Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Qingqing Zhuo | 3015 | 66.02% | 2 | 13.33% |
Daniel Miess | 1087 | 23.80% | 5 | 33.33% |
Muhammad Ahmed | 226 | 4.95% | 1 | 6.67% |
Alex Hung | 156 | 3.42% | 2 | 13.33% |
Nicholas Kazlauskas | 38 | 0.83% | 1 | 6.67% |
Taimur Hassan | 28 | 0.61% | 1 | 6.67% |
Webb Chen | 12 | 0.26% | 2 | 13.33% |
Ilya Bakoulin | 5 | 0.11% | 1 | 6.67% |
Total | 4567 | 15 |
/* SPDX-License-Identifier: MIT */ /* * Copyright 2023 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * */ #include "reg_helper.h" #include "core_types.h" #include "dcn35_dccg.h" #define TO_DCN_DCCG(dccg)\ container_of(dccg, struct dcn_dccg, base) #define REG(reg) \ (dccg_dcn->regs->reg) #undef FN #define FN(reg_name, field_name) \ dccg_dcn->dccg_shift->field_name, dccg_dcn->dccg_mask->field_name #define CTX \ dccg_dcn->base.ctx #define DC_LOGGER \ dccg->ctx->logger static void dccg35_trigger_dio_fifo_resync(struct dccg *dccg) { struct dcn_dccg *dccg_dcn = TO_DCN_DCCG(dccg); uint32_t dispclk_rdivider_value = 0; REG_GET(DENTIST_DISPCLK_CNTL, DENTIST_DISPCLK_RDIVIDER, &dispclk_rdivider_value); REG_UPDATE(DENTIST_DISPCLK_CNTL, DENTIST_DISPCLK_WDIVIDER, dispclk_rdivider_value); } static void dcn35_set_dppclk_enable(struct dccg *dccg, uint32_t dpp_inst, uint32_t enable) { struct dcn_dccg *dccg_dcn = TO_DCN_DCCG(dccg); switch (dpp_inst) { case 0: REG_UPDATE(DPPCLK_CTRL, DPPCLK0_EN, enable); if (dccg->ctx->dc->debug.root_clock_optimization.bits.dpp) REG_UPDATE(DCCG_GATE_DISABLE_CNTL6, DPPCLK0_ROOT_GATE_DISABLE, enable); break; case 1: REG_UPDATE(DPPCLK_CTRL, DPPCLK1_EN, enable); if (dccg->ctx->dc->debug.root_clock_optimization.bits.dpp) REG_UPDATE(DCCG_GATE_DISABLE_CNTL6, DPPCLK1_ROOT_GATE_DISABLE, enable); break; case 2: REG_UPDATE(DPPCLK_CTRL, DPPCLK2_EN, enable); if (dccg->ctx->dc->debug.root_clock_optimization.bits.dpp) REG_UPDATE(DCCG_GATE_DISABLE_CNTL6, DPPCLK2_ROOT_GATE_DISABLE, enable); break; case 3: REG_UPDATE(DPPCLK_CTRL, DPPCLK3_EN, enable); if (dccg->ctx->dc->debug.root_clock_optimization.bits.dpp) REG_UPDATE(DCCG_GATE_DISABLE_CNTL6, DPPCLK3_ROOT_GATE_DISABLE, enable); break; default: break; } } static void dccg35_update_dpp_dto(struct dccg *dccg, int dpp_inst, int req_dppclk) { struct dcn_dccg *dccg_dcn = TO_DCN_DCCG(dccg); if (dccg->dpp_clock_gated[dpp_inst]) { /* * Do not update the DPPCLK DTO if the clock is stopped. */ return; } if (dccg->ref_dppclk && req_dppclk) { int ref_dppclk = dccg->ref_dppclk; int modulo, phase; // phase / modulo = dpp pipe clk / dpp global clk modulo = 0xff; // use FF at the end phase = ((modulo * req_dppclk) + ref_dppclk - 1) / ref_dppclk; if (phase > 0xff) { ASSERT(false); phase = 0xff; } REG_SET_2(DPPCLK_DTO_PARAM[dpp_inst], 0, DPPCLK0_DTO_PHASE, phase, DPPCLK0_DTO_MODULO, modulo); dcn35_set_dppclk_enable(dccg, dpp_inst, true); } else dcn35_set_dppclk_enable(dccg, dpp_inst, false); dccg->pipe_dppclk_khz[dpp_inst] = req_dppclk; } static void dccg35_set_dppclk_root_clock_gating(struct dccg *dccg, uint32_t dpp_inst, uint32_t enable) { struct dcn_dccg *dccg_dcn = TO_DCN_DCCG(dccg); if (!dccg->ctx->dc->debug.root_clock_optimization.bits.dpp) return; switch (dpp_inst) { case 0: REG_UPDATE(DCCG_GATE_DISABLE_CNTL6, DPPCLK0_ROOT_GATE_DISABLE, enable); break; case 1: REG_UPDATE(DCCG_GATE_DISABLE_CNTL6, DPPCLK1_ROOT_GATE_DISABLE, enable); break; case 2: REG_UPDATE(DCCG_GATE_DISABLE_CNTL6, DPPCLK2_ROOT_GATE_DISABLE, enable); break; case 3: REG_UPDATE(DCCG_GATE_DISABLE_CNTL6, DPPCLK3_ROOT_GATE_DISABLE, enable); break; default: break; } } static void dccg35_get_pixel_rate_div( struct dccg *dccg, uint32_t otg_inst, uint32_t *k1, uint32_t *k2) { struct dcn_dccg *dccg_dcn = TO_DCN_DCCG(dccg); uint32_t val_k1 = PIXEL_RATE_DIV_NA, val_k2 = PIXEL_RATE_DIV_NA; *k1 = PIXEL_RATE_DIV_NA; *k2 = PIXEL_RATE_DIV_NA; switch (otg_inst) { case 0: REG_GET_2(OTG_PIXEL_RATE_DIV, OTG0_PIXEL_RATE_DIVK1, &val_k1, OTG0_PIXEL_RATE_DIVK2, &val_k2); break; case 1: REG_GET_2(OTG_PIXEL_RATE_DIV, OTG1_PIXEL_RATE_DIVK1, &val_k1, OTG1_PIXEL_RATE_DIVK2, &val_k2); break; case 2: REG_GET_2(OTG_PIXEL_RATE_DIV, OTG2_PIXEL_RATE_DIVK1, &val_k1, OTG2_PIXEL_RATE_DIVK2, &val_k2); break; case 3: REG_GET_2(OTG_PIXEL_RATE_DIV, OTG3_PIXEL_RATE_DIVK1, &val_k1, OTG3_PIXEL_RATE_DIVK2, &val_k2); break; default: BREAK_TO_DEBUGGER(); return; } *k1 = val_k1; *k2 = val_k2; } static void dccg35_set_pixel_rate_div( struct dccg *dccg, uint32_t otg_inst, enum pixel_rate_div k1, enum pixel_rate_div k2) { struct dcn_dccg *dccg_dcn = TO_DCN_DCCG(dccg); uint32_t cur_k1 = PIXEL_RATE_DIV_NA; uint32_t cur_k2 = PIXEL_RATE_DIV_NA; // Don't program 0xF into the register field. Not valid since // K1 / K2 field is only 1 / 2 bits wide if (k1 == PIXEL_RATE_DIV_NA || k2 == PIXEL_RATE_DIV_NA) { BREAK_TO_DEBUGGER(); return; } dccg35_get_pixel_rate_div(dccg, otg_inst, &cur_k1, &cur_k2); if (k1 == cur_k1 && k2 == cur_k2) return; switch (otg_inst) { case 0: REG_UPDATE_2(OTG_PIXEL_RATE_DIV, OTG0_PIXEL_RATE_DIVK1, k1, OTG0_PIXEL_RATE_DIVK2, k2); break; case 1: REG_UPDATE_2(OTG_PIXEL_RATE_DIV, OTG1_PIXEL_RATE_DIVK1, k1, OTG1_PIXEL_RATE_DIVK2, k2); break; case 2: REG_UPDATE_2(OTG_PIXEL_RATE_DIV, OTG2_PIXEL_RATE_DIVK1, k1, OTG2_PIXEL_RATE_DIVK2, k2); break; case 3: REG_UPDATE_2(OTG_PIXEL_RATE_DIV, OTG3_PIXEL_RATE_DIVK1, k1, OTG3_PIXEL_RATE_DIVK2, k2); break; default: BREAK_TO_DEBUGGER(); return; } } static void dccg35_set_dtbclk_p_src( struct dccg *dccg, enum streamclk_source src, uint32_t otg_inst) { struct dcn_dccg *dccg_dcn = TO_DCN_DCCG(dccg); uint32_t p_src_sel = 0; /* selects dprefclk */ if (src == DTBCLK0) p_src_sel = 2; /* selects dtbclk0 */ switch (otg_inst) { case 0: if (src == REFCLK) REG_UPDATE(DTBCLK_P_CNTL, DTBCLK_P0_EN, 0); else REG_UPDATE_2(DTBCLK_P_CNTL, DTBCLK_P0_SRC_SEL, p_src_sel, DTBCLK_P0_EN, 1); break; case 1: if (src == REFCLK) REG_UPDATE(DTBCLK_P_CNTL, DTBCLK_P1_EN, 0); else REG_UPDATE_2(DTBCLK_P_CNTL, DTBCLK_P1_SRC_SEL, p_src_sel, DTBCLK_P1_EN, 1); break; case 2: if (src == REFCLK) REG_UPDATE(DTBCLK_P_CNTL, DTBCLK_P2_EN, 0); else REG_UPDATE_2(DTBCLK_P_CNTL, DTBCLK_P2_SRC_SEL, p_src_sel, DTBCLK_P2_EN, 1); break; case 3: if (src == REFCLK) REG_UPDATE(DTBCLK_P_CNTL, DTBCLK_P3_EN, 0); else REG_UPDATE_2(DTBCLK_P_CNTL, DTBCLK_P3_SRC_SEL, p_src_sel, DTBCLK_P3_EN, 1); break; default: BREAK_TO_DEBUGGER(); return; } } /* Controls the generation of pixel valid for OTG in (OTG -> HPO case) */ static void dccg35_set_dtbclk_dto( struct dccg *dccg, const struct dtbclk_dto_params *params) { struct dcn_dccg *dccg_dcn = TO_DCN_DCCG(dccg); /* DTO Output Rate / Pixel Rate = 1/4 */ int req_dtbclk_khz = params->pixclk_khz / 4; if (params->ref_dtbclk_khz && req_dtbclk_khz) { uint32_t modulo, phase; switch (params->otg_inst) { case 0: REG_UPDATE(DCCG_GATE_DISABLE_CNTL5, DTBCLK_P0_GATE_DISABLE, 1); break; case 1: REG_UPDATE(DCCG_GATE_DISABLE_CNTL5, DTBCLK_P1_GATE_DISABLE, 1); break; case 2: REG_UPDATE(DCCG_GATE_DISABLE_CNTL5, DTBCLK_P2_GATE_DISABLE, 1); break; case 3: REG_UPDATE(DCCG_GATE_DISABLE_CNTL5, DTBCLK_P3_GATE_DISABLE, 1); break; } // phase / modulo = dtbclk / dtbclk ref modulo = params->ref_dtbclk_khz * 1000; phase = req_dtbclk_khz * 1000; REG_WRITE(DTBCLK_DTO_MODULO[params->otg_inst], modulo); REG_WRITE(DTBCLK_DTO_PHASE[params->otg_inst], phase); REG_UPDATE(OTG_PIXEL_RATE_CNTL[params->otg_inst], DTBCLK_DTO_ENABLE[params->otg_inst], 1); REG_WAIT(OTG_PIXEL_RATE_CNTL[params->otg_inst], DTBCLKDTO_ENABLE_STATUS[params->otg_inst], 1, 1, 100); /* program OTG_PIXEL_RATE_DIV for DIVK1 and DIVK2 fields */ dccg35_set_pixel_rate_div(dccg, params->otg_inst, PIXEL_RATE_DIV_BY_1, PIXEL_RATE_DIV_BY_1); /* The recommended programming sequence to enable DTBCLK DTO to generate * valid pixel HPO DPSTREAM ENCODER, specifies that DTO source select should * be set only after DTO is enabled */ REG_UPDATE(OTG_PIXEL_RATE_CNTL[params->otg_inst], PIPE_DTO_SRC_SEL[params->otg_inst], 2); } else { switch (params->otg_inst) { case 0: REG_UPDATE(DCCG_GATE_DISABLE_CNTL5, DTBCLK_P0_GATE_DISABLE, 0); break; case 1: REG_UPDATE(DCCG_GATE_DISABLE_CNTL5, DTBCLK_P1_GATE_DISABLE, 0); break; case 2: REG_UPDATE(DCCG_GATE_DISABLE_CNTL5, DTBCLK_P2_GATE_DISABLE, 0); break; case 3: REG_UPDATE(DCCG_GATE_DISABLE_CNTL5, DTBCLK_P3_GATE_DISABLE, 0); break; } REG_UPDATE_2(OTG_PIXEL_RATE_CNTL[params->otg_inst], DTBCLK_DTO_ENABLE[params->otg_inst], 0, PIPE_DTO_SRC_SEL[params->otg_inst], params->is_hdmi ? 0 : 1); REG_WRITE(DTBCLK_DTO_MODULO[params->otg_inst], 0); REG_WRITE(DTBCLK_DTO_PHASE[params->otg_inst], 0); } } static void dccg35_set_dpstreamclk( struct dccg *dccg, enum streamclk_source src, int otg_inst, int dp_hpo_inst) { struct dcn_dccg *dccg_dcn = TO_DCN_DCCG(dccg); /* set the dtbclk_p source */ dccg35_set_dtbclk_p_src(dccg, src, otg_inst); /* enabled to select one of the DTBCLKs for pipe */ switch (dp_hpo_inst) { case 0: REG_UPDATE_2(DPSTREAMCLK_CNTL, DPSTREAMCLK0_EN, (src == REFCLK) ? 0 : 1, DPSTREAMCLK0_SRC_SEL, otg_inst); if (dccg->ctx->dc->debug.root_clock_optimization.bits.dpstream) REG_UPDATE(DCCG_GATE_DISABLE_CNTL5, DPSTREAMCLK0_ROOT_GATE_DISABLE, (src == REFCLK) ? 0 : 1); break; case 1: REG_UPDATE_2(DPSTREAMCLK_CNTL, DPSTREAMCLK1_EN, (src == REFCLK) ? 0 : 1, DPSTREAMCLK1_SRC_SEL, otg_inst); if (dccg->ctx->dc->debug.root_clock_optimization.bits.dpstream) REG_UPDATE(DCCG_GATE_DISABLE_CNTL5, DPSTREAMCLK1_ROOT_GATE_DISABLE, (src == REFCLK) ? 0 : 1); break; case 2: REG_UPDATE_2(DPSTREAMCLK_CNTL, DPSTREAMCLK2_EN, (src == REFCLK) ? 0 : 1, DPSTREAMCLK2_SRC_SEL, otg_inst); if (dccg->ctx->dc->debug.root_clock_optimization.bits.dpstream) REG_UPDATE(DCCG_GATE_DISABLE_CNTL5, DPSTREAMCLK2_ROOT_GATE_DISABLE, (src == REFCLK) ? 0 : 1); break; case 3: REG_UPDATE_2(DPSTREAMCLK_CNTL, DPSTREAMCLK3_EN, (src == REFCLK) ? 0 : 1, DPSTREAMCLK3_SRC_SEL, otg_inst); if (dccg->ctx->dc->debug.root_clock_optimization.bits.dpstream) REG_UPDATE(DCCG_GATE_DISABLE_CNTL5, DPSTREAMCLK3_ROOT_GATE_DISABLE, (src == REFCLK) ? 0 : 1); break; default: BREAK_TO_DEBUGGER(); return; } } static void dccg35_set_dpstreamclk_root_clock_gating( struct dccg *dccg, int dp_hpo_inst, bool enable) { struct dcn_dccg *dccg_dcn = TO_DCN_DCCG(dccg); switch (dp_hpo_inst) { case 0: if (dccg->ctx->dc->debug.root_clock_optimization.bits.dpstream) { REG_UPDATE(DCCG_GATE_DISABLE_CNTL5, DPSTREAMCLK0_ROOT_GATE_DISABLE, enable ? 1 : 0); REG_UPDATE(DCCG_GATE_DISABLE_CNTL5, DPSTREAMCLK0_GATE_DISABLE, enable ? 1 : 0); } break; case 1: if (dccg->ctx->dc->debug.root_clock_optimization.bits.dpstream) { REG_UPDATE(DCCG_GATE_DISABLE_CNTL5, DPSTREAMCLK1_ROOT_GATE_DISABLE, enable ? 1 : 0); REG_UPDATE(DCCG_GATE_DISABLE_CNTL5, DPSTREAMCLK1_GATE_DISABLE, enable ? 1 : 0); } break; case 2: if (dccg->ctx->dc->debug.root_clock_optimization.bits.dpstream) { REG_UPDATE(DCCG_GATE_DISABLE_CNTL5, DPSTREAMCLK2_ROOT_GATE_DISABLE, enable ? 1 : 0); REG_UPDATE(DCCG_GATE_DISABLE_CNTL5, DPSTREAMCLK2_GATE_DISABLE, enable ? 1 : 0); } break; case 3: if (dccg->ctx->dc->debug.root_clock_optimization.bits.dpstream) { REG_UPDATE(DCCG_GATE_DISABLE_CNTL5, DPSTREAMCLK3_ROOT_GATE_DISABLE, enable ? 1 : 0); REG_UPDATE(DCCG_GATE_DISABLE_CNTL5, DPSTREAMCLK3_GATE_DISABLE, enable ? 1 : 0); } break; default: BREAK_TO_DEBUGGER(); return; } } static void dccg35_set_physymclk_root_clock_gating( struct dccg *dccg, int phy_inst, bool enable) { struct dcn_dccg *dccg_dcn = TO_DCN_DCCG(dccg); if (!dccg->ctx->dc->debug.root_clock_optimization.bits.physymclk) return; switch (phy_inst) { case 0: REG_UPDATE(DCCG_GATE_DISABLE_CNTL2, PHYASYMCLK_ROOT_GATE_DISABLE, enable ? 1 : 0); break; case 1: REG_UPDATE(DCCG_GATE_DISABLE_CNTL2, PHYBSYMCLK_ROOT_GATE_DISABLE, enable ? 1 : 0); break; case 2: REG_UPDATE(DCCG_GATE_DISABLE_CNTL2, PHYCSYMCLK_ROOT_GATE_DISABLE, enable ? 1 : 0); break; case 3: REG_UPDATE(DCCG_GATE_DISABLE_CNTL2, PHYDSYMCLK_ROOT_GATE_DISABLE, enable ? 1 : 0); break; case 4: REG_UPDATE(DCCG_GATE_DISABLE_CNTL2, PHYESYMCLK_ROOT_GATE_DISABLE, enable ? 1 : 0); break; default: BREAK_TO_DEBUGGER(); return; } } static void dccg35_set_physymclk( struct dccg *dccg, int phy_inst, enum physymclk_clock_source clk_src, bool force_enable) { struct dcn_dccg *dccg_dcn = TO_DCN_DCCG(dccg); /* Force PHYSYMCLK on and Select phyd32clk as the source of clock which is output to PHY through DCIO */ switch (phy_inst) { case 0: if (force_enable) { REG_UPDATE_2(PHYASYMCLK_CLOCK_CNTL, PHYASYMCLK_EN, 1, PHYASYMCLK_SRC_SEL, clk_src); } else { REG_UPDATE_2(PHYASYMCLK_CLOCK_CNTL, PHYASYMCLK_EN, 0, PHYASYMCLK_SRC_SEL, 0); } break; case 1: if (force_enable) { REG_UPDATE_2(PHYBSYMCLK_CLOCK_CNTL, PHYBSYMCLK_EN, 1, PHYBSYMCLK_SRC_SEL, clk_src); } else { REG_UPDATE_2(PHYBSYMCLK_CLOCK_CNTL, PHYBSYMCLK_EN, 0, PHYBSYMCLK_SRC_SEL, 0); } break; case 2: if (force_enable) { REG_UPDATE_2(PHYCSYMCLK_CLOCK_CNTL, PHYCSYMCLK_EN, 1, PHYCSYMCLK_SRC_SEL, clk_src); } else { REG_UPDATE_2(PHYCSYMCLK_CLOCK_CNTL, PHYCSYMCLK_EN, 0, PHYCSYMCLK_SRC_SEL, 0); } break; case 3: if (force_enable) { REG_UPDATE_2(PHYDSYMCLK_CLOCK_CNTL, PHYDSYMCLK_EN, 1, PHYDSYMCLK_SRC_SEL, clk_src); } else { REG_UPDATE_2(PHYDSYMCLK_CLOCK_CNTL, PHYDSYMCLK_EN, 0, PHYDSYMCLK_SRC_SEL, 0); } break; case 4: if (force_enable) { REG_UPDATE_2(PHYESYMCLK_CLOCK_CNTL, PHYESYMCLK_EN, 1, PHYESYMCLK_SRC_SEL, clk_src); } else { REG_UPDATE_2(PHYESYMCLK_CLOCK_CNTL, PHYESYMCLK_EN, 0, PHYESYMCLK_SRC_SEL, 0); } break; default: BREAK_TO_DEBUGGER(); return; } } static void dccg35_set_valid_pixel_rate( struct dccg *dccg, int ref_dtbclk_khz, int otg_inst, int pixclk_khz) { struct dtbclk_dto_params dto_params = {0}; dto_params.ref_dtbclk_khz = ref_dtbclk_khz; dto_params.otg_inst = otg_inst; dto_params.pixclk_khz = pixclk_khz; dto_params.is_hdmi = true; dccg35_set_dtbclk_dto(dccg, &dto_params); } static void dccg35_dpp_root_clock_control( struct dccg *dccg, unsigned int dpp_inst, bool clock_on) { struct dcn_dccg *dccg_dcn = TO_DCN_DCCG(dccg); if (dccg->dpp_clock_gated[dpp_inst] == clock_on) return; if (clock_on) { /* turn off the DTO and leave phase/modulo at max */ dcn35_set_dppclk_enable(dccg, dpp_inst, 1); REG_SET_2(DPPCLK_DTO_PARAM[dpp_inst], 0, DPPCLK0_DTO_PHASE, 0xFF, DPPCLK0_DTO_MODULO, 0xFF); } else { dcn35_set_dppclk_enable(dccg, dpp_inst, 0); /* turn on the DTO to generate a 0hz clock */ REG_SET_2(DPPCLK_DTO_PARAM[dpp_inst], 0, DPPCLK0_DTO_PHASE, 0, DPPCLK0_DTO_MODULO, 1); } dccg->dpp_clock_gated[dpp_inst] = !clock_on; } static void dccg35_disable_symclk32_se( struct dccg *dccg, int hpo_se_inst) { struct dcn_dccg *dccg_dcn = TO_DCN_DCCG(dccg); /* set refclk as the source for symclk32_se */ switch (hpo_se_inst) { case 0: REG_UPDATE_2(SYMCLK32_SE_CNTL, SYMCLK32_SE0_SRC_SEL, 0, SYMCLK32_SE0_EN, 0); if (dccg->ctx->dc->debug.root_clock_optimization.bits.symclk32_se) { REG_UPDATE(DCCG_GATE_DISABLE_CNTL3, SYMCLK32_SE0_GATE_DISABLE, 0); // REG_UPDATE(DCCG_GATE_DISABLE_CNTL3, // SYMCLK32_ROOT_SE0_GATE_DISABLE, 0); } break; case 1: REG_UPDATE_2(SYMCLK32_SE_CNTL, SYMCLK32_SE1_SRC_SEL, 0, SYMCLK32_SE1_EN, 0); if (dccg->ctx->dc->debug.root_clock_optimization.bits.symclk32_se) { REG_UPDATE(DCCG_GATE_DISABLE_CNTL3, SYMCLK32_SE1_GATE_DISABLE, 0); // REG_UPDATE(DCCG_GATE_DISABLE_CNTL3, // SYMCLK32_ROOT_SE1_GATE_DISABLE, 0); } break; case 2: REG_UPDATE_2(SYMCLK32_SE_CNTL, SYMCLK32_SE2_SRC_SEL, 0, SYMCLK32_SE2_EN, 0); if (dccg->ctx->dc->debug.root_clock_optimization.bits.symclk32_se) { REG_UPDATE(DCCG_GATE_DISABLE_CNTL3, SYMCLK32_SE2_GATE_DISABLE, 0); // REG_UPDATE(DCCG_GATE_DISABLE_CNTL3, // SYMCLK32_ROOT_SE2_GATE_DISABLE, 0); } break; case 3: REG_UPDATE_2(SYMCLK32_SE_CNTL, SYMCLK32_SE3_SRC_SEL, 0, SYMCLK32_SE3_EN, 0); if (dccg->ctx->dc->debug.root_clock_optimization.bits.symclk32_se) { REG_UPDATE(DCCG_GATE_DISABLE_CNTL3, SYMCLK32_SE3_GATE_DISABLE, 0); // REG_UPDATE(DCCG_GATE_DISABLE_CNTL3, // SYMCLK32_ROOT_SE3_GATE_DISABLE, 0); } break; default: BREAK_TO_DEBUGGER(); return; } } void dccg35_init(struct dccg *dccg) { int otg_inst; /* Set HPO stream encoder to use refclk to avoid case where PHY is * disabled and SYMCLK32 for HPO SE is sourced from PHYD32CLK which * will cause DCN to hang. */ for (otg_inst = 0; otg_inst < 4; otg_inst++) dccg35_disable_symclk32_se(dccg, otg_inst); if (dccg->ctx->dc->debug.root_clock_optimization.bits.symclk32_le) for (otg_inst = 0; otg_inst < 2; otg_inst++) { dccg31_disable_symclk32_le(dccg, otg_inst); dccg31_set_symclk32_le_root_clock_gating(dccg, otg_inst, false); } // if (dccg->ctx->dc->debug.root_clock_optimization.bits.symclk32_se) // for (otg_inst = 0; otg_inst < 4; otg_inst++) // dccg35_disable_symclk_se(dccg, otg_inst, otg_inst); if (dccg->ctx->dc->debug.root_clock_optimization.bits.dpstream) for (otg_inst = 0; otg_inst < 4; otg_inst++) { dccg35_set_dpstreamclk(dccg, REFCLK, otg_inst, otg_inst); dccg35_set_dpstreamclk_root_clock_gating(dccg, otg_inst, false); } if (dccg->ctx->dc->debug.root_clock_optimization.bits.dpp) for (otg_inst = 0; otg_inst < 4; otg_inst++) dccg35_set_dppclk_root_clock_gating(dccg, otg_inst, 0); /* dccg35_enable_global_fgcg_rep( dccg, dccg->ctx->dc->debug.enable_fine_grain_clock_gating.bits .dccg_global_fgcg_rep);*/ } void dccg35_enable_global_fgcg_rep(struct dccg *dccg, bool value) { struct dcn_dccg *dccg_dcn = TO_DCN_DCCG(dccg); REG_UPDATE(DCCG_GLOBAL_FGCG_REP_CNTL, DCCG_GLOBAL_FGCG_REP_DIS, !value); } static void dccg35_enable_dscclk(struct dccg *dccg, int inst) { struct dcn_dccg *dccg_dcn = TO_DCN_DCCG(dccg); //Disable DTO switch (inst) { case 0: REG_UPDATE_2(DSCCLK0_DTO_PARAM, DSCCLK0_DTO_PHASE, 0, DSCCLK0_DTO_MODULO, 0); REG_UPDATE(DSCCLK_DTO_CTRL, DSCCLK0_EN, 1); if (dccg->ctx->dc->debug.root_clock_optimization.bits.dsc) REG_UPDATE(DCCG_GATE_DISABLE_CNTL6, DSCCLK0_ROOT_GATE_DISABLE, 1); break; case 1: REG_UPDATE_2(DSCCLK1_DTO_PARAM, DSCCLK1_DTO_PHASE, 0, DSCCLK1_DTO_MODULO, 0); REG_UPDATE(DSCCLK_DTO_CTRL, DSCCLK1_EN, 1); if (dccg->ctx->dc->debug.root_clock_optimization.bits.dsc) REG_UPDATE(DCCG_GATE_DISABLE_CNTL6, DSCCLK1_ROOT_GATE_DISABLE, 1); break; case 2: REG_UPDATE_2(DSCCLK2_DTO_PARAM, DSCCLK2_DTO_PHASE, 0, DSCCLK2_DTO_MODULO, 0); REG_UPDATE(DSCCLK_DTO_CTRL, DSCCLK2_EN, 1); if (dccg->ctx->dc->debug.root_clock_optimization.bits.dsc) REG_UPDATE(DCCG_GATE_DISABLE_CNTL6, DSCCLK2_ROOT_GATE_DISABLE, 1); break; case 3: REG_UPDATE_2(DSCCLK3_DTO_PARAM, DSCCLK3_DTO_PHASE, 0, DSCCLK3_DTO_MODULO, 0); REG_UPDATE(DSCCLK_DTO_CTRL, DSCCLK3_EN, 1); if (dccg->ctx->dc->debug.root_clock_optimization.bits.dsc) REG_UPDATE(DCCG_GATE_DISABLE_CNTL6, DSCCLK3_ROOT_GATE_DISABLE, 1); break; default: BREAK_TO_DEBUGGER(); return; } } static void dccg35_disable_dscclk(struct dccg *dccg, int inst) { struct dcn_dccg *dccg_dcn = TO_DCN_DCCG(dccg); if (!dccg->ctx->dc->debug.root_clock_optimization.bits.dsc) return; switch (inst) { case 0: REG_UPDATE(DSCCLK_DTO_CTRL, DSCCLK0_EN, 0); REG_UPDATE_2(DSCCLK0_DTO_PARAM, DSCCLK0_DTO_PHASE, 0, DSCCLK0_DTO_MODULO, 1); if (dccg->ctx->dc->debug.root_clock_optimization.bits.dsc) REG_UPDATE(DCCG_GATE_DISABLE_CNTL6, DSCCLK0_ROOT_GATE_DISABLE, 0); break; case 1: REG_UPDATE(DSCCLK_DTO_CTRL, DSCCLK1_EN, 0); REG_UPDATE_2(DSCCLK1_DTO_PARAM, DSCCLK1_DTO_PHASE, 0, DSCCLK1_DTO_MODULO, 1); if (dccg->ctx->dc->debug.root_clock_optimization.bits.dsc) REG_UPDATE(DCCG_GATE_DISABLE_CNTL6, DSCCLK1_ROOT_GATE_DISABLE, 0); break; case 2: REG_UPDATE(DSCCLK_DTO_CTRL, DSCCLK2_EN, 0); REG_UPDATE_2(DSCCLK2_DTO_PARAM, DSCCLK2_DTO_PHASE, 0, DSCCLK2_DTO_MODULO, 1); if (dccg->ctx->dc->debug.root_clock_optimization.bits.dsc) REG_UPDATE(DCCG_GATE_DISABLE_CNTL6, DSCCLK2_ROOT_GATE_DISABLE, 0); break; case 3: REG_UPDATE(DSCCLK_DTO_CTRL, DSCCLK3_EN, 0); REG_UPDATE_2(DSCCLK3_DTO_PARAM, DSCCLK3_DTO_PHASE, 0, DSCCLK3_DTO_MODULO, 1); if (dccg->ctx->dc->debug.root_clock_optimization.bits.dsc) REG_UPDATE(DCCG_GATE_DISABLE_CNTL6, DSCCLK3_ROOT_GATE_DISABLE, 0); break; default: return; } } static void dccg35_enable_symclk_se(struct dccg *dccg, uint32_t stream_enc_inst, uint32_t link_enc_inst) { struct dcn_dccg *dccg_dcn = TO_DCN_DCCG(dccg); switch (link_enc_inst) { case 0: REG_UPDATE(SYMCLKA_CLOCK_ENABLE, SYMCLKA_CLOCK_ENABLE, 1); if (dccg->ctx->dc->debug.root_clock_optimization.bits.symclk32_se) REG_UPDATE(DCCG_GATE_DISABLE_CNTL5, SYMCLKA_ROOT_GATE_DISABLE, 1); break; case 1: REG_UPDATE(SYMCLKB_CLOCK_ENABLE, SYMCLKB_CLOCK_ENABLE, 1); if (dccg->ctx->dc->debug.root_clock_optimization.bits.symclk32_se) REG_UPDATE(DCCG_GATE_DISABLE_CNTL5, SYMCLKB_ROOT_GATE_DISABLE, 1); break; case 2: REG_UPDATE(SYMCLKC_CLOCK_ENABLE, SYMCLKC_CLOCK_ENABLE, 1); if (dccg->ctx->dc->debug.root_clock_optimization.bits.symclk32_se) REG_UPDATE(DCCG_GATE_DISABLE_CNTL5, SYMCLKC_ROOT_GATE_DISABLE, 1); break; case 3: REG_UPDATE(SYMCLKD_CLOCK_ENABLE, SYMCLKD_CLOCK_ENABLE, 1); if (dccg->ctx->dc->debug.root_clock_optimization.bits.symclk32_se) REG_UPDATE(DCCG_GATE_DISABLE_CNTL5, SYMCLKD_ROOT_GATE_DISABLE, 1); break; case 4: REG_UPDATE(SYMCLKE_CLOCK_ENABLE, SYMCLKE_CLOCK_ENABLE, 1); if (dccg->ctx->dc->debug.root_clock_optimization.bits.symclk32_se) REG_UPDATE(DCCG_GATE_DISABLE_CNTL5, SYMCLKE_ROOT_GATE_DISABLE, 1); break; } switch (stream_enc_inst) { case 0: REG_UPDATE_2(SYMCLKA_CLOCK_ENABLE, SYMCLKA_FE_EN, 1, SYMCLKA_FE_SRC_SEL, link_enc_inst); if (dccg->ctx->dc->debug.root_clock_optimization.bits.symclk32_se) REG_UPDATE(DCCG_GATE_DISABLE_CNTL5, SYMCLKA_FE_ROOT_GATE_DISABLE, 1); break; case 1: REG_UPDATE_2(SYMCLKB_CLOCK_ENABLE, SYMCLKB_FE_EN, 1, SYMCLKB_FE_SRC_SEL, link_enc_inst); if (dccg->ctx->dc->debug.root_clock_optimization.bits.symclk32_se) REG_UPDATE(DCCG_GATE_DISABLE_CNTL5, SYMCLKB_FE_ROOT_GATE_DISABLE, 1); break; case 2: REG_UPDATE_2(SYMCLKC_CLOCK_ENABLE, SYMCLKC_FE_EN, 1, SYMCLKC_FE_SRC_SEL, link_enc_inst); if (dccg->ctx->dc->debug.root_clock_optimization.bits.symclk32_se) REG_UPDATE(DCCG_GATE_DISABLE_CNTL5, SYMCLKC_FE_ROOT_GATE_DISABLE, 1); break; case 3: REG_UPDATE_2(SYMCLKD_CLOCK_ENABLE, SYMCLKD_FE_EN, 1, SYMCLKD_FE_SRC_SEL, link_enc_inst); if (dccg->ctx->dc->debug.root_clock_optimization.bits.symclk32_se) REG_UPDATE(DCCG_GATE_DISABLE_CNTL5, SYMCLKD_FE_ROOT_GATE_DISABLE, 1); break; case 4: REG_UPDATE_2(SYMCLKE_CLOCK_ENABLE, SYMCLKE_FE_EN, 1, SYMCLKE_FE_SRC_SEL, link_enc_inst); if (dccg->ctx->dc->debug.root_clock_optimization.bits.symclk32_se) REG_UPDATE(DCCG_GATE_DISABLE_CNTL5, SYMCLKE_FE_ROOT_GATE_DISABLE, 1); break; } } /*get other front end connected to this backend*/ static uint8_t dccg35_get_other_enabled_symclk_fe(struct dccg *dccg, uint32_t stream_enc_inst, uint32_t link_enc_inst) { uint8_t num_enabled_symclk_fe = 0; uint32_t be_clk_en = 0, fe_clk_en[5] = {0}, be_clk_sel[5] = {0}; struct dcn_dccg *dccg_dcn = TO_DCN_DCCG(dccg); switch (link_enc_inst) { case 0: REG_GET_3(SYMCLKA_CLOCK_ENABLE, SYMCLKA_CLOCK_ENABLE, &be_clk_en, SYMCLKA_FE_EN, &fe_clk_en[0], SYMCLKA_FE_SRC_SEL, &be_clk_sel[0]); break; case 1: REG_GET_3(SYMCLKB_CLOCK_ENABLE, SYMCLKB_CLOCK_ENABLE, &be_clk_en, SYMCLKB_FE_EN, &fe_clk_en[1], SYMCLKB_FE_SRC_SEL, &be_clk_sel[1]); break; case 2: REG_GET_3(SYMCLKC_CLOCK_ENABLE, SYMCLKC_CLOCK_ENABLE, &be_clk_en, SYMCLKC_FE_EN, &fe_clk_en[2], SYMCLKC_FE_SRC_SEL, &be_clk_sel[2]); break; case 3: REG_GET_3(SYMCLKD_CLOCK_ENABLE, SYMCLKD_CLOCK_ENABLE, &be_clk_en, SYMCLKD_FE_EN, &fe_clk_en[3], SYMCLKD_FE_SRC_SEL, &be_clk_sel[3]); break; case 4: REG_GET_3(SYMCLKE_CLOCK_ENABLE, SYMCLKE_CLOCK_ENABLE, &be_clk_en, SYMCLKE_FE_EN, &fe_clk_en[4], SYMCLKE_FE_SRC_SEL, &be_clk_sel[4]); break; } if (be_clk_en) { /* for DPMST, this backend could be used by multiple front end. only disable the backend if this stream_enc_ins is the last active stream enc connected to this back_end*/ uint8_t i; for (i = 0; i != link_enc_inst && i < ARRAY_SIZE(fe_clk_en); i++) { if (fe_clk_en[i] && be_clk_sel[i] == link_enc_inst) num_enabled_symclk_fe++; } } return num_enabled_symclk_fe; } static void dccg35_disable_symclk_se(struct dccg *dccg, uint32_t stream_enc_inst, uint32_t link_enc_inst) { uint8_t num_enabled_symclk_fe = 0; struct dcn_dccg *dccg_dcn = TO_DCN_DCCG(dccg); switch (stream_enc_inst) { case 0: REG_UPDATE_2(SYMCLKA_CLOCK_ENABLE, SYMCLKA_FE_EN, 0, SYMCLKA_FE_SRC_SEL, 0); // if (dccg->ctx->dc->debug.root_clock_optimization.bits.symclk32_se) // REG_UPDATE(DCCG_GATE_DISABLE_CNTL5, SYMCLKA_FE_ROOT_GATE_DISABLE, 0); break; case 1: REG_UPDATE_2(SYMCLKB_CLOCK_ENABLE, SYMCLKB_FE_EN, 0, SYMCLKB_FE_SRC_SEL, 0); // if (dccg->ctx->dc->debug.root_clock_optimization.bits.symclk32_se) // REG_UPDATE(DCCG_GATE_DISABLE_CNTL5, SYMCLKB_FE_ROOT_GATE_DISABLE, 0); break; case 2: REG_UPDATE_2(SYMCLKC_CLOCK_ENABLE, SYMCLKC_FE_EN, 0, SYMCLKC_FE_SRC_SEL, 0); // if (dccg->ctx->dc->debug.root_clock_optimization.bits.symclk32_se) // REG_UPDATE(DCCG_GATE_DISABLE_CNTL5, SYMCLKC_FE_ROOT_GATE_DISABLE, 0); break; case 3: REG_UPDATE_2(SYMCLKD_CLOCK_ENABLE, SYMCLKD_FE_EN, 0, SYMCLKD_FE_SRC_SEL, 0); // if (dccg->ctx->dc->debug.root_clock_optimization.bits.symclk32_se) // REG_UPDATE(DCCG_GATE_DISABLE_CNTL5, SYMCLKD_FE_ROOT_GATE_DISABLE, 0); break; case 4: REG_UPDATE_2(SYMCLKE_CLOCK_ENABLE, SYMCLKE_FE_EN, 0, SYMCLKE_FE_SRC_SEL, 0); // if (dccg->ctx->dc->debug.root_clock_optimization.bits.symclk32_se) // REG_UPDATE(DCCG_GATE_DISABLE_CNTL5, SYMCLKE_FE_ROOT_GATE_DISABLE, 0); break; } /*check other enabled symclk fe */ num_enabled_symclk_fe = dccg35_get_other_enabled_symclk_fe(dccg, stream_enc_inst, link_enc_inst); /*only turn off backend clk if other front end attachecd to this backend are all off, for mst, only turn off the backend if this is the last front end*/ if (num_enabled_symclk_fe == 0) { switch (link_enc_inst) { case 0: REG_UPDATE(SYMCLKA_CLOCK_ENABLE, SYMCLKA_CLOCK_ENABLE, 0); // if (dccg->ctx->dc->debug.root_clock_optimization.bits.symclk32_le) // REG_UPDATE(DCCG_GATE_DISABLE_CNTL5, SYMCLKA_ROOT_GATE_DISABLE, 0); break; case 1: REG_UPDATE(SYMCLKB_CLOCK_ENABLE, SYMCLKB_CLOCK_ENABLE, 0); // if (dccg->ctx->dc->debug.root_clock_optimization.bits.symclk32_le) // REG_UPDATE(DCCG_GATE_DISABLE_CNTL5, SYMCLKB_ROOT_GATE_DISABLE, 0); break; case 2: REG_UPDATE(SYMCLKC_CLOCK_ENABLE, SYMCLKC_CLOCK_ENABLE, 0); // if (dccg->ctx->dc->debug.root_clock_optimization.bits.symclk32_le) // REG_UPDATE(DCCG_GATE_DISABLE_CNTL5, SYMCLKC_ROOT_GATE_DISABLE, 0); break; case 3: REG_UPDATE(SYMCLKD_CLOCK_ENABLE, SYMCLKD_CLOCK_ENABLE, 0); // if (dccg->ctx->dc->debug.root_clock_optimization.bits.symclk32_le) // REG_UPDATE(DCCG_GATE_DISABLE_CNTL5, SYMCLKD_ROOT_GATE_DISABLE, 0); break; case 4: REG_UPDATE(SYMCLKE_CLOCK_ENABLE, SYMCLKE_CLOCK_ENABLE, 0); // if (dccg->ctx->dc->debug.root_clock_optimization.bits.symclk32_le) // REG_UPDATE(DCCG_GATE_DISABLE_CNTL5, SYMCLKE_ROOT_GATE_DISABLE, 0); break; } } } static const struct dccg_funcs dccg35_funcs = { .update_dpp_dto = dccg35_update_dpp_dto, .dpp_root_clock_control = dccg35_dpp_root_clock_control, .get_dccg_ref_freq = dccg31_get_dccg_ref_freq, .dccg_init = dccg35_init, .set_dpstreamclk = dccg35_set_dpstreamclk, .set_dpstreamclk_root_clock_gating = dccg35_set_dpstreamclk_root_clock_gating, .enable_symclk32_se = dccg31_enable_symclk32_se, .disable_symclk32_se = dccg35_disable_symclk32_se, .enable_symclk32_le = dccg31_enable_symclk32_le, .disable_symclk32_le = dccg31_disable_symclk32_le, .set_symclk32_le_root_clock_gating = dccg31_set_symclk32_le_root_clock_gating, .set_physymclk = dccg35_set_physymclk, .set_physymclk_root_clock_gating = dccg35_set_physymclk_root_clock_gating, .set_dtbclk_dto = dccg35_set_dtbclk_dto, .set_audio_dtbclk_dto = dccg31_set_audio_dtbclk_dto, .set_fifo_errdet_ovr_en = dccg2_set_fifo_errdet_ovr_en, .otg_add_pixel = dccg31_otg_add_pixel, .otg_drop_pixel = dccg31_otg_drop_pixel, .set_dispclk_change_mode = dccg31_set_dispclk_change_mode, .disable_dsc = dccg35_disable_dscclk, .enable_dsc = dccg35_enable_dscclk, .set_pixel_rate_div = dccg35_set_pixel_rate_div, .get_pixel_rate_div = dccg35_get_pixel_rate_div, .trigger_dio_fifo_resync = dccg35_trigger_dio_fifo_resync, .set_valid_pixel_rate = dccg35_set_valid_pixel_rate, .enable_symclk_se = dccg35_enable_symclk_se, .disable_symclk_se = dccg35_disable_symclk_se, .set_dtbclk_p_src = dccg35_set_dtbclk_p_src, }; struct dccg *dccg35_create( struct dc_context *ctx, const struct dccg_registers *regs, const struct dccg_shift *dccg_shift, const struct dccg_mask *dccg_mask) { struct dcn_dccg *dccg_dcn = kzalloc(sizeof(*dccg_dcn), GFP_KERNEL); struct dccg *base; if (dccg_dcn == NULL) { BREAK_TO_DEBUGGER(); return NULL; } base = &dccg_dcn->base; base->ctx = ctx; base->funcs = &dccg35_funcs; dccg_dcn->regs = regs; dccg_dcn->dccg_shift = dccg_shift; dccg_dcn->dccg_mask = dccg_mask; return &dccg_dcn->base; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1