Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Harry Wentland | 6491 | 62.81% | 10 | 9.26% |
Dmytro Laktyushkin | 1532 | 14.82% | 27 | 25.00% |
Su Sung Chung | 468 | 4.53% | 3 | 2.78% |
Tony Cheng | 355 | 3.43% | 6 | 5.56% |
Bhawanpreet Lakha | 321 | 3.11% | 8 | 7.41% |
Yongqiang Sun | 184 | 1.78% | 6 | 5.56% |
Charlene Liu | 161 | 1.56% | 5 | 4.63% |
Joshua Aberback | 134 | 1.30% | 3 | 2.78% |
Nicholas Kazlauskas | 118 | 1.14% | 2 | 1.85% |
Eric Yang | 89 | 0.86% | 3 | 2.78% |
Daniel Gomez | 86 | 0.83% | 1 | 0.93% |
Aidan Wood | 65 | 0.63% | 1 | 0.93% |
Alex Deucher | 45 | 0.44% | 1 | 0.93% |
Fatemeh Darbehani | 40 | 0.39% | 1 | 0.93% |
Vitaly Prosyak | 37 | 0.36% | 3 | 2.78% |
Hersen Wu | 34 | 0.33% | 1 | 0.93% |
Jun Lei | 30 | 0.29% | 6 | 5.56% |
Yue Hin Lau | 30 | 0.29% | 2 | 1.85% |
Andrew Jiang | 29 | 0.28% | 2 | 1.85% |
Alex Hung | 17 | 0.16% | 2 | 1.85% |
Joseph Gravenor | 17 | 0.16% | 1 | 0.93% |
Wesley Chalmers | 15 | 0.15% | 1 | 0.93% |
Ken Chalmers | 7 | 0.07% | 1 | 0.93% |
Derek Lai | 6 | 0.06% | 1 | 0.93% |
Mario Kleiner | 6 | 0.06% | 1 | 0.93% |
Anthony Koo | 5 | 0.05% | 1 | 0.93% |
Michael Strauss | 3 | 0.03% | 1 | 0.93% |
Mikita Lipski | 2 | 0.02% | 1 | 0.93% |
Jerry (Fangzhi) Zuo | 2 | 0.02% | 1 | 0.93% |
Isabella Basso | 1 | 0.01% | 1 | 0.93% |
Wenjing Liu | 1 | 0.01% | 1 | 0.93% |
Melissa Wen | 1 | 0.01% | 1 | 0.93% |
Dave Airlie | 1 | 0.01% | 1 | 0.93% |
Mounika Adhuri | 1 | 0.01% | 1 | 0.93% |
Timothy Pearson | 1 | 0.01% | 1 | 0.93% |
Total | 10335 | 108 |
/* * Copyright 2017 Advanced Micro Devices, Inc. * Copyright 2019 Raptor Engineering, LLC * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: AMD * */ #include "dm_services.h" #include "dc.h" #include "dcn_calcs.h" #include "dcn_calc_auto.h" #include "dal_asic_id.h" #include "resource.h" #include "resource/dcn10/dcn10_resource.h" #include "dcn10/dcn10_hubbub.h" #include "dml/dml1_display_rq_dlg_calc.h" #include "dcn_calc_math.h" #define DC_LOGGER \ dc->ctx->logger #define WM_SET_COUNT 4 #define WM_A 0 #define WM_B 1 #define WM_C 2 #define WM_D 3 /* * NOTE: * This file is gcc-parseable HW gospel, coming straight from HW engineers. * * It doesn't adhere to Linux kernel style and sometimes will do things in odd * ways. Unless there is something clearly wrong with it the code should * remain as-is as it provides us with a guarantee from HW that it is correct. */ /* Defaults from spreadsheet rev#247. * RV2 delta: dram_clock_change_latency, max_num_dpp */ const struct dcn_soc_bounding_box dcn10_soc_defaults = { /* latencies */ .sr_exit_time = 17, /*us*/ .sr_enter_plus_exit_time = 19, /*us*/ .urgent_latency = 4, /*us*/ .dram_clock_change_latency = 17, /*us*/ .write_back_latency = 12, /*us*/ .percent_of_ideal_drambw_received_after_urg_latency = 80, /*%*/ /* below default clocks derived from STA target base on * slow-slow corner + 10% margin with voltages aligned to FCLK. * * Use these value if fused value doesn't make sense as earlier * part don't have correct value fused */ /* default DCF CLK DPM on RV*/ .dcfclkv_max0p9 = 655, /* MHz, = 3600/5.5 */ .dcfclkv_nom0p8 = 626, /* MHz, = 3600/5.75 */ .dcfclkv_mid0p72 = 600, /* MHz, = 3600/6, bypass */ .dcfclkv_min0p65 = 300, /* MHz, = 3600/12, bypass */ /* default DISP CLK voltage state on RV */ .max_dispclk_vmax0p9 = 1108, /* MHz, = 3600/3.25 */ .max_dispclk_vnom0p8 = 1029, /* MHz, = 3600/3.5 */ .max_dispclk_vmid0p72 = 960, /* MHz, = 3600/3.75 */ .max_dispclk_vmin0p65 = 626, /* MHz, = 3600/5.75 */ /* default DPP CLK voltage state on RV */ .max_dppclk_vmax0p9 = 720, /* MHz, = 3600/5 */ .max_dppclk_vnom0p8 = 686, /* MHz, = 3600/5.25 */ .max_dppclk_vmid0p72 = 626, /* MHz, = 3600/5.75 */ .max_dppclk_vmin0p65 = 400, /* MHz, = 3600/9 */ /* default PHY CLK voltage state on RV */ .phyclkv_max0p9 = 900, /*MHz*/ .phyclkv_nom0p8 = 847, /*MHz*/ .phyclkv_mid0p72 = 800, /*MHz*/ .phyclkv_min0p65 = 600, /*MHz*/ /* BW depend on FCLK, MCLK, # of channels */ /* dual channel BW */ .fabric_and_dram_bandwidth_vmax0p9 = 38.4f, /*GB/s*/ .fabric_and_dram_bandwidth_vnom0p8 = 34.133f, /*GB/s*/ .fabric_and_dram_bandwidth_vmid0p72 = 29.866f, /*GB/s*/ .fabric_and_dram_bandwidth_vmin0p65 = 12.8f, /*GB/s*/ /* single channel BW .fabric_and_dram_bandwidth_vmax0p9 = 19.2f, .fabric_and_dram_bandwidth_vnom0p8 = 17.066f, .fabric_and_dram_bandwidth_vmid0p72 = 14.933f, .fabric_and_dram_bandwidth_vmin0p65 = 12.8f, */ .number_of_channels = 2, .socclk = 208, /*MHz*/ .downspreading = 0.5f, /*%*/ .round_trip_ping_latency_cycles = 128, /*DCFCLK Cycles*/ .urgent_out_of_order_return_per_channel = 256, /*bytes*/ .vmm_page_size = 4096, /*bytes*/ .return_bus_width = 64, /*bytes*/ .max_request_size = 256, /*bytes*/ /* Depends on user class (client vs embedded, workstation, etc) */ .percent_disp_bw_limit = 0.3f /*%*/ }; const struct dcn_ip_params dcn10_ip_defaults = { .rob_buffer_size_in_kbyte = 64, .det_buffer_size_in_kbyte = 164, .dpp_output_buffer_pixels = 2560, .opp_output_buffer_lines = 1, .pixel_chunk_size_in_kbyte = 8, .pte_enable = dcn_bw_yes, .pte_chunk_size = 2, /*kbytes*/ .meta_chunk_size = 2, /*kbytes*/ .writeback_chunk_size = 2, /*kbytes*/ .odm_capability = dcn_bw_no, .dsc_capability = dcn_bw_no, .line_buffer_size = 589824, /*bit*/ .max_line_buffer_lines = 12, .is_line_buffer_bpp_fixed = dcn_bw_no, .line_buffer_fixed_bpp = dcn_bw_na, .writeback_luma_buffer_size = 12, /*kbytes*/ .writeback_chroma_buffer_size = 8, /*kbytes*/ .max_num_dpp = 4, .max_num_writeback = 2, .max_dchub_topscl_throughput = 4, /*pixels/dppclk*/ .max_pscl_tolb_throughput = 2, /*pixels/dppclk*/ .max_lb_tovscl_throughput = 4, /*pixels/dppclk*/ .max_vscl_tohscl_throughput = 4, /*pixels/dppclk*/ .max_hscl_ratio = 4, .max_vscl_ratio = 4, .max_hscl_taps = 8, .max_vscl_taps = 8, .pte_buffer_size_in_requests = 42, .dispclk_ramping_margin = 1, /*%*/ .under_scan_factor = 1.11f, .max_inter_dcn_tile_repeaters = 8, .can_vstartup_lines_exceed_vsync_plus_back_porch_lines_minus_one = dcn_bw_no, .bug_forcing_luma_and_chroma_request_to_same_size_fixed = dcn_bw_no, .dcfclk_cstate_latency = 10 /*TODO clone of something else? sr_enter_plus_exit_time?*/ }; static enum dcn_bw_defs tl_sw_mode_to_bw_defs(enum swizzle_mode_values sw_mode) { switch (sw_mode) { case DC_SW_LINEAR: return dcn_bw_sw_linear; case DC_SW_4KB_S: return dcn_bw_sw_4_kb_s; case DC_SW_4KB_D: return dcn_bw_sw_4_kb_d; case DC_SW_64KB_S: return dcn_bw_sw_64_kb_s; case DC_SW_64KB_D: return dcn_bw_sw_64_kb_d; case DC_SW_VAR_S: return dcn_bw_sw_var_s; case DC_SW_VAR_D: return dcn_bw_sw_var_d; case DC_SW_64KB_S_T: return dcn_bw_sw_64_kb_s_t; case DC_SW_64KB_D_T: return dcn_bw_sw_64_kb_d_t; case DC_SW_4KB_S_X: return dcn_bw_sw_4_kb_s_x; case DC_SW_4KB_D_X: return dcn_bw_sw_4_kb_d_x; case DC_SW_64KB_S_X: return dcn_bw_sw_64_kb_s_x; case DC_SW_64KB_D_X: return dcn_bw_sw_64_kb_d_x; case DC_SW_VAR_S_X: return dcn_bw_sw_var_s_x; case DC_SW_VAR_D_X: return dcn_bw_sw_var_d_x; case DC_SW_256B_S: case DC_SW_256_D: case DC_SW_256_R: case DC_SW_4KB_R: case DC_SW_64KB_R: case DC_SW_VAR_R: case DC_SW_4KB_R_X: case DC_SW_64KB_R_X: case DC_SW_VAR_R_X: default: BREAK_TO_DEBUGGER(); /*not in formula*/ return dcn_bw_sw_4_kb_s; } } static int tl_lb_bpp_to_int(enum lb_pixel_depth depth) { switch (depth) { case LB_PIXEL_DEPTH_18BPP: return 18; case LB_PIXEL_DEPTH_24BPP: return 24; case LB_PIXEL_DEPTH_30BPP: return 30; case LB_PIXEL_DEPTH_36BPP: return 36; default: return 30; } } static enum dcn_bw_defs tl_pixel_format_to_bw_defs(enum surface_pixel_format format) { switch (format) { case SURFACE_PIXEL_FORMAT_GRPH_ARGB1555: case SURFACE_PIXEL_FORMAT_GRPH_RGB565: return dcn_bw_rgb_sub_16; case SURFACE_PIXEL_FORMAT_GRPH_ARGB8888: case SURFACE_PIXEL_FORMAT_GRPH_ABGR8888: case SURFACE_PIXEL_FORMAT_GRPH_ARGB2101010: case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010: case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010_XR_BIAS: return dcn_bw_rgb_sub_32; case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616: case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616: case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616F: case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616F: return dcn_bw_rgb_sub_64; case SURFACE_PIXEL_FORMAT_VIDEO_420_YCbCr: case SURFACE_PIXEL_FORMAT_VIDEO_420_YCrCb: return dcn_bw_yuv420_sub_8; case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCbCr: case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCrCb: return dcn_bw_yuv420_sub_10; default: return dcn_bw_rgb_sub_32; } } enum source_macro_tile_size swizzle_mode_to_macro_tile_size(enum swizzle_mode_values sw_mode) { switch (sw_mode) { /* for 4/8/16 high tiles */ case DC_SW_LINEAR: return dm_4k_tile; case DC_SW_4KB_S: case DC_SW_4KB_S_X: return dm_4k_tile; case DC_SW_64KB_S: case DC_SW_64KB_S_X: case DC_SW_64KB_S_T: return dm_64k_tile; case DC_SW_VAR_S: case DC_SW_VAR_S_X: return dm_256k_tile; /* For 64bpp 2 high tiles */ case DC_SW_4KB_D: case DC_SW_4KB_D_X: return dm_4k_tile; case DC_SW_64KB_D: case DC_SW_64KB_D_X: case DC_SW_64KB_D_T: return dm_64k_tile; case DC_SW_VAR_D: case DC_SW_VAR_D_X: return dm_256k_tile; case DC_SW_4KB_R: case DC_SW_4KB_R_X: return dm_4k_tile; case DC_SW_64KB_R: case DC_SW_64KB_R_X: return dm_64k_tile; case DC_SW_VAR_R: case DC_SW_VAR_R_X: return dm_256k_tile; /* Unsupported swizzle modes for dcn */ case DC_SW_256B_S: default: ASSERT(0); /* Not supported */ return 0; } } static void pipe_ctx_to_e2e_pipe_params ( const struct pipe_ctx *pipe, struct _vcs_dpi_display_pipe_params_st *input) { input->src.is_hsplit = false; /* stereo can never be split */ if (pipe->plane_state->stereo_format == PLANE_STEREO_FORMAT_SIDE_BY_SIDE || pipe->plane_state->stereo_format == PLANE_STEREO_FORMAT_TOP_AND_BOTTOM) { /* reset the split group if it was already considered split. */ input->src.hsplit_grp = pipe->pipe_idx; } else if (pipe->top_pipe != NULL && pipe->top_pipe->plane_state == pipe->plane_state) { input->src.is_hsplit = true; } else if (pipe->bottom_pipe != NULL && pipe->bottom_pipe->plane_state == pipe->plane_state) { input->src.is_hsplit = true; } if (pipe->plane_res.dpp->ctx->dc->debug.optimized_watermark) { /* * this method requires us to always re-calculate watermark when dcc change * between flip. */ input->src.dcc = pipe->plane_state->dcc.enable ? 1 : 0; } else { /* * allow us to disable dcc on the fly without re-calculating WM * * extra overhead for DCC is quite small. for 1080p WM without * DCC is only 0.417us lower (urgent goes from 6.979us to 6.562us) */ unsigned int bpe; input->src.dcc = pipe->plane_res.dpp->ctx->dc->res_pool->hubbub->funcs-> dcc_support_pixel_format(pipe->plane_state->format, &bpe) ? 1 : 0; } input->src.dcc_rate = 1; input->src.meta_pitch = pipe->plane_state->dcc.meta_pitch; input->src.source_scan = dm_horz; input->src.sw_mode = pipe->plane_state->tiling_info.gfx9.swizzle; input->src.viewport_width = pipe->plane_res.scl_data.viewport.width; input->src.viewport_height = pipe->plane_res.scl_data.viewport.height; input->src.data_pitch = pipe->plane_res.scl_data.viewport.width; input->src.data_pitch_c = pipe->plane_res.scl_data.viewport.width; input->src.cur0_src_width = 128; /* TODO: Cursor calcs, not curently stored */ input->src.cur0_bpp = 32; input->src.macro_tile_size = swizzle_mode_to_macro_tile_size(pipe->plane_state->tiling_info.gfx9.swizzle); switch (pipe->plane_state->rotation) { case ROTATION_ANGLE_0: case ROTATION_ANGLE_180: input->src.source_scan = dm_horz; break; case ROTATION_ANGLE_90: case ROTATION_ANGLE_270: input->src.source_scan = dm_vert; break; default: ASSERT(0); /* Not supported */ break; } /* TODO: Fix pixel format mappings */ switch (pipe->plane_state->format) { case SURFACE_PIXEL_FORMAT_VIDEO_420_YCbCr: case SURFACE_PIXEL_FORMAT_VIDEO_420_YCrCb: input->src.source_format = dm_420_8; input->src.viewport_width_c = input->src.viewport_width / 2; input->src.viewport_height_c = input->src.viewport_height / 2; break; case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCbCr: case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCrCb: input->src.source_format = dm_420_10; input->src.viewport_width_c = input->src.viewport_width / 2; input->src.viewport_height_c = input->src.viewport_height / 2; break; case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616: case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616: case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616F: case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616F: input->src.source_format = dm_444_64; input->src.viewport_width_c = input->src.viewport_width; input->src.viewport_height_c = input->src.viewport_height; break; case SURFACE_PIXEL_FORMAT_GRPH_RGBE_ALPHA: input->src.source_format = dm_rgbe_alpha; input->src.viewport_width_c = input->src.viewport_width; input->src.viewport_height_c = input->src.viewport_height; break; default: input->src.source_format = dm_444_32; input->src.viewport_width_c = input->src.viewport_width; input->src.viewport_height_c = input->src.viewport_height; break; } input->scale_taps.htaps = pipe->plane_res.scl_data.taps.h_taps; input->scale_ratio_depth.hscl_ratio = pipe->plane_res.scl_data.ratios.horz.value/4294967296.0; input->scale_ratio_depth.vscl_ratio = pipe->plane_res.scl_data.ratios.vert.value/4294967296.0; input->scale_ratio_depth.vinit = pipe->plane_res.scl_data.inits.v.value/4294967296.0; if (input->scale_ratio_depth.vinit < 1.0) input->scale_ratio_depth.vinit = 1; input->scale_taps.vtaps = pipe->plane_res.scl_data.taps.v_taps; input->scale_taps.vtaps_c = pipe->plane_res.scl_data.taps.v_taps_c; input->scale_taps.htaps_c = pipe->plane_res.scl_data.taps.h_taps_c; input->scale_ratio_depth.hscl_ratio_c = pipe->plane_res.scl_data.ratios.horz_c.value/4294967296.0; input->scale_ratio_depth.vscl_ratio_c = pipe->plane_res.scl_data.ratios.vert_c.value/4294967296.0; input->scale_ratio_depth.vinit_c = pipe->plane_res.scl_data.inits.v_c.value/4294967296.0; if (input->scale_ratio_depth.vinit_c < 1.0) input->scale_ratio_depth.vinit_c = 1; switch (pipe->plane_res.scl_data.lb_params.depth) { case LB_PIXEL_DEPTH_30BPP: input->scale_ratio_depth.lb_depth = 30; break; case LB_PIXEL_DEPTH_36BPP: input->scale_ratio_depth.lb_depth = 36; break; default: input->scale_ratio_depth.lb_depth = 24; break; } input->dest.vactive = pipe->stream->timing.v_addressable + pipe->stream->timing.v_border_top + pipe->stream->timing.v_border_bottom; input->dest.recout_width = pipe->plane_res.scl_data.recout.width; input->dest.recout_height = pipe->plane_res.scl_data.recout.height; input->dest.full_recout_width = pipe->plane_res.scl_data.recout.width; input->dest.full_recout_height = pipe->plane_res.scl_data.recout.height; input->dest.htotal = pipe->stream->timing.h_total; input->dest.hblank_start = input->dest.htotal - pipe->stream->timing.h_front_porch; input->dest.hblank_end = input->dest.hblank_start - pipe->stream->timing.h_addressable - pipe->stream->timing.h_border_left - pipe->stream->timing.h_border_right; input->dest.vtotal = pipe->stream->timing.v_total; input->dest.vblank_start = input->dest.vtotal - pipe->stream->timing.v_front_porch; input->dest.vblank_end = input->dest.vblank_start - pipe->stream->timing.v_addressable - pipe->stream->timing.v_border_bottom - pipe->stream->timing.v_border_top; input->dest.pixel_rate_mhz = pipe->stream->timing.pix_clk_100hz/10000.0; input->dest.vstartup_start = pipe->pipe_dlg_param.vstartup_start; input->dest.vupdate_offset = pipe->pipe_dlg_param.vupdate_offset; input->dest.vupdate_offset = pipe->pipe_dlg_param.vupdate_offset; input->dest.vupdate_width = pipe->pipe_dlg_param.vupdate_width; } static void dcn_bw_calc_rq_dlg_ttu( const struct dc *dc, const struct dcn_bw_internal_vars *v, struct pipe_ctx *pipe, int in_idx) { struct display_mode_lib *dml = (struct display_mode_lib *)(&dc->dml); struct _vcs_dpi_display_dlg_regs_st *dlg_regs = &pipe->dlg_regs; struct _vcs_dpi_display_ttu_regs_st *ttu_regs = &pipe->ttu_regs; struct _vcs_dpi_display_rq_regs_st *rq_regs = &pipe->rq_regs; struct _vcs_dpi_display_rq_params_st *rq_param = &pipe->dml_rq_param; struct _vcs_dpi_display_dlg_sys_params_st *dlg_sys_param = &pipe->dml_dlg_sys_param; struct _vcs_dpi_display_e2e_pipe_params_st *input = &pipe->dml_input; float total_active_bw = 0; float total_prefetch_bw = 0; int total_flip_bytes = 0; int i; memset(dlg_regs, 0, sizeof(*dlg_regs)); memset(ttu_regs, 0, sizeof(*ttu_regs)); memset(rq_regs, 0, sizeof(*rq_regs)); memset(rq_param, 0, sizeof(*rq_param)); memset(dlg_sys_param, 0, sizeof(*dlg_sys_param)); memset(input, 0, sizeof(*input)); for (i = 0; i < number_of_planes; i++) { total_active_bw += v->read_bandwidth[i]; total_prefetch_bw += v->prefetch_bandwidth[i]; total_flip_bytes += v->total_immediate_flip_bytes[i]; } dlg_sys_param->total_flip_bw = v->return_bw - dcn_bw_max2(total_active_bw, total_prefetch_bw); if (dlg_sys_param->total_flip_bw < 0.0) dlg_sys_param->total_flip_bw = 0; dlg_sys_param->t_mclk_wm_us = v->dram_clock_change_watermark; dlg_sys_param->t_sr_wm_us = v->stutter_enter_plus_exit_watermark; dlg_sys_param->t_urg_wm_us = v->urgent_watermark; dlg_sys_param->t_extra_us = v->urgent_extra_latency; dlg_sys_param->deepsleep_dcfclk_mhz = v->dcf_clk_deep_sleep; dlg_sys_param->total_flip_bytes = total_flip_bytes; pipe_ctx_to_e2e_pipe_params(pipe, &input->pipe); input->clks_cfg.dcfclk_mhz = v->dcfclk; input->clks_cfg.dispclk_mhz = v->dispclk; input->clks_cfg.dppclk_mhz = v->dppclk; input->clks_cfg.refclk_mhz = dc->res_pool->ref_clocks.dchub_ref_clock_inKhz / 1000.0; input->clks_cfg.socclk_mhz = v->socclk; input->clks_cfg.voltage = v->voltage_level; // dc->dml.logger = pool->base.logger; input->dout.output_format = (v->output_format[in_idx] == dcn_bw_420) ? dm_420 : dm_444; input->dout.output_type = (v->output[in_idx] == dcn_bw_hdmi) ? dm_hdmi : dm_dp; //input[in_idx].dout.output_standard; /*todo: soc->sr_enter_plus_exit_time??*/ dml1_rq_dlg_get_rq_params(dml, rq_param, &input->pipe.src); dml1_extract_rq_regs(dml, rq_regs, rq_param); dml1_rq_dlg_get_dlg_params( dml, dlg_regs, ttu_regs, &rq_param->dlg, dlg_sys_param, input, true, true, v->pte_enable == dcn_bw_yes, pipe->plane_state->flip_immediate); } static void split_stream_across_pipes( struct resource_context *res_ctx, const struct resource_pool *pool, struct pipe_ctx *primary_pipe, struct pipe_ctx *secondary_pipe) { int pipe_idx = secondary_pipe->pipe_idx; if (!primary_pipe->plane_state) return; *secondary_pipe = *primary_pipe; secondary_pipe->pipe_idx = pipe_idx; secondary_pipe->plane_res.mi = pool->mis[secondary_pipe->pipe_idx]; secondary_pipe->plane_res.hubp = pool->hubps[secondary_pipe->pipe_idx]; secondary_pipe->plane_res.ipp = pool->ipps[secondary_pipe->pipe_idx]; secondary_pipe->plane_res.xfm = pool->transforms[secondary_pipe->pipe_idx]; secondary_pipe->plane_res.dpp = pool->dpps[secondary_pipe->pipe_idx]; secondary_pipe->plane_res.mpcc_inst = pool->dpps[secondary_pipe->pipe_idx]->inst; if (primary_pipe->bottom_pipe) { ASSERT(primary_pipe->bottom_pipe != secondary_pipe); secondary_pipe->bottom_pipe = primary_pipe->bottom_pipe; secondary_pipe->bottom_pipe->top_pipe = secondary_pipe; } primary_pipe->bottom_pipe = secondary_pipe; secondary_pipe->top_pipe = primary_pipe; resource_build_scaling_params(primary_pipe); resource_build_scaling_params(secondary_pipe); } #if 0 static void calc_wm_sets_and_perf_params( struct dc_state *context, struct dcn_bw_internal_vars *v) { /* Calculate set A last to keep internal var state consistent for required config */ if (v->voltage_level < 2) { v->fabric_and_dram_bandwidth_per_state[1] = v->fabric_and_dram_bandwidth_vnom0p8; v->fabric_and_dram_bandwidth_per_state[0] = v->fabric_and_dram_bandwidth_vnom0p8; v->fabric_and_dram_bandwidth = v->fabric_and_dram_bandwidth_vnom0p8; dispclkdppclkdcfclk_deep_sleep_prefetch_parameters_watermarks_and_performance_calculation(v); context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.cstate_exit_ns = v->stutter_exit_watermark * 1000; context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.cstate_enter_plus_exit_ns = v->stutter_enter_plus_exit_watermark * 1000; context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.pstate_change_ns = v->dram_clock_change_watermark * 1000; context->bw_ctx.bw.dcn.watermarks.b.pte_meta_urgent_ns = v->ptemeta_urgent_watermark * 1000; context->bw_ctx.bw.dcn.watermarks.b.urgent_ns = v->urgent_watermark * 1000; v->dcfclk_per_state[1] = v->dcfclkv_nom0p8; v->dcfclk_per_state[0] = v->dcfclkv_nom0p8; v->dcfclk = v->dcfclkv_nom0p8; dispclkdppclkdcfclk_deep_sleep_prefetch_parameters_watermarks_and_performance_calculation(v); context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.cstate_exit_ns = v->stutter_exit_watermark * 1000; context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.cstate_enter_plus_exit_ns = v->stutter_enter_plus_exit_watermark * 1000; context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.pstate_change_ns = v->dram_clock_change_watermark * 1000; context->bw_ctx.bw.dcn.watermarks.c.pte_meta_urgent_ns = v->ptemeta_urgent_watermark * 1000; context->bw_ctx.bw.dcn.watermarks.c.urgent_ns = v->urgent_watermark * 1000; } if (v->voltage_level < 3) { v->fabric_and_dram_bandwidth_per_state[2] = v->fabric_and_dram_bandwidth_vmax0p9; v->fabric_and_dram_bandwidth_per_state[1] = v->fabric_and_dram_bandwidth_vmax0p9; v->fabric_and_dram_bandwidth_per_state[0] = v->fabric_and_dram_bandwidth_vmax0p9; v->fabric_and_dram_bandwidth = v->fabric_and_dram_bandwidth_vmax0p9; v->dcfclk_per_state[2] = v->dcfclkv_max0p9; v->dcfclk_per_state[1] = v->dcfclkv_max0p9; v->dcfclk_per_state[0] = v->dcfclkv_max0p9; v->dcfclk = v->dcfclkv_max0p9; dispclkdppclkdcfclk_deep_sleep_prefetch_parameters_watermarks_and_performance_calculation(v); context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.cstate_exit_ns = v->stutter_exit_watermark * 1000; context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.cstate_enter_plus_exit_ns = v->stutter_enter_plus_exit_watermark * 1000; context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.pstate_change_ns = v->dram_clock_change_watermark * 1000; context->bw_ctx.bw.dcn.watermarks.d.pte_meta_urgent_ns = v->ptemeta_urgent_watermark * 1000; context->bw_ctx.bw.dcn.watermarks.d.urgent_ns = v->urgent_watermark * 1000; } v->fabric_and_dram_bandwidth_per_state[2] = v->fabric_and_dram_bandwidth_vnom0p8; v->fabric_and_dram_bandwidth_per_state[1] = v->fabric_and_dram_bandwidth_vmid0p72; v->fabric_and_dram_bandwidth_per_state[0] = v->fabric_and_dram_bandwidth_vmin0p65; v->fabric_and_dram_bandwidth = v->fabric_and_dram_bandwidth_per_state[v->voltage_level]; v->dcfclk_per_state[2] = v->dcfclkv_nom0p8; v->dcfclk_per_state[1] = v->dcfclkv_mid0p72; v->dcfclk_per_state[0] = v->dcfclkv_min0p65; v->dcfclk = v->dcfclk_per_state[v->voltage_level]; dispclkdppclkdcfclk_deep_sleep_prefetch_parameters_watermarks_and_performance_calculation(v); context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.cstate_exit_ns = v->stutter_exit_watermark * 1000; context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.cstate_enter_plus_exit_ns = v->stutter_enter_plus_exit_watermark * 1000; context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.pstate_change_ns = v->dram_clock_change_watermark * 1000; context->bw_ctx.bw.dcn.watermarks.a.pte_meta_urgent_ns = v->ptemeta_urgent_watermark * 1000; context->bw_ctx.bw.dcn.watermarks.a.urgent_ns = v->urgent_watermark * 1000; if (v->voltage_level >= 2) { context->bw_ctx.bw.dcn.watermarks.b = context->bw_ctx.bw.dcn.watermarks.a; context->bw_ctx.bw.dcn.watermarks.c = context->bw_ctx.bw.dcn.watermarks.a; } if (v->voltage_level >= 3) context->bw_ctx.bw.dcn.watermarks.d = context->bw_ctx.bw.dcn.watermarks.a; } #endif static bool dcn_bw_apply_registry_override(struct dc *dc) { bool updated = false; if ((int)(dc->dcn_soc->sr_exit_time * 1000) != dc->debug.sr_exit_time_ns && dc->debug.sr_exit_time_ns) { updated = true; dc->dcn_soc->sr_exit_time = dc->debug.sr_exit_time_ns / 1000.0; } if ((int)(dc->dcn_soc->sr_enter_plus_exit_time * 1000) != dc->debug.sr_enter_plus_exit_time_ns && dc->debug.sr_enter_plus_exit_time_ns) { updated = true; dc->dcn_soc->sr_enter_plus_exit_time = dc->debug.sr_enter_plus_exit_time_ns / 1000.0; } if ((int)(dc->dcn_soc->urgent_latency * 1000) != dc->debug.urgent_latency_ns && dc->debug.urgent_latency_ns) { updated = true; dc->dcn_soc->urgent_latency = dc->debug.urgent_latency_ns / 1000.0; } if ((int)(dc->dcn_soc->percent_of_ideal_drambw_received_after_urg_latency * 1000) != dc->debug.percent_of_ideal_drambw && dc->debug.percent_of_ideal_drambw) { updated = true; dc->dcn_soc->percent_of_ideal_drambw_received_after_urg_latency = dc->debug.percent_of_ideal_drambw; } if ((int)(dc->dcn_soc->dram_clock_change_latency * 1000) != dc->debug.dram_clock_change_latency_ns && dc->debug.dram_clock_change_latency_ns) { updated = true; dc->dcn_soc->dram_clock_change_latency = dc->debug.dram_clock_change_latency_ns / 1000.0; } return updated; } static void hack_disable_optional_pipe_split(struct dcn_bw_internal_vars *v) { /* * disable optional pipe split by lower dispclk bounding box * at DPM0 */ v->max_dispclk[0] = v->max_dppclk_vmin0p65; } static void hack_force_pipe_split(struct dcn_bw_internal_vars *v, unsigned int pixel_rate_100hz) { float pixel_rate_mhz = pixel_rate_100hz / 10000.0; /* * force enabling pipe split by lower dpp clock for DPM0 to just * below the specify pixel_rate, so bw calc would split pipe. */ if (pixel_rate_mhz < v->max_dppclk[0]) v->max_dppclk[0] = pixel_rate_mhz; } static void hack_bounding_box(struct dcn_bw_internal_vars *v, struct dc_debug_options *dbg, struct dc_state *context) { int i; for (i = 0; i < MAX_PIPES; i++) { struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; /** * Workaround for avoiding pipe-split in cases where we'd split * planes that are too small, resulting in splits that aren't * valid for the scaler. */ if (pipe->plane_state && (pipe->plane_state->dst_rect.width <= 16 || pipe->plane_state->dst_rect.height <= 16 || pipe->plane_state->src_rect.width <= 16 || pipe->plane_state->src_rect.height <= 16)) { hack_disable_optional_pipe_split(v); return; } } if (dbg->pipe_split_policy == MPC_SPLIT_AVOID) hack_disable_optional_pipe_split(v); if (dbg->pipe_split_policy == MPC_SPLIT_AVOID_MULT_DISP && context->stream_count >= 2) hack_disable_optional_pipe_split(v); if (context->stream_count == 1 && dbg->force_single_disp_pipe_split) hack_force_pipe_split(v, context->streams[0]->timing.pix_clk_100hz); } static unsigned int get_highest_allowed_voltage_level(bool is_vmin_only_asic) { /* for low power RV2 variants, the highest voltage level we want is 0 */ if (is_vmin_only_asic) return 0; else /* we are ok with all levels */ return 4; } bool dcn_validate_bandwidth( struct dc *dc, struct dc_state *context, bool fast_validate) { /* * we want a breakdown of the various stages of validation, which the * perf_trace macro doesn't support */ BW_VAL_TRACE_SETUP(); const struct resource_pool *pool = dc->res_pool; struct dcn_bw_internal_vars *v = &context->dcn_bw_vars; int i, input_idx, k; int vesa_sync_start, asic_blank_end, asic_blank_start; bool bw_limit_pass; float bw_limit; PERFORMANCE_TRACE_START(); BW_VAL_TRACE_COUNT(); if (dcn_bw_apply_registry_override(dc)) dcn_bw_sync_calcs_and_dml(dc); memset(v, 0, sizeof(*v)); v->sr_exit_time = dc->dcn_soc->sr_exit_time; v->sr_enter_plus_exit_time = dc->dcn_soc->sr_enter_plus_exit_time; v->urgent_latency = dc->dcn_soc->urgent_latency; v->write_back_latency = dc->dcn_soc->write_back_latency; v->percent_of_ideal_drambw_received_after_urg_latency = dc->dcn_soc->percent_of_ideal_drambw_received_after_urg_latency; v->dcfclkv_min0p65 = dc->dcn_soc->dcfclkv_min0p65; v->dcfclkv_mid0p72 = dc->dcn_soc->dcfclkv_mid0p72; v->dcfclkv_nom0p8 = dc->dcn_soc->dcfclkv_nom0p8; v->dcfclkv_max0p9 = dc->dcn_soc->dcfclkv_max0p9; v->max_dispclk_vmin0p65 = dc->dcn_soc->max_dispclk_vmin0p65; v->max_dispclk_vmid0p72 = dc->dcn_soc->max_dispclk_vmid0p72; v->max_dispclk_vnom0p8 = dc->dcn_soc->max_dispclk_vnom0p8; v->max_dispclk_vmax0p9 = dc->dcn_soc->max_dispclk_vmax0p9; v->max_dppclk_vmin0p65 = dc->dcn_soc->max_dppclk_vmin0p65; v->max_dppclk_vmid0p72 = dc->dcn_soc->max_dppclk_vmid0p72; v->max_dppclk_vnom0p8 = dc->dcn_soc->max_dppclk_vnom0p8; v->max_dppclk_vmax0p9 = dc->dcn_soc->max_dppclk_vmax0p9; v->socclk = dc->dcn_soc->socclk; v->fabric_and_dram_bandwidth_vmin0p65 = dc->dcn_soc->fabric_and_dram_bandwidth_vmin0p65; v->fabric_and_dram_bandwidth_vmid0p72 = dc->dcn_soc->fabric_and_dram_bandwidth_vmid0p72; v->fabric_and_dram_bandwidth_vnom0p8 = dc->dcn_soc->fabric_and_dram_bandwidth_vnom0p8; v->fabric_and_dram_bandwidth_vmax0p9 = dc->dcn_soc->fabric_and_dram_bandwidth_vmax0p9; v->phyclkv_min0p65 = dc->dcn_soc->phyclkv_min0p65; v->phyclkv_mid0p72 = dc->dcn_soc->phyclkv_mid0p72; v->phyclkv_nom0p8 = dc->dcn_soc->phyclkv_nom0p8; v->phyclkv_max0p9 = dc->dcn_soc->phyclkv_max0p9; v->downspreading = dc->dcn_soc->downspreading; v->round_trip_ping_latency_cycles = dc->dcn_soc->round_trip_ping_latency_cycles; v->urgent_out_of_order_return_per_channel = dc->dcn_soc->urgent_out_of_order_return_per_channel; v->number_of_channels = dc->dcn_soc->number_of_channels; v->vmm_page_size = dc->dcn_soc->vmm_page_size; v->dram_clock_change_latency = dc->dcn_soc->dram_clock_change_latency; v->return_bus_width = dc->dcn_soc->return_bus_width; v->rob_buffer_size_in_kbyte = dc->dcn_ip->rob_buffer_size_in_kbyte; v->det_buffer_size_in_kbyte = dc->dcn_ip->det_buffer_size_in_kbyte; v->dpp_output_buffer_pixels = dc->dcn_ip->dpp_output_buffer_pixels; v->opp_output_buffer_lines = dc->dcn_ip->opp_output_buffer_lines; v->pixel_chunk_size_in_kbyte = dc->dcn_ip->pixel_chunk_size_in_kbyte; v->pte_enable = dc->dcn_ip->pte_enable; v->pte_chunk_size = dc->dcn_ip->pte_chunk_size; v->meta_chunk_size = dc->dcn_ip->meta_chunk_size; v->writeback_chunk_size = dc->dcn_ip->writeback_chunk_size; v->odm_capability = dc->dcn_ip->odm_capability; v->dsc_capability = dc->dcn_ip->dsc_capability; v->line_buffer_size = dc->dcn_ip->line_buffer_size; v->is_line_buffer_bpp_fixed = dc->dcn_ip->is_line_buffer_bpp_fixed; v->line_buffer_fixed_bpp = dc->dcn_ip->line_buffer_fixed_bpp; v->max_line_buffer_lines = dc->dcn_ip->max_line_buffer_lines; v->writeback_luma_buffer_size = dc->dcn_ip->writeback_luma_buffer_size; v->writeback_chroma_buffer_size = dc->dcn_ip->writeback_chroma_buffer_size; v->max_num_dpp = dc->dcn_ip->max_num_dpp; v->max_num_writeback = dc->dcn_ip->max_num_writeback; v->max_dchub_topscl_throughput = dc->dcn_ip->max_dchub_topscl_throughput; v->max_pscl_tolb_throughput = dc->dcn_ip->max_pscl_tolb_throughput; v->max_lb_tovscl_throughput = dc->dcn_ip->max_lb_tovscl_throughput; v->max_vscl_tohscl_throughput = dc->dcn_ip->max_vscl_tohscl_throughput; v->max_hscl_ratio = dc->dcn_ip->max_hscl_ratio; v->max_vscl_ratio = dc->dcn_ip->max_vscl_ratio; v->max_hscl_taps = dc->dcn_ip->max_hscl_taps; v->max_vscl_taps = dc->dcn_ip->max_vscl_taps; v->under_scan_factor = dc->dcn_ip->under_scan_factor; v->pte_buffer_size_in_requests = dc->dcn_ip->pte_buffer_size_in_requests; v->dispclk_ramping_margin = dc->dcn_ip->dispclk_ramping_margin; v->max_inter_dcn_tile_repeaters = dc->dcn_ip->max_inter_dcn_tile_repeaters; v->can_vstartup_lines_exceed_vsync_plus_back_porch_lines_minus_one = dc->dcn_ip->can_vstartup_lines_exceed_vsync_plus_back_porch_lines_minus_one; v->bug_forcing_luma_and_chroma_request_to_same_size_fixed = dc->dcn_ip->bug_forcing_luma_and_chroma_request_to_same_size_fixed; v->voltage[5] = dcn_bw_no_support; v->voltage[4] = dcn_bw_v_max0p9; v->voltage[3] = dcn_bw_v_max0p9; v->voltage[2] = dcn_bw_v_nom0p8; v->voltage[1] = dcn_bw_v_mid0p72; v->voltage[0] = dcn_bw_v_min0p65; v->fabric_and_dram_bandwidth_per_state[5] = v->fabric_and_dram_bandwidth_vmax0p9; v->fabric_and_dram_bandwidth_per_state[4] = v->fabric_and_dram_bandwidth_vmax0p9; v->fabric_and_dram_bandwidth_per_state[3] = v->fabric_and_dram_bandwidth_vmax0p9; v->fabric_and_dram_bandwidth_per_state[2] = v->fabric_and_dram_bandwidth_vnom0p8; v->fabric_and_dram_bandwidth_per_state[1] = v->fabric_and_dram_bandwidth_vmid0p72; v->fabric_and_dram_bandwidth_per_state[0] = v->fabric_and_dram_bandwidth_vmin0p65; v->dcfclk_per_state[5] = v->dcfclkv_max0p9; v->dcfclk_per_state[4] = v->dcfclkv_max0p9; v->dcfclk_per_state[3] = v->dcfclkv_max0p9; v->dcfclk_per_state[2] = v->dcfclkv_nom0p8; v->dcfclk_per_state[1] = v->dcfclkv_mid0p72; v->dcfclk_per_state[0] = v->dcfclkv_min0p65; v->max_dispclk[5] = v->max_dispclk_vmax0p9; v->max_dispclk[4] = v->max_dispclk_vmax0p9; v->max_dispclk[3] = v->max_dispclk_vmax0p9; v->max_dispclk[2] = v->max_dispclk_vnom0p8; v->max_dispclk[1] = v->max_dispclk_vmid0p72; v->max_dispclk[0] = v->max_dispclk_vmin0p65; v->max_dppclk[5] = v->max_dppclk_vmax0p9; v->max_dppclk[4] = v->max_dppclk_vmax0p9; v->max_dppclk[3] = v->max_dppclk_vmax0p9; v->max_dppclk[2] = v->max_dppclk_vnom0p8; v->max_dppclk[1] = v->max_dppclk_vmid0p72; v->max_dppclk[0] = v->max_dppclk_vmin0p65; v->phyclk_per_state[5] = v->phyclkv_max0p9; v->phyclk_per_state[4] = v->phyclkv_max0p9; v->phyclk_per_state[3] = v->phyclkv_max0p9; v->phyclk_per_state[2] = v->phyclkv_nom0p8; v->phyclk_per_state[1] = v->phyclkv_mid0p72; v->phyclk_per_state[0] = v->phyclkv_min0p65; v->synchronized_vblank = dcn_bw_no; v->ta_pscalculation = dcn_bw_override; v->allow_different_hratio_vratio = dcn_bw_yes; for (i = 0, input_idx = 0; i < pool->pipe_count; i++) { struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; if (!pipe->stream) continue; /* skip all but first of split pipes */ if (pipe->top_pipe && pipe->top_pipe->plane_state == pipe->plane_state) continue; v->underscan_output[input_idx] = false; /* taken care of in recout already*/ v->interlace_output[input_idx] = false; v->htotal[input_idx] = pipe->stream->timing.h_total; v->vtotal[input_idx] = pipe->stream->timing.v_total; v->vactive[input_idx] = pipe->stream->timing.v_addressable + pipe->stream->timing.v_border_top + pipe->stream->timing.v_border_bottom; v->v_sync_plus_back_porch[input_idx] = pipe->stream->timing.v_total - v->vactive[input_idx] - pipe->stream->timing.v_front_porch; v->pixel_clock[input_idx] = pipe->stream->timing.pix_clk_100hz/10000.0; if (pipe->stream->timing.timing_3d_format == TIMING_3D_FORMAT_HW_FRAME_PACKING) v->pixel_clock[input_idx] *= 2; if (!pipe->plane_state) { v->dcc_enable[input_idx] = dcn_bw_yes; v->source_pixel_format[input_idx] = dcn_bw_rgb_sub_32; v->source_surface_mode[input_idx] = dcn_bw_sw_4_kb_s; v->lb_bit_per_pixel[input_idx] = 30; v->viewport_width[input_idx] = pipe->stream->timing.h_addressable; v->viewport_height[input_idx] = pipe->stream->timing.v_addressable; /* * for cases where we have no plane, we want to validate up to 1080p * source size because here we are only interested in if the output * timing is supported or not. if we cannot support native resolution * of the high res display, we still want to support lower res up scale * to native */ if (v->viewport_width[input_idx] > 1920) v->viewport_width[input_idx] = 1920; if (v->viewport_height[input_idx] > 1080) v->viewport_height[input_idx] = 1080; v->scaler_rec_out_width[input_idx] = v->viewport_width[input_idx]; v->scaler_recout_height[input_idx] = v->viewport_height[input_idx]; v->override_hta_ps[input_idx] = 1; v->override_vta_ps[input_idx] = 1; v->override_hta_pschroma[input_idx] = 1; v->override_vta_pschroma[input_idx] = 1; v->source_scan[input_idx] = dcn_bw_hor; } else { v->viewport_height[input_idx] = pipe->plane_res.scl_data.viewport.height; v->viewport_width[input_idx] = pipe->plane_res.scl_data.viewport.width; v->scaler_rec_out_width[input_idx] = pipe->plane_res.scl_data.recout.width; v->scaler_recout_height[input_idx] = pipe->plane_res.scl_data.recout.height; if (pipe->bottom_pipe && pipe->bottom_pipe->plane_state == pipe->plane_state) { if (pipe->plane_state->rotation % 2 == 0) { int viewport_end = pipe->plane_res.scl_data.viewport.width + pipe->plane_res.scl_data.viewport.x; int viewport_b_end = pipe->bottom_pipe->plane_res.scl_data.viewport.width + pipe->bottom_pipe->plane_res.scl_data.viewport.x; if (viewport_end > viewport_b_end) v->viewport_width[input_idx] = viewport_end - pipe->bottom_pipe->plane_res.scl_data.viewport.x; else v->viewport_width[input_idx] = viewport_b_end - pipe->plane_res.scl_data.viewport.x; } else { int viewport_end = pipe->plane_res.scl_data.viewport.height + pipe->plane_res.scl_data.viewport.y; int viewport_b_end = pipe->bottom_pipe->plane_res.scl_data.viewport.height + pipe->bottom_pipe->plane_res.scl_data.viewport.y; if (viewport_end > viewport_b_end) v->viewport_height[input_idx] = viewport_end - pipe->bottom_pipe->plane_res.scl_data.viewport.y; else v->viewport_height[input_idx] = viewport_b_end - pipe->plane_res.scl_data.viewport.y; } v->scaler_rec_out_width[input_idx] = pipe->plane_res.scl_data.recout.width + pipe->bottom_pipe->plane_res.scl_data.recout.width; } if (pipe->plane_state->rotation % 2 == 0) { ASSERT(pipe->plane_res.scl_data.ratios.horz.value != dc_fixpt_one.value || v->scaler_rec_out_width[input_idx] == v->viewport_width[input_idx]); ASSERT(pipe->plane_res.scl_data.ratios.vert.value != dc_fixpt_one.value || v->scaler_recout_height[input_idx] == v->viewport_height[input_idx]); } else { ASSERT(pipe->plane_res.scl_data.ratios.horz.value != dc_fixpt_one.value || v->scaler_recout_height[input_idx] == v->viewport_width[input_idx]); ASSERT(pipe->plane_res.scl_data.ratios.vert.value != dc_fixpt_one.value || v->scaler_rec_out_width[input_idx] == v->viewport_height[input_idx]); } if (dc->debug.optimized_watermark) { /* * this method requires us to always re-calculate watermark when dcc change * between flip. */ v->dcc_enable[input_idx] = pipe->plane_state->dcc.enable ? dcn_bw_yes : dcn_bw_no; } else { /* * allow us to disable dcc on the fly without re-calculating WM * * extra overhead for DCC is quite small. for 1080p WM without * DCC is only 0.417us lower (urgent goes from 6.979us to 6.562us) */ unsigned int bpe; v->dcc_enable[input_idx] = dc->res_pool->hubbub->funcs->dcc_support_pixel_format( pipe->plane_state->format, &bpe) ? dcn_bw_yes : dcn_bw_no; } v->source_pixel_format[input_idx] = tl_pixel_format_to_bw_defs( pipe->plane_state->format); v->source_surface_mode[input_idx] = tl_sw_mode_to_bw_defs( pipe->plane_state->tiling_info.gfx9.swizzle); v->lb_bit_per_pixel[input_idx] = tl_lb_bpp_to_int(pipe->plane_res.scl_data.lb_params.depth); v->override_hta_ps[input_idx] = pipe->plane_res.scl_data.taps.h_taps; v->override_vta_ps[input_idx] = pipe->plane_res.scl_data.taps.v_taps; v->override_hta_pschroma[input_idx] = pipe->plane_res.scl_data.taps.h_taps_c; v->override_vta_pschroma[input_idx] = pipe->plane_res.scl_data.taps.v_taps_c; /* * Spreadsheet doesn't handle taps_c is one properly, * need to force Chroma to always be scaled to pass * bandwidth validation. */ if (v->override_hta_pschroma[input_idx] == 1) v->override_hta_pschroma[input_idx] = 2; if (v->override_vta_pschroma[input_idx] == 1) v->override_vta_pschroma[input_idx] = 2; v->source_scan[input_idx] = (pipe->plane_state->rotation % 2) ? dcn_bw_vert : dcn_bw_hor; } if (v->is_line_buffer_bpp_fixed == dcn_bw_yes) v->lb_bit_per_pixel[input_idx] = v->line_buffer_fixed_bpp; v->dcc_rate[input_idx] = 1; /*TODO: Worst case? does this change?*/ v->output_format[input_idx] = pipe->stream->timing.pixel_encoding == PIXEL_ENCODING_YCBCR420 ? dcn_bw_420 : dcn_bw_444; v->output[input_idx] = pipe->stream->signal == SIGNAL_TYPE_HDMI_TYPE_A ? dcn_bw_hdmi : dcn_bw_dp; v->output_deep_color[input_idx] = dcn_bw_encoder_8bpc; if (v->output[input_idx] == dcn_bw_hdmi) { switch (pipe->stream->timing.display_color_depth) { case COLOR_DEPTH_101010: v->output_deep_color[input_idx] = dcn_bw_encoder_10bpc; break; case COLOR_DEPTH_121212: v->output_deep_color[input_idx] = dcn_bw_encoder_12bpc; break; case COLOR_DEPTH_161616: v->output_deep_color[input_idx] = dcn_bw_encoder_16bpc; break; default: break; } } input_idx++; } v->number_of_active_planes = input_idx; scaler_settings_calculation(v); hack_bounding_box(v, &dc->debug, context); mode_support_and_system_configuration(v); /* Unhack dppclk: dont bother with trying to pipe split if we cannot maintain dpm0 */ if (v->voltage_level != 0 && context->stream_count == 1 && dc->debug.force_single_disp_pipe_split) { v->max_dppclk[0] = v->max_dppclk_vmin0p65; mode_support_and_system_configuration(v); } if (v->voltage_level == 0 && (dc->debug.sr_exit_time_dpm0_ns || dc->debug.sr_enter_plus_exit_time_dpm0_ns)) { if (dc->debug.sr_enter_plus_exit_time_dpm0_ns) v->sr_enter_plus_exit_time = dc->debug.sr_enter_plus_exit_time_dpm0_ns / 1000.0f; if (dc->debug.sr_exit_time_dpm0_ns) v->sr_exit_time = dc->debug.sr_exit_time_dpm0_ns / 1000.0f; context->bw_ctx.dml.soc.sr_enter_plus_exit_time_us = v->sr_enter_plus_exit_time; context->bw_ctx.dml.soc.sr_exit_time_us = v->sr_exit_time; mode_support_and_system_configuration(v); } display_pipe_configuration(v); for (k = 0; k <= v->number_of_active_planes - 1; k++) { if (v->source_scan[k] == dcn_bw_hor) v->swath_width_y[k] = v->viewport_width[k] / v->dpp_per_plane[k]; else v->swath_width_y[k] = v->viewport_height[k] / v->dpp_per_plane[k]; } for (k = 0; k <= v->number_of_active_planes - 1; k++) { if (v->source_pixel_format[k] == dcn_bw_rgb_sub_64) { v->byte_per_pixel_dety[k] = 8.0; v->byte_per_pixel_detc[k] = 0.0; } else if (v->source_pixel_format[k] == dcn_bw_rgb_sub_32) { v->byte_per_pixel_dety[k] = 4.0; v->byte_per_pixel_detc[k] = 0.0; } else if (v->source_pixel_format[k] == dcn_bw_rgb_sub_16) { v->byte_per_pixel_dety[k] = 2.0; v->byte_per_pixel_detc[k] = 0.0; } else if (v->source_pixel_format[k] == dcn_bw_yuv420_sub_8) { v->byte_per_pixel_dety[k] = 1.0; v->byte_per_pixel_detc[k] = 2.0; } else { v->byte_per_pixel_dety[k] = 4.0f / 3.0f; v->byte_per_pixel_detc[k] = 8.0f / 3.0f; } } v->total_data_read_bandwidth = 0.0; for (k = 0; k <= v->number_of_active_planes - 1; k++) { v->read_bandwidth_plane_luma[k] = v->swath_width_y[k] * v->dpp_per_plane[k] * dcn_bw_ceil2(v->byte_per_pixel_dety[k], 1.0) / (v->htotal[k] / v->pixel_clock[k]) * v->v_ratio[k]; v->read_bandwidth_plane_chroma[k] = v->swath_width_y[k] / 2.0 * v->dpp_per_plane[k] * dcn_bw_ceil2(v->byte_per_pixel_detc[k], 2.0) / (v->htotal[k] / v->pixel_clock[k]) * v->v_ratio[k] / 2.0; v->total_data_read_bandwidth = v->total_data_read_bandwidth + v->read_bandwidth_plane_luma[k] + v->read_bandwidth_plane_chroma[k]; } BW_VAL_TRACE_END_VOLTAGE_LEVEL(); if (v->voltage_level != number_of_states_plus_one && !fast_validate) { float bw_consumed = v->total_bandwidth_consumed_gbyte_per_second; if (bw_consumed < v->fabric_and_dram_bandwidth_vmin0p65) bw_consumed = v->fabric_and_dram_bandwidth_vmin0p65; else if (bw_consumed < v->fabric_and_dram_bandwidth_vmid0p72) bw_consumed = v->fabric_and_dram_bandwidth_vmid0p72; else if (bw_consumed < v->fabric_and_dram_bandwidth_vnom0p8) bw_consumed = v->fabric_and_dram_bandwidth_vnom0p8; else bw_consumed = v->fabric_and_dram_bandwidth_vmax0p9; if (bw_consumed < v->fabric_and_dram_bandwidth) if (dc->debug.voltage_align_fclk) bw_consumed = v->fabric_and_dram_bandwidth; display_pipe_configuration(v); /*calc_wm_sets_and_perf_params(context, v);*/ /* Only 1 set is used by dcn since no noticeable * performance improvement was measured and due to hw bug DEGVIDCN10-254 */ dispclkdppclkdcfclk_deep_sleep_prefetch_parameters_watermarks_and_performance_calculation(v); context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.cstate_exit_ns = v->stutter_exit_watermark * 1000; context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.cstate_enter_plus_exit_ns = v->stutter_enter_plus_exit_watermark * 1000; context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.pstate_change_ns = v->dram_clock_change_watermark * 1000; context->bw_ctx.bw.dcn.watermarks.a.pte_meta_urgent_ns = v->ptemeta_urgent_watermark * 1000; context->bw_ctx.bw.dcn.watermarks.a.urgent_ns = v->urgent_watermark * 1000; context->bw_ctx.bw.dcn.watermarks.b = context->bw_ctx.bw.dcn.watermarks.a; context->bw_ctx.bw.dcn.watermarks.c = context->bw_ctx.bw.dcn.watermarks.a; context->bw_ctx.bw.dcn.watermarks.d = context->bw_ctx.bw.dcn.watermarks.a; context->bw_ctx.bw.dcn.clk.fclk_khz = (int)(bw_consumed * 1000000 / (ddr4_dram_factor_single_Channel * v->number_of_channels)); if (bw_consumed == v->fabric_and_dram_bandwidth_vmin0p65) context->bw_ctx.bw.dcn.clk.fclk_khz = (int)(bw_consumed * 1000000 / 32); context->bw_ctx.bw.dcn.clk.dcfclk_deep_sleep_khz = (int)(v->dcf_clk_deep_sleep * 1000); context->bw_ctx.bw.dcn.clk.dcfclk_khz = (int)(v->dcfclk * 1000); context->bw_ctx.bw.dcn.clk.dispclk_khz = (int)(v->dispclk * 1000); if (dc->debug.max_disp_clk == true) context->bw_ctx.bw.dcn.clk.dispclk_khz = (int)(dc->dcn_soc->max_dispclk_vmax0p9 * 1000); if (context->bw_ctx.bw.dcn.clk.dispclk_khz < dc->debug.min_disp_clk_khz) { context->bw_ctx.bw.dcn.clk.dispclk_khz = dc->debug.min_disp_clk_khz; } context->bw_ctx.bw.dcn.clk.dppclk_khz = context->bw_ctx.bw.dcn.clk.dispclk_khz / v->dispclk_dppclk_ratio; context->bw_ctx.bw.dcn.clk.phyclk_khz = v->phyclk_per_state[v->voltage_level]; switch (v->voltage_level) { case 0: context->bw_ctx.bw.dcn.clk.max_supported_dppclk_khz = (int)(dc->dcn_soc->max_dppclk_vmin0p65 * 1000); break; case 1: context->bw_ctx.bw.dcn.clk.max_supported_dppclk_khz = (int)(dc->dcn_soc->max_dppclk_vmid0p72 * 1000); break; case 2: context->bw_ctx.bw.dcn.clk.max_supported_dppclk_khz = (int)(dc->dcn_soc->max_dppclk_vnom0p8 * 1000); break; default: context->bw_ctx.bw.dcn.clk.max_supported_dppclk_khz = (int)(dc->dcn_soc->max_dppclk_vmax0p9 * 1000); break; } BW_VAL_TRACE_END_WATERMARKS(); for (i = 0, input_idx = 0; i < pool->pipe_count; i++) { struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; /* skip inactive pipe */ if (!pipe->stream) continue; /* skip all but first of split pipes */ if (pipe->top_pipe && pipe->top_pipe->plane_state == pipe->plane_state) continue; pipe->pipe_dlg_param.vupdate_width = v->v_update_width_pix[input_idx]; pipe->pipe_dlg_param.vupdate_offset = v->v_update_offset_pix[input_idx]; pipe->pipe_dlg_param.vready_offset = v->v_ready_offset_pix[input_idx]; pipe->pipe_dlg_param.vstartup_start = v->v_startup[input_idx]; pipe->pipe_dlg_param.htotal = pipe->stream->timing.h_total; pipe->pipe_dlg_param.vtotal = pipe->stream->timing.v_total; vesa_sync_start = pipe->stream->timing.v_addressable + pipe->stream->timing.v_border_bottom + pipe->stream->timing.v_front_porch; asic_blank_end = (pipe->stream->timing.v_total - vesa_sync_start - pipe->stream->timing.v_border_top) * (pipe->stream->timing.flags.INTERLACE ? 1 : 0); asic_blank_start = asic_blank_end + (pipe->stream->timing.v_border_top + pipe->stream->timing.v_addressable + pipe->stream->timing.v_border_bottom) * (pipe->stream->timing.flags.INTERLACE ? 1 : 0); pipe->pipe_dlg_param.vblank_start = asic_blank_start; pipe->pipe_dlg_param.vblank_end = asic_blank_end; if (pipe->plane_state) { struct pipe_ctx *hsplit_pipe = pipe->bottom_pipe; pipe->plane_state->update_flags.bits.full_update = 1; if (v->dpp_per_plane[input_idx] == 2 || ((pipe->stream->view_format == VIEW_3D_FORMAT_SIDE_BY_SIDE || pipe->stream->view_format == VIEW_3D_FORMAT_TOP_AND_BOTTOM) && (pipe->stream->timing.timing_3d_format == TIMING_3D_FORMAT_TOP_AND_BOTTOM || pipe->stream->timing.timing_3d_format == TIMING_3D_FORMAT_SIDE_BY_SIDE))) { if (hsplit_pipe && hsplit_pipe->plane_state == pipe->plane_state) { /* update previously split pipe */ hsplit_pipe->pipe_dlg_param.vupdate_width = v->v_update_width_pix[input_idx]; hsplit_pipe->pipe_dlg_param.vupdate_offset = v->v_update_offset_pix[input_idx]; hsplit_pipe->pipe_dlg_param.vready_offset = v->v_ready_offset_pix[input_idx]; hsplit_pipe->pipe_dlg_param.vstartup_start = v->v_startup[input_idx]; hsplit_pipe->pipe_dlg_param.htotal = pipe->stream->timing.h_total; hsplit_pipe->pipe_dlg_param.vtotal = pipe->stream->timing.v_total; hsplit_pipe->pipe_dlg_param.vblank_start = pipe->pipe_dlg_param.vblank_start; hsplit_pipe->pipe_dlg_param.vblank_end = pipe->pipe_dlg_param.vblank_end; } else { /* pipe not split previously needs split */ hsplit_pipe = resource_find_free_secondary_pipe_legacy(&context->res_ctx, pool, pipe); ASSERT(hsplit_pipe); split_stream_across_pipes(&context->res_ctx, pool, pipe, hsplit_pipe); } dcn_bw_calc_rq_dlg_ttu(dc, v, hsplit_pipe, input_idx); } else if (hsplit_pipe && hsplit_pipe->plane_state == pipe->plane_state) { /* merge previously split pipe */ pipe->bottom_pipe = hsplit_pipe->bottom_pipe; if (hsplit_pipe->bottom_pipe) hsplit_pipe->bottom_pipe->top_pipe = pipe; hsplit_pipe->plane_state = NULL; hsplit_pipe->stream = NULL; hsplit_pipe->top_pipe = NULL; hsplit_pipe->bottom_pipe = NULL; /* Clear plane_res and stream_res */ memset(&hsplit_pipe->plane_res, 0, sizeof(hsplit_pipe->plane_res)); memset(&hsplit_pipe->stream_res, 0, sizeof(hsplit_pipe->stream_res)); resource_build_scaling_params(pipe); } /* for now important to do this after pipe split for building e2e params */ dcn_bw_calc_rq_dlg_ttu(dc, v, pipe, input_idx); } input_idx++; } } else if (v->voltage_level == number_of_states_plus_one) { BW_VAL_TRACE_SKIP(fail); } else if (fast_validate) { BW_VAL_TRACE_SKIP(fast); } if (v->voltage_level == 0) { context->bw_ctx.dml.soc.sr_enter_plus_exit_time_us = dc->dcn_soc->sr_enter_plus_exit_time; context->bw_ctx.dml.soc.sr_exit_time_us = dc->dcn_soc->sr_exit_time; } /* * BW limit is set to prevent display from impacting other system functions */ bw_limit = dc->dcn_soc->percent_disp_bw_limit * v->fabric_and_dram_bandwidth_vmax0p9; bw_limit_pass = (v->total_data_read_bandwidth / 1000.0) < bw_limit; PERFORMANCE_TRACE_END(); BW_VAL_TRACE_FINISH(); if (bw_limit_pass && v->voltage_level <= get_highest_allowed_voltage_level(dc->config.is_vmin_only_asic)) return true; else return false; } static unsigned int dcn_find_normalized_clock_vdd_Level( const struct dc *dc, enum dm_pp_clock_type clocks_type, int clocks_in_khz) { int vdd_level = dcn_bw_v_min0p65; if (clocks_in_khz == 0)/*todo some clock not in the considerations*/ return vdd_level; switch (clocks_type) { case DM_PP_CLOCK_TYPE_DISPLAY_CLK: if (clocks_in_khz > dc->dcn_soc->max_dispclk_vmax0p9*1000) { vdd_level = dcn_bw_v_max0p91; BREAK_TO_DEBUGGER(); } else if (clocks_in_khz > dc->dcn_soc->max_dispclk_vnom0p8*1000) { vdd_level = dcn_bw_v_max0p9; } else if (clocks_in_khz > dc->dcn_soc->max_dispclk_vmid0p72*1000) { vdd_level = dcn_bw_v_nom0p8; } else if (clocks_in_khz > dc->dcn_soc->max_dispclk_vmin0p65*1000) { vdd_level = dcn_bw_v_mid0p72; } else vdd_level = dcn_bw_v_min0p65; break; case DM_PP_CLOCK_TYPE_DISPLAYPHYCLK: if (clocks_in_khz > dc->dcn_soc->phyclkv_max0p9*1000) { vdd_level = dcn_bw_v_max0p91; BREAK_TO_DEBUGGER(); } else if (clocks_in_khz > dc->dcn_soc->phyclkv_nom0p8*1000) { vdd_level = dcn_bw_v_max0p9; } else if (clocks_in_khz > dc->dcn_soc->phyclkv_mid0p72*1000) { vdd_level = dcn_bw_v_nom0p8; } else if (clocks_in_khz > dc->dcn_soc->phyclkv_min0p65*1000) { vdd_level = dcn_bw_v_mid0p72; } else vdd_level = dcn_bw_v_min0p65; break; case DM_PP_CLOCK_TYPE_DPPCLK: if (clocks_in_khz > dc->dcn_soc->max_dppclk_vmax0p9*1000) { vdd_level = dcn_bw_v_max0p91; BREAK_TO_DEBUGGER(); } else if (clocks_in_khz > dc->dcn_soc->max_dppclk_vnom0p8*1000) { vdd_level = dcn_bw_v_max0p9; } else if (clocks_in_khz > dc->dcn_soc->max_dppclk_vmid0p72*1000) { vdd_level = dcn_bw_v_nom0p8; } else if (clocks_in_khz > dc->dcn_soc->max_dppclk_vmin0p65*1000) { vdd_level = dcn_bw_v_mid0p72; } else vdd_level = dcn_bw_v_min0p65; break; case DM_PP_CLOCK_TYPE_MEMORY_CLK: { unsigned factor = (ddr4_dram_factor_single_Channel * dc->dcn_soc->number_of_channels); if (clocks_in_khz > dc->dcn_soc->fabric_and_dram_bandwidth_vmax0p9*1000000/factor) { vdd_level = dcn_bw_v_max0p91; BREAK_TO_DEBUGGER(); } else if (clocks_in_khz > dc->dcn_soc->fabric_and_dram_bandwidth_vnom0p8*1000000/factor) { vdd_level = dcn_bw_v_max0p9; } else if (clocks_in_khz > dc->dcn_soc->fabric_and_dram_bandwidth_vmid0p72*1000000/factor) { vdd_level = dcn_bw_v_nom0p8; } else if (clocks_in_khz > dc->dcn_soc->fabric_and_dram_bandwidth_vmin0p65*1000000/factor) { vdd_level = dcn_bw_v_mid0p72; } else vdd_level = dcn_bw_v_min0p65; } break; case DM_PP_CLOCK_TYPE_DCFCLK: if (clocks_in_khz > dc->dcn_soc->dcfclkv_max0p9*1000) { vdd_level = dcn_bw_v_max0p91; BREAK_TO_DEBUGGER(); } else if (clocks_in_khz > dc->dcn_soc->dcfclkv_nom0p8*1000) { vdd_level = dcn_bw_v_max0p9; } else if (clocks_in_khz > dc->dcn_soc->dcfclkv_mid0p72*1000) { vdd_level = dcn_bw_v_nom0p8; } else if (clocks_in_khz > dc->dcn_soc->dcfclkv_min0p65*1000) { vdd_level = dcn_bw_v_mid0p72; } else vdd_level = dcn_bw_v_min0p65; break; default: break; } return vdd_level; } unsigned int dcn_find_dcfclk_suits_all( const struct dc *dc, struct dc_clocks *clocks) { unsigned vdd_level, vdd_level_temp; unsigned dcf_clk; /*find a common supported voltage level*/ vdd_level = dcn_find_normalized_clock_vdd_Level( dc, DM_PP_CLOCK_TYPE_DISPLAY_CLK, clocks->dispclk_khz); vdd_level_temp = dcn_find_normalized_clock_vdd_Level( dc, DM_PP_CLOCK_TYPE_DISPLAYPHYCLK, clocks->phyclk_khz); vdd_level = dcn_bw_max(vdd_level, vdd_level_temp); vdd_level_temp = dcn_find_normalized_clock_vdd_Level( dc, DM_PP_CLOCK_TYPE_DPPCLK, clocks->dppclk_khz); vdd_level = dcn_bw_max(vdd_level, vdd_level_temp); vdd_level_temp = dcn_find_normalized_clock_vdd_Level( dc, DM_PP_CLOCK_TYPE_MEMORY_CLK, clocks->fclk_khz); vdd_level = dcn_bw_max(vdd_level, vdd_level_temp); vdd_level_temp = dcn_find_normalized_clock_vdd_Level( dc, DM_PP_CLOCK_TYPE_DCFCLK, clocks->dcfclk_khz); /*find that level conresponding dcfclk*/ vdd_level = dcn_bw_max(vdd_level, vdd_level_temp); if (vdd_level == dcn_bw_v_max0p91) { BREAK_TO_DEBUGGER(); dcf_clk = dc->dcn_soc->dcfclkv_max0p9*1000; } else if (vdd_level == dcn_bw_v_max0p9) dcf_clk = dc->dcn_soc->dcfclkv_max0p9*1000; else if (vdd_level == dcn_bw_v_nom0p8) dcf_clk = dc->dcn_soc->dcfclkv_nom0p8*1000; else if (vdd_level == dcn_bw_v_mid0p72) dcf_clk = dc->dcn_soc->dcfclkv_mid0p72*1000; else dcf_clk = dc->dcn_soc->dcfclkv_min0p65*1000; DC_LOG_BANDWIDTH_CALCS("\tdcf_clk for voltage = %d\n", dcf_clk); return dcf_clk; } void dcn_bw_update_from_pplib_fclks( struct dc *dc, struct dm_pp_clock_levels_with_voltage *fclks) { unsigned vmin0p65_idx, vmid0p72_idx, vnom0p8_idx, vmax0p9_idx; ASSERT(fclks->num_levels); vmin0p65_idx = 0; vmid0p72_idx = fclks->num_levels > 2 ? fclks->num_levels - 3 : 0; vnom0p8_idx = fclks->num_levels > 1 ? fclks->num_levels - 2 : 0; vmax0p9_idx = fclks->num_levels > 0 ? fclks->num_levels - 1 : 0; dc->dcn_soc->fabric_and_dram_bandwidth_vmin0p65 = 32 * (fclks->data[vmin0p65_idx].clocks_in_khz / 1000.0) / 1000.0; dc->dcn_soc->fabric_and_dram_bandwidth_vmid0p72 = dc->dcn_soc->number_of_channels * (fclks->data[vmid0p72_idx].clocks_in_khz / 1000.0) * ddr4_dram_factor_single_Channel / 1000.0; dc->dcn_soc->fabric_and_dram_bandwidth_vnom0p8 = dc->dcn_soc->number_of_channels * (fclks->data[vnom0p8_idx].clocks_in_khz / 1000.0) * ddr4_dram_factor_single_Channel / 1000.0; dc->dcn_soc->fabric_and_dram_bandwidth_vmax0p9 = dc->dcn_soc->number_of_channels * (fclks->data[vmax0p9_idx].clocks_in_khz / 1000.0) * ddr4_dram_factor_single_Channel / 1000.0; } void dcn_bw_update_from_pplib_dcfclks( struct dc *dc, struct dm_pp_clock_levels_with_voltage *dcfclks) { if (dcfclks->num_levels >= 3) { dc->dcn_soc->dcfclkv_min0p65 = dcfclks->data[0].clocks_in_khz / 1000.0; dc->dcn_soc->dcfclkv_mid0p72 = dcfclks->data[dcfclks->num_levels - 3].clocks_in_khz / 1000.0; dc->dcn_soc->dcfclkv_nom0p8 = dcfclks->data[dcfclks->num_levels - 2].clocks_in_khz / 1000.0; dc->dcn_soc->dcfclkv_max0p9 = dcfclks->data[dcfclks->num_levels - 1].clocks_in_khz / 1000.0; } } void dcn_get_soc_clks( struct dc *dc, int *min_fclk_khz, int *min_dcfclk_khz, int *socclk_khz) { *min_fclk_khz = dc->dcn_soc->fabric_and_dram_bandwidth_vmin0p65 * 1000000 / 32; *min_dcfclk_khz = dc->dcn_soc->dcfclkv_min0p65 * 1000; *socclk_khz = dc->dcn_soc->socclk * 1000; } void dcn_bw_notify_pplib_of_wm_ranges( struct dc *dc, int min_fclk_khz, int min_dcfclk_khz, int socclk_khz) { struct pp_smu_funcs_rv *pp = NULL; struct pp_smu_wm_range_sets ranges = {0}; const int overdrive = 5000000; /* 5 GHz to cover Overdrive */ if (dc->res_pool->pp_smu) pp = &dc->res_pool->pp_smu->rv_funcs; if (!pp || !pp->set_wm_ranges) return; /* Now notify PPLib/SMU about which Watermarks sets they should select * depending on DPM state they are in. And update BW MGR GFX Engine and * Memory clock member variables for Watermarks calculations for each * Watermark Set. Only one watermark set for dcn1 due to hw bug DEGVIDCN10-254. */ /* SOCCLK does not affect anytihng but writeback for DCN so for now we dont * care what the value is, hence min to overdrive level */ ranges.num_reader_wm_sets = WM_SET_COUNT; ranges.num_writer_wm_sets = WM_SET_COUNT; ranges.reader_wm_sets[0].wm_inst = WM_A; ranges.reader_wm_sets[0].min_drain_clk_mhz = min_dcfclk_khz / 1000; ranges.reader_wm_sets[0].max_drain_clk_mhz = overdrive / 1000; ranges.reader_wm_sets[0].min_fill_clk_mhz = min_fclk_khz / 1000; ranges.reader_wm_sets[0].max_fill_clk_mhz = overdrive / 1000; ranges.writer_wm_sets[0].wm_inst = WM_A; ranges.writer_wm_sets[0].min_fill_clk_mhz = socclk_khz / 1000; ranges.writer_wm_sets[0].max_fill_clk_mhz = overdrive / 1000; ranges.writer_wm_sets[0].min_drain_clk_mhz = min_fclk_khz / 1000; ranges.writer_wm_sets[0].max_drain_clk_mhz = overdrive / 1000; if (dc->debug.pplib_wm_report_mode == WM_REPORT_OVERRIDE) { ranges.reader_wm_sets[0].wm_inst = WM_A; ranges.reader_wm_sets[0].min_drain_clk_mhz = 300; ranges.reader_wm_sets[0].max_drain_clk_mhz = 5000; ranges.reader_wm_sets[0].min_fill_clk_mhz = 800; ranges.reader_wm_sets[0].max_fill_clk_mhz = 5000; ranges.writer_wm_sets[0].wm_inst = WM_A; ranges.writer_wm_sets[0].min_fill_clk_mhz = 200; ranges.writer_wm_sets[0].max_fill_clk_mhz = 5000; ranges.writer_wm_sets[0].min_drain_clk_mhz = 800; ranges.writer_wm_sets[0].max_drain_clk_mhz = 5000; } ranges.reader_wm_sets[1] = ranges.writer_wm_sets[0]; ranges.reader_wm_sets[1].wm_inst = WM_B; ranges.reader_wm_sets[2] = ranges.writer_wm_sets[0]; ranges.reader_wm_sets[2].wm_inst = WM_C; ranges.reader_wm_sets[3] = ranges.writer_wm_sets[0]; ranges.reader_wm_sets[3].wm_inst = WM_D; /* Notify PP Lib/SMU which Watermarks to use for which clock ranges */ pp->set_wm_ranges(&pp->pp_smu, &ranges); } void dcn_bw_sync_calcs_and_dml(struct dc *dc) { DC_LOG_BANDWIDTH_CALCS("sr_exit_time: %f ns\n" "sr_enter_plus_exit_time: %f ns\n" "urgent_latency: %f ns\n" "write_back_latency: %f ns\n" "percent_of_ideal_drambw_received_after_urg_latency: %f %%\n" "max_request_size: %d bytes\n" "dcfclkv_max0p9: %f kHz\n" "dcfclkv_nom0p8: %f kHz\n" "dcfclkv_mid0p72: %f kHz\n" "dcfclkv_min0p65: %f kHz\n" "max_dispclk_vmax0p9: %f kHz\n" "max_dispclk_vnom0p8: %f kHz\n" "max_dispclk_vmid0p72: %f kHz\n" "max_dispclk_vmin0p65: %f kHz\n" "max_dppclk_vmax0p9: %f kHz\n" "max_dppclk_vnom0p8: %f kHz\n" "max_dppclk_vmid0p72: %f kHz\n" "max_dppclk_vmin0p65: %f kHz\n" "socclk: %f kHz\n" "fabric_and_dram_bandwidth_vmax0p9: %f MB/s\n" "fabric_and_dram_bandwidth_vnom0p8: %f MB/s\n" "fabric_and_dram_bandwidth_vmid0p72: %f MB/s\n" "fabric_and_dram_bandwidth_vmin0p65: %f MB/s\n" "phyclkv_max0p9: %f kHz\n" "phyclkv_nom0p8: %f kHz\n" "phyclkv_mid0p72: %f kHz\n" "phyclkv_min0p65: %f kHz\n" "downspreading: %f %%\n" "round_trip_ping_latency_cycles: %d DCFCLK Cycles\n" "urgent_out_of_order_return_per_channel: %d Bytes\n" "number_of_channels: %d\n" "vmm_page_size: %d Bytes\n" "dram_clock_change_latency: %f ns\n" "return_bus_width: %d Bytes\n", dc->dcn_soc->sr_exit_time * 1000, dc->dcn_soc->sr_enter_plus_exit_time * 1000, dc->dcn_soc->urgent_latency * 1000, dc->dcn_soc->write_back_latency * 1000, dc->dcn_soc->percent_of_ideal_drambw_received_after_urg_latency, dc->dcn_soc->max_request_size, dc->dcn_soc->dcfclkv_max0p9 * 1000, dc->dcn_soc->dcfclkv_nom0p8 * 1000, dc->dcn_soc->dcfclkv_mid0p72 * 1000, dc->dcn_soc->dcfclkv_min0p65 * 1000, dc->dcn_soc->max_dispclk_vmax0p9 * 1000, dc->dcn_soc->max_dispclk_vnom0p8 * 1000, dc->dcn_soc->max_dispclk_vmid0p72 * 1000, dc->dcn_soc->max_dispclk_vmin0p65 * 1000, dc->dcn_soc->max_dppclk_vmax0p9 * 1000, dc->dcn_soc->max_dppclk_vnom0p8 * 1000, dc->dcn_soc->max_dppclk_vmid0p72 * 1000, dc->dcn_soc->max_dppclk_vmin0p65 * 1000, dc->dcn_soc->socclk * 1000, dc->dcn_soc->fabric_and_dram_bandwidth_vmax0p9 * 1000, dc->dcn_soc->fabric_and_dram_bandwidth_vnom0p8 * 1000, dc->dcn_soc->fabric_and_dram_bandwidth_vmid0p72 * 1000, dc->dcn_soc->fabric_and_dram_bandwidth_vmin0p65 * 1000, dc->dcn_soc->phyclkv_max0p9 * 1000, dc->dcn_soc->phyclkv_nom0p8 * 1000, dc->dcn_soc->phyclkv_mid0p72 * 1000, dc->dcn_soc->phyclkv_min0p65 * 1000, dc->dcn_soc->downspreading * 100, dc->dcn_soc->round_trip_ping_latency_cycles, dc->dcn_soc->urgent_out_of_order_return_per_channel, dc->dcn_soc->number_of_channels, dc->dcn_soc->vmm_page_size, dc->dcn_soc->dram_clock_change_latency * 1000, dc->dcn_soc->return_bus_width); DC_LOG_BANDWIDTH_CALCS("rob_buffer_size_in_kbyte: %f\n" "det_buffer_size_in_kbyte: %f\n" "dpp_output_buffer_pixels: %f\n" "opp_output_buffer_lines: %f\n" "pixel_chunk_size_in_kbyte: %f\n" "pte_enable: %d\n" "pte_chunk_size: %d kbytes\n" "meta_chunk_size: %d kbytes\n" "writeback_chunk_size: %d kbytes\n" "odm_capability: %d\n" "dsc_capability: %d\n" "line_buffer_size: %d bits\n" "max_line_buffer_lines: %d\n" "is_line_buffer_bpp_fixed: %d\n" "line_buffer_fixed_bpp: %d\n" "writeback_luma_buffer_size: %d kbytes\n" "writeback_chroma_buffer_size: %d kbytes\n" "max_num_dpp: %d\n" "max_num_writeback: %d\n" "max_dchub_topscl_throughput: %d pixels/dppclk\n" "max_pscl_tolb_throughput: %d pixels/dppclk\n" "max_lb_tovscl_throughput: %d pixels/dppclk\n" "max_vscl_tohscl_throughput: %d pixels/dppclk\n" "max_hscl_ratio: %f\n" "max_vscl_ratio: %f\n" "max_hscl_taps: %d\n" "max_vscl_taps: %d\n" "pte_buffer_size_in_requests: %d\n" "dispclk_ramping_margin: %f %%\n" "under_scan_factor: %f %%\n" "max_inter_dcn_tile_repeaters: %d\n" "can_vstartup_lines_exceed_vsync_plus_back_porch_lines_minus_one: %d\n" "bug_forcing_luma_and_chroma_request_to_same_size_fixed: %d\n" "dcfclk_cstate_latency: %d\n", dc->dcn_ip->rob_buffer_size_in_kbyte, dc->dcn_ip->det_buffer_size_in_kbyte, dc->dcn_ip->dpp_output_buffer_pixels, dc->dcn_ip->opp_output_buffer_lines, dc->dcn_ip->pixel_chunk_size_in_kbyte, dc->dcn_ip->pte_enable, dc->dcn_ip->pte_chunk_size, dc->dcn_ip->meta_chunk_size, dc->dcn_ip->writeback_chunk_size, dc->dcn_ip->odm_capability, dc->dcn_ip->dsc_capability, dc->dcn_ip->line_buffer_size, dc->dcn_ip->max_line_buffer_lines, dc->dcn_ip->is_line_buffer_bpp_fixed, dc->dcn_ip->line_buffer_fixed_bpp, dc->dcn_ip->writeback_luma_buffer_size, dc->dcn_ip->writeback_chroma_buffer_size, dc->dcn_ip->max_num_dpp, dc->dcn_ip->max_num_writeback, dc->dcn_ip->max_dchub_topscl_throughput, dc->dcn_ip->max_pscl_tolb_throughput, dc->dcn_ip->max_lb_tovscl_throughput, dc->dcn_ip->max_vscl_tohscl_throughput, dc->dcn_ip->max_hscl_ratio, dc->dcn_ip->max_vscl_ratio, dc->dcn_ip->max_hscl_taps, dc->dcn_ip->max_vscl_taps, dc->dcn_ip->pte_buffer_size_in_requests, dc->dcn_ip->dispclk_ramping_margin, dc->dcn_ip->under_scan_factor * 100, dc->dcn_ip->max_inter_dcn_tile_repeaters, dc->dcn_ip->can_vstartup_lines_exceed_vsync_plus_back_porch_lines_minus_one, dc->dcn_ip->bug_forcing_luma_and_chroma_request_to_same_size_fixed, dc->dcn_ip->dcfclk_cstate_latency); dc->dml.soc.sr_exit_time_us = dc->dcn_soc->sr_exit_time; dc->dml.soc.sr_enter_plus_exit_time_us = dc->dcn_soc->sr_enter_plus_exit_time; dc->dml.soc.urgent_latency_us = dc->dcn_soc->urgent_latency; dc->dml.soc.writeback_latency_us = dc->dcn_soc->write_back_latency; dc->dml.soc.ideal_dram_bw_after_urgent_percent = dc->dcn_soc->percent_of_ideal_drambw_received_after_urg_latency; dc->dml.soc.max_request_size_bytes = dc->dcn_soc->max_request_size; dc->dml.soc.downspread_percent = dc->dcn_soc->downspreading; dc->dml.soc.round_trip_ping_latency_dcfclk_cycles = dc->dcn_soc->round_trip_ping_latency_cycles; dc->dml.soc.urgent_out_of_order_return_per_channel_bytes = dc->dcn_soc->urgent_out_of_order_return_per_channel; dc->dml.soc.num_chans = dc->dcn_soc->number_of_channels; dc->dml.soc.vmm_page_size_bytes = dc->dcn_soc->vmm_page_size; dc->dml.soc.dram_clock_change_latency_us = dc->dcn_soc->dram_clock_change_latency; dc->dml.soc.return_bus_width_bytes = dc->dcn_soc->return_bus_width; dc->dml.ip.rob_buffer_size_kbytes = dc->dcn_ip->rob_buffer_size_in_kbyte; dc->dml.ip.det_buffer_size_kbytes = dc->dcn_ip->det_buffer_size_in_kbyte; dc->dml.ip.dpp_output_buffer_pixels = dc->dcn_ip->dpp_output_buffer_pixels; dc->dml.ip.opp_output_buffer_lines = dc->dcn_ip->opp_output_buffer_lines; dc->dml.ip.pixel_chunk_size_kbytes = dc->dcn_ip->pixel_chunk_size_in_kbyte; dc->dml.ip.pte_enable = dc->dcn_ip->pte_enable == dcn_bw_yes; dc->dml.ip.pte_chunk_size_kbytes = dc->dcn_ip->pte_chunk_size; dc->dml.ip.meta_chunk_size_kbytes = dc->dcn_ip->meta_chunk_size; dc->dml.ip.writeback_chunk_size_kbytes = dc->dcn_ip->writeback_chunk_size; dc->dml.ip.line_buffer_size_bits = dc->dcn_ip->line_buffer_size; dc->dml.ip.max_line_buffer_lines = dc->dcn_ip->max_line_buffer_lines; dc->dml.ip.IsLineBufferBppFixed = dc->dcn_ip->is_line_buffer_bpp_fixed == dcn_bw_yes; dc->dml.ip.LineBufferFixedBpp = dc->dcn_ip->line_buffer_fixed_bpp; dc->dml.ip.writeback_luma_buffer_size_kbytes = dc->dcn_ip->writeback_luma_buffer_size; dc->dml.ip.writeback_chroma_buffer_size_kbytes = dc->dcn_ip->writeback_chroma_buffer_size; dc->dml.ip.max_num_dpp = dc->dcn_ip->max_num_dpp; dc->dml.ip.max_num_wb = dc->dcn_ip->max_num_writeback; dc->dml.ip.max_dchub_pscl_bw_pix_per_clk = dc->dcn_ip->max_dchub_topscl_throughput; dc->dml.ip.max_pscl_lb_bw_pix_per_clk = dc->dcn_ip->max_pscl_tolb_throughput; dc->dml.ip.max_lb_vscl_bw_pix_per_clk = dc->dcn_ip->max_lb_tovscl_throughput; dc->dml.ip.max_vscl_hscl_bw_pix_per_clk = dc->dcn_ip->max_vscl_tohscl_throughput; dc->dml.ip.max_hscl_ratio = dc->dcn_ip->max_hscl_ratio; dc->dml.ip.max_vscl_ratio = dc->dcn_ip->max_vscl_ratio; dc->dml.ip.max_hscl_taps = dc->dcn_ip->max_hscl_taps; dc->dml.ip.max_vscl_taps = dc->dcn_ip->max_vscl_taps; /*pte_buffer_size_in_requests missing in dml*/ dc->dml.ip.dispclk_ramp_margin_percent = dc->dcn_ip->dispclk_ramping_margin; dc->dml.ip.underscan_factor = dc->dcn_ip->under_scan_factor; dc->dml.ip.max_inter_dcn_tile_repeaters = dc->dcn_ip->max_inter_dcn_tile_repeaters; dc->dml.ip.can_vstartup_lines_exceed_vsync_plus_back_porch_lines_minus_one = dc->dcn_ip->can_vstartup_lines_exceed_vsync_plus_back_porch_lines_minus_one == dcn_bw_yes; dc->dml.ip.bug_forcing_LC_req_same_size_fixed = dc->dcn_ip->bug_forcing_luma_and_chroma_request_to_same_size_fixed == dcn_bw_yes; dc->dml.ip.dcfclk_cstate_latency = dc->dcn_ip->dcfclk_cstate_latency; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1