!\n"); return false; } dc_exit_ips_for_hw_access(dc); wb_info->dwb_params.out_transfer_func = &stream->out_transfer_func; dwb = dc->res_pool->dwbc[wb_info->dwb_pipe_inst]; dwb->dwb_is_drc = false; /* recalculate and apply DML parameters */ for (i = 0; i < stream->num_wb_info; i++) { /*dynamic update*/ if (stream->writeback_info[i].wb_enabled && stream->writeback_info[i].dwb_pipe_inst == wb_info->dwb_pipe_inst) { stream->writeback_info[i] = *wb_info; isDrc = true; } } if (!isDrc) { ASSERT(stream->num_wb_info + 1 <= MAX_DWB_PIPES); stream->writeback_info[stream->num_wb_info++] = *wb_info; } if (dc->hwss.enable_writeback) { struct dc_stream_status *stream_status = dc_stream_get_status(stream); struct dwbc *dwb = dc->res_pool->dwbc[wb_info->dwb_pipe_inst]; if (stream_status) dwb->otg_inst = stream_status->primary_otg_inst; } if (!dc->hwss.update_bandwidth(dc, dc->current_state)) { dm_error("DC: update_bandwidth failed!\n"); return false; } /* enable writeback */ if (dc->hwss.enable_writeback) { struct dwbc *dwb = dc->res_pool->dwbc[wb_info->dwb_pipe_inst]; if (dwb->funcs->is_enabled(dwb)) { /* writeback pipe already enabled, only need to update */ dc->hwss.update_writeback(dc, wb_info, dc->current_state); } else { /* Enable writeback pipe from scratch*/ dc->hwss.enable_writeback(dc, wb_info, dc->current_state); } } return true; } bool dc_stream_fc_disable_writeback(struct dc *dc, struct dc_stream_state *stream, uint32_t dwb_pipe_inst) { struct dwbc *dwb = dc->res_pool->dwbc[dwb_pipe_inst]; if (stream == NULL) { dm_error("DC: dc_stream is NULL!\n"); return false; } if (dwb_pipe_inst >= MAX_DWB_PIPES) { dm_error("DC: writeback pipe is invalid!\n"); return false; } if (stream->num_wb_info > MAX_DWB_PIPES) { dm_error("DC: num_wb_info is invalid!\n"); return false; } dc_exit_ips_for_hw_access(dc); if (dwb->funcs->set_fc_enable) dwb->funcs->set_fc_enable(dwb, DWB_FRAME_CAPTURE_DISABLE); return true; } bool dc_stream_remove_writeback(struct dc *dc, struct dc_stream_state *stream, uint32_t dwb_pipe_inst) { unsigned int i, j; if (stream == NULL) { dm_error("DC: dc_stream is NULL!\n"); return false; } if (dwb_pipe_inst >= MAX_DWB_PIPES) { dm_error("DC: writeback pipe is invalid!\n"); return false; } if (stream->num_wb_info > MAX_DWB_PIPES) { dm_error("DC: num_wb_info is invalid!\n"); return false; } /* remove writeback info for disabled writeback pipes from stream */ for (i = 0, j = 0; i < stream->num_wb_info; i++) { if (stream->writeback_info[i].wb_enabled) { if (stream->writeback_info[i].dwb_pipe_inst == dwb_pipe_inst) stream->writeback_info[i].wb_enabled = false; /* trim the array */ if (j < i) { memcpy(&stream->writeback_info[j], &stream->writeback_info[i], sizeof(struct dc_writeback_info)); j++; } } } stream->num_wb_info = j; /* recalculate and apply DML parameters */ if (!dc->hwss.update_bandwidth(dc, dc->current_state)) { dm_error("DC: update_bandwidth failed!\n"); return false; } dc_exit_ips_for_hw_access(dc); /* disable writeback */ if (dc->hwss.disable_writeback) { struct dwbc *dwb = dc->res_pool->dwbc[dwb_pipe_inst]; if (dwb->funcs->is_enabled(dwb)) dc->hwss.disable_writeback(dc, dwb_pipe_inst); } return true; } bool dc_stream_warmup_writeback(struct dc *dc, int num_dwb, struct dc_writeback_info *wb_info) { dc_exit_ips_for_hw_access(dc); if (dc->hwss.mmhubbub_warmup) return dc->hwss.mmhubbub_warmup(dc, num_dwb, wb_info); else return false; } uint32_t dc_stream_get_vblank_counter(const struct dc_stream_state *stream) { uint8_t i; struct dc *dc = stream->ctx->dc; struct resource_context *res_ctx = &dc->current_state->res_ctx; dc_exit_ips_for_hw_access(dc); for (i = 0; i < MAX_PIPES; i++) { struct timing_generator *tg = res_ctx->pipe_ctx[i].stream_res.tg; if (res_ctx->pipe_ctx[i].stream != stream || !tg) continue; return tg->funcs->get_frame_count(tg); } return 0; } bool dc_stream_send_dp_sdp(const struct dc_stream_state *stream, const uint8_t *custom_sdp_message, unsigned int sdp_message_size) { int i; struct dc *dc; struct resource_context *res_ctx; if (stream == NULL) { dm_error("DC: dc_stream is NULL!\n"); return false; } dc = stream->ctx->dc; res_ctx = &dc->current_state->res_ctx; dc_exit_ips_for_hw_access(dc); for (i = 0; i < MAX_PIPES; i++) { struct pipe_ctx *pipe_ctx = &res_ctx->pipe_ctx[i]; if (pipe_ctx->stream != stream) continue; if (dc->hwss.send_immediate_sdp_message != NULL) dc->hwss.send_immediate_sdp_message(pipe_ctx, custom_sdp_message, sdp_message_size); else DC_LOG_WARNING("%s:send_immediate_sdp_message not implemented on this ASIC\n", __func__); } return true; } bool dc_stream_get_scanoutpos(const struct dc_stream_state *stream, uint32_t *v_blank_start, uint32_t *v_blank_end, uint32_t *h_position, uint32_t *v_position) { uint8_t i; bool ret = false; struct dc *dc = stream->ctx->dc; struct resource_context *res_ctx = &dc->current_state->res_ctx; dc_exit_ips_for_hw_access(dc); for (i = 0; i < MAX_PIPES; i++) { struct timing_generator *tg = res_ctx->pipe_ctx[i].stream_res.tg; if (res_ctx->pipe_ctx[i].stream != stream || !tg) continue; tg->funcs->get_scanoutpos(tg, v_blank_start, v_blank_end, h_position, v_position); ret = true; break; } return ret; } bool dc_stream_dmdata_status_done(struct dc *dc, struct dc_stream_state *stream) { struct pipe_ctx *pipe = NULL; int i; if (!dc->hwss.dmdata_status_done) return false; for (i = 0; i < MAX_PIPES; i++) { pipe = &dc->current_state->res_ctx.pipe_ctx[i]; if (pipe->stream == stream) break; } /* Stream not found, by default we'll assume HUBP fetched dm data */ if (i == MAX_PIPES) return true; dc_exit_ips_for_hw_access(dc); return dc->hwss.dmdata_status_done(pipe); } bool dc_stream_set_dynamic_metadata(struct dc *dc, struct dc_stream_state *stream, struct dc_dmdata_attributes *attr) { struct pipe_ctx *pipe_ctx = NULL; struct hubp *hubp; int i; /* Dynamic metadata is only supported on HDMI or DP */ if (!dc_is_hdmi_signal(stream->signal) && !dc_is_dp_signal(stream->signal)) return false; /* Check hardware support */ if (!dc->hwss.program_dmdata_engine) return false; for (i = 0; i < MAX_PIPES; i++) { pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i]; if (pipe_ctx->stream == stream) break; } if (i == MAX_PIPES) return false; hubp = pipe_ctx->plane_res.hubp; if (hubp == NULL) return false; pipe_ctx->stream->dmdata_address = attr->address; dc_exit_ips_for_hw_access(dc); dc->hwss.program_dmdata_engine(pipe_ctx); if (hubp->funcs->dmdata_set_attributes != NULL && pipe_ctx->stream->dmdata_address.quad_part != 0) { hubp->funcs->dmdata_set_attributes(hubp, attr); } return true; } enum dc_status dc_stream_add_dsc_to_resource(struct dc *dc, struct dc_state *state, struct dc_stream_state *stream) { if (dc->res_pool->funcs->add_dsc_to_stream_resource) { return dc->res_pool->funcs->add_dsc_to_stream_resource(dc, state, stream); } else { return DC_NO_DSC_RESOURCE; } } struct pipe_ctx *dc_stream_get_pipe_ctx(struct dc_stream_state *stream) { int i = 0; for (i = 0; i < MAX_PIPES; i++) { struct pipe_ctx *pipe = &stream->ctx->dc->current_state->res_ctx.pipe_ctx[i]; if (pipe->stream == stream) return pipe; } return NULL; } void dc_stream_log(const struct dc *dc, const struct dc_stream_state *stream) { DC_LOG_DC( "core_stream 0x%p: src: %d, %d, %d, %d; dst: %d, %d, %d, %d, colorSpace:%d\n", stream, stream->src.x, stream->src.y, stream->src.width, stream->src.height, stream->dst.x, stream->dst.y, stream->dst.width, stream->dst.height, stream->output_color_space); DC_LOG_DC( "\tpix_clk_khz: %d, h_total: %d, v_total: %d, pixelencoder:%d, displaycolorDepth:%d\n", stream->timing.pix_clk_100hz / 10, stream->timing.h_total, stream->timing.v_total, stream->timing.pixel_encoding, stream->timing.display_color_depth); DC_LOG_DC( "\tlink: %d\n", stream->link->link_index); DC_LOG_DC( "\tdsc: %d, mst_pbn: %d\n", stream->timing.flags.DSC, stream->timing.dsc_cfg.mst_pbn); if (stream->sink) { if (stream->sink->sink_signal != SIGNAL_TYPE_VIRTUAL && stream->sink->sink_signal != SIGNAL_TYPE_NONE) { DC_LOG_DC( "\tdispname: %s signal: %x\n", stream->sink->edid_caps.display_name, stream->signal); } } } /* * Finds the greatest index in refresh_rate_hz that contains a value <= refresh */ static int dc_stream_get_nearest_smallest_index(struct dc_stream_state *stream, int refresh) { for (int i = 0; i < (LUMINANCE_DATA_TABLE_SIZE - 1); ++i) { if ((stream->lumin_data.refresh_rate_hz[i] <= refresh) && (refresh < stream->lumin_data.refresh_rate_hz[i + 1])) { return i; } } return 9; } /* * Finds a corresponding brightness for a given refresh rate between 2 given indices, where index1 < index2 */ static int dc_stream_get_brightness_millinits_linear_interpolation (struct dc_stream_state *stream, int index1, int index2, int refresh_hz) { long long slope = 0; if (stream->lumin_data.refresh_rate_hz[index2] != stream->lumin_data.refresh_rate_hz[index1]) { slope = (stream->lumin_data.luminance_millinits[index2] - stream->lumin_data.luminance_millinits[index1]) / (stream->lumin_data.refresh_rate_hz[index2] - stream->lumin_data.refresh_rate_hz[index1]); } int y_intercept = stream->lumin_data.luminance_millinits[index2] - slope * stream->lumin_data.refresh_rate_hz[index2]; return (y_intercept + refresh_hz * slope); } /* * Finds a corresponding refresh rate for a given brightness between 2 given indices, where index1 < index2 */ static int dc_stream_get_refresh_hz_linear_interpolation (struct dc_stream_state *stream, int index1, int index2, int brightness_millinits) { long long slope = 1; if (stream->lumin_data.refresh_rate_hz[index2] != stream->lumin_data.refresh_rate_hz[index1]) { slope = (stream->lumin_data.luminance_millinits[index2] - stream->lumin_data.luminance_millinits[index1]) / (stream->lumin_data.refresh_rate_hz[index2] - stream->lumin_data.refresh_rate_hz[index1]); } int y_intercept = stream->lumin_data.luminance_millinits[index2] - slope * stream->lumin_data.refresh_rate_hz[index2]; return ((int)div64_s64((brightness_millinits - y_intercept), slope)); } /* * Finds the current brightness in millinits given a refresh rate */ static int dc_stream_get_brightness_millinits_from_refresh (struct dc_stream_state *stream, int refresh_hz) { int nearest_smallest_index = dc_stream_get_nearest_smallest_index(stream, refresh_hz); int nearest_smallest_value = stream->lumin_data.refresh_rate_hz[nearest_smallest_index]; if (nearest_smallest_value == refresh_hz) return stream->lumin_data.luminance_millinits[nearest_smallest_index]; if (nearest_smallest_index >= 9) return dc_stream_get_brightness_millinits_linear_interpolation(stream, nearest_smallest_index - 1, nearest_smallest_index, refresh_hz); if (nearest_smallest_value == stream->lumin_data.refresh_rate_hz[nearest_smallest_index + 1]) return stream->lumin_data.luminance_millinits[nearest_smallest_index]; return dc_stream_get_brightness_millinits_linear_interpolation(stream, nearest_smallest_index, nearest_smallest_index + 1, refresh_hz); } /* * Finds the lowest/highest refresh rate (depending on search_for_max_increase) * that can be achieved from starting_refresh_hz while staying * within flicker criteria */ static int dc_stream_calculate_flickerless_refresh_rate(struct dc_stream_state *stream, int current_brightness, int starting_refresh_hz, bool is_gaming, bool search_for_max_increase) { int nearest_smallest_index = dc_stream_get_nearest_smallest_index(stream, starting_refresh_hz); int flicker_criteria_millinits = is_gaming ? stream->lumin_data.flicker_criteria_milli_nits_GAMING : stream->lumin_data.flicker_criteria_milli_nits_STATIC; int safe_upper_bound = current_brightness + flicker_criteria_millinits; int safe_lower_bound = current_brightness - flicker_criteria_millinits; int lumin_millinits_temp = 0; int offset = -1; if (search_for_max_increase) { offset = 1; } /* * Increments up or down by 1 depending on search_for_max_increase */ for (int i = nearest_smallest_index; (i > 0 && !search_for_max_increase) || (i < (LUMINANCE_DATA_TABLE_SIZE - 1) && search_for_max_increase); i += offset) { lumin_millinits_temp = stream->lumin_data.luminance_millinits[i + offset]; if ((lumin_millinits_temp >= safe_upper_bound) || (lumin_millinits_temp <= safe_lower_bound)) { if (stream->lumin_data.refresh_rate_hz[i + offset] == stream->lumin_data.refresh_rate_hz[i]) return stream->lumin_data.refresh_rate_hz[i]; int target_brightness = (stream->lumin_data.luminance_millinits[i + offset] >= (current_brightness + flicker_criteria_millinits)) ? current_brightness + flicker_criteria_millinits : current_brightness - flicker_criteria_millinits; int refresh = 0; /* * Need the second input to be < third input for dc_stream_get_refresh_hz_linear_interpolation */ if (search_for_max_increase) refresh = dc_stream_get_refresh_hz_linear_interpolation(stream, i, i + offset, target_brightness); else refresh = dc_stream_get_refresh_hz_linear_interpolation(stream, i + offset, i, target_brightness); if (refresh == stream->lumin_data.refresh_rate_hz[i + offset]) return stream->lumin_data.refresh_rate_hz[i + offset]; return refresh; } } if (search_for_max_increase) return (int)div64_s64((long long)stream->timing.pix_clk_100hz*100, stream->timing.v_total*(long long)stream->timing.h_total); else return stream->lumin_data.refresh_rate_hz[0]; } /* * Gets the max delta luminance within a specified refresh range */ static int dc_stream_get_max_delta_lumin_millinits(struct dc_stream_state *stream, int hz1, int hz2, bool isGaming) { int lower_refresh_brightness = dc_stream_get_brightness_millinits_from_refresh (stream, hz1); int higher_refresh_brightness = dc_stream_get_brightness_millinits_from_refresh (stream, hz2); int min = lower_refresh_brightness; int max = higher_refresh_brightness; /* * Static screen, therefore no need to scan through array */ if (!isGaming) { if (lower_refresh_brightness >= higher_refresh_brightness) { return lower_refresh_brightness - higher_refresh_brightness; } return higher_refresh_brightness - lower_refresh_brightness; } min = MIN(lower_refresh_brightness, higher_refresh_brightness); max = MAX(lower_refresh_brightness, higher_refresh_brightness); int nearest_smallest_index = dc_stream_get_nearest_smallest_index(stream, hz1); for (; nearest_smallest_index < (LUMINANCE_DATA_TABLE_SIZE - 1) && stream->lumin_data.refresh_rate_hz[nearest_smallest_index + 1] <= hz2 ; nearest_smallest_index++) { min = MIN(min, stream->lumin_data.luminance_millinits[nearest_smallest_index + 1]); max = MAX(max, stream->lumin_data.luminance_millinits[nearest_smallest_index + 1]); } return (max - min); } /* * Determines the max flickerless instant vtotal delta for a stream. * Determines vtotal increase/decrease based on the bool "increase" */ static unsigned int dc_stream_get_max_flickerless_instant_vtotal_delta(struct dc_stream_state *stream, bool is_gaming, bool increase) { if (stream->timing.v_total * stream->timing.h_total == 0) return 0; int current_refresh_hz = (int)div64_s64((long long)stream->timing.pix_clk_100hz*100, stream->timing.v_total*(long long)stream->timing.h_total); int safe_refresh_hz = dc_stream_calculate_flickerless_refresh_rate(stream, dc_stream_get_brightness_millinits_from_refresh(stream, current_refresh_hz), current_refresh_hz, is_gaming, increase); int safe_refresh_v_total = (int)div64_s64((long long)stream->timing.pix_clk_100hz*100, safe_refresh_hz*(long long)stream->timing.h_total); if (increase) return (((int) stream->timing.v_total - safe_refresh_v_total) >= 0) ? (stream->timing.v_total - safe_refresh_v_total) : 0; return ((safe_refresh_v_total - (int) stream->timing.v_total) >= 0) ? (safe_refresh_v_total - stream->timing.v_total) : 0; } /* * Finds the highest refresh rate that can be achieved * from starting_refresh_hz while staying within flicker criteria */ int dc_stream_calculate_max_flickerless_refresh_rate(struct dc_stream_state *stream, int starting_refresh_hz, bool is_gaming) { if (!stream->lumin_data.is_valid) return 0; int current_brightness = dc_stream_get_brightness_millinits_from_refresh(stream, starting_refresh_hz); return dc_stream_calculate_flickerless_refresh_rate(stream, current_brightness, starting_refresh_hz, is_gaming, true); } /* * Finds the lowest refresh rate that can be achieved * from starting_refresh_hz while staying within flicker criteria */ int dc_stream_calculate_min_flickerless_refresh_rate(struct dc_stream_state *stream, int starting_refresh_hz, bool is_gaming) { if (!stream->lumin_data.is_valid) return 0; int current_brightness = dc_stream_get_brightness_millinits_from_refresh(stream, starting_refresh_hz); return dc_stream_calculate_flickerless_refresh_rate(stream, current_brightness, starting_refresh_hz, is_gaming, false); } /* * Determines if there will be a flicker when moving between 2 refresh rates */ bool dc_stream_is_refresh_rate_range_flickerless(struct dc_stream_state *stream, int hz1, int hz2, bool is_gaming) { /* * Assume that we wont flicker if there is invalid data */ if (!stream->lumin_data.is_valid) return false; int dl = dc_stream_get_max_delta_lumin_millinits(stream, hz1, hz2, is_gaming); int flicker_criteria_millinits = (is_gaming) ? stream->lumin_data.flicker_criteria_milli_nits_GAMING : stream->lumin_data.flicker_criteria_milli_nits_STATIC; return (dl <= flicker_criteria_millinits); } /* * Determines the max instant vtotal delta increase that can be applied without * flickering for a given stream */ unsigned int dc_stream_get_max_flickerless_instant_vtotal_decrease(struct dc_stream_state *stream, bool is_gaming) { if (!stream->lumin_data.is_valid) return 0; return dc_stream_get_max_flickerless_instant_vtotal_delta(stream, is_gaming, true); } /* * Determines the max instant vtotal delta decrease that can be applied without * flickering for a given stream */ unsigned int dc_stream_get_max_flickerless_instant_vtotal_increase(struct dc_stream_state *stream, bool is_gaming) { if (!stream->lumin_data.is_valid) return 0; return dc_stream_get_max_flickerless_instant_vtotal_delta(stream, is_gaming, false); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1