Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Aurabindo Pillai | 6100 | 94.71% | 2 | 22.22% |
Nicholas Kazlauskas | 158 | 2.45% | 1 | 11.11% |
Eric Bernstein | 51 | 0.79% | 1 | 11.11% |
Bhawanpreet Lakha | 42 | 0.65% | 1 | 11.11% |
George Shen | 39 | 0.61% | 1 | 11.11% |
Harry Wentland | 36 | 0.56% | 2 | 22.22% |
Eric Yang | 15 | 0.23% | 1 | 11.11% |
Total | 6441 | 9 |
/* * Copyright 2023 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: AMD * */ #include "dcn30/dcn30_hubbub.h" #include "dcn401_hubbub.h" #include "dm_services.h" #include "reg_helper.h" #define CTX \ hubbub2->base.ctx #define DC_LOGGER \ hubbub2->base.ctx->logger #define REG(reg)\ hubbub2->regs->reg #undef FN #define FN(reg_name, field_name) \ hubbub2->shifts->field_name, hubbub2->masks->field_name static void dcn401_init_crb(struct hubbub *hubbub) { struct dcn20_hubbub *hubbub2 = TO_DCN20_HUBBUB(hubbub); REG_GET(DCHUBBUB_DET0_CTRL, DET0_SIZE_CURRENT, &hubbub2->det0_size); REG_GET(DCHUBBUB_DET1_CTRL, DET1_SIZE_CURRENT, &hubbub2->det1_size); REG_GET(DCHUBBUB_DET2_CTRL, DET2_SIZE_CURRENT, &hubbub2->det2_size); REG_GET(DCHUBBUB_DET3_CTRL, DET3_SIZE_CURRENT, &hubbub2->det3_size); REG_GET(DCHUBBUB_COMPBUF_CTRL, COMPBUF_SIZE_CURRENT, &hubbub2->compbuf_size_segments); REG_SET(COMPBUF_RESERVED_SPACE, 0, COMPBUF_RESERVED_SPACE_64B, hubbub2->pixel_chunk_size / 32); // 256 64Bytes } bool hubbub401_program_urgent_watermarks( struct hubbub *hubbub, union dcn_watermark_set *watermarks, unsigned int refclk_mhz, bool safe_to_lower) { struct dcn20_hubbub *hubbub2 = TO_DCN20_HUBBUB(hubbub); bool wm_pending = false; /* Repeat for water mark set A and B */ /* clock state A */ if (safe_to_lower || watermarks->dcn4.a.urgent > hubbub2->watermarks.dcn4.a.urgent) { hubbub2->watermarks.dcn4.a.urgent = watermarks->dcn4.a.urgent; REG_SET(DCHUBBUB_ARB_DATA_URGENCY_WATERMARK_A, 0, DCHUBBUB_ARB_DATA_URGENCY_WATERMARK_A, watermarks->dcn4.a.urgent); DC_LOG_BANDWIDTH_CALCS("URGENCY_WATERMARK_A calculated =%d\n" "HW register value = 0x%x\n", watermarks->dcn4.a.urgent, watermarks->dcn4.a.urgent); } else if (watermarks->dcn4.a.urgent < hubbub2->watermarks.dcn4.a.urgent) wm_pending = true; /* determine the transfer time for a quantity of data for a particular requestor.*/ if (safe_to_lower || watermarks->dcn4.a.frac_urg_bw_flip > hubbub2->watermarks.dcn4.a.frac_urg_bw_flip) { hubbub2->watermarks.dcn4.a.frac_urg_bw_flip = watermarks->dcn4.a.frac_urg_bw_flip; REG_SET(DCHUBBUB_ARB_FRAC_URG_BW_FLIP_A, 0, DCHUBBUB_ARB_FRAC_URG_BW_FLIP_A, watermarks->dcn4.a.frac_urg_bw_flip); } else if (watermarks->dcn4.a.frac_urg_bw_flip < hubbub2->watermarks.dcn4.a.frac_urg_bw_flip) wm_pending = true; if (safe_to_lower || watermarks->dcn4.a.frac_urg_bw_nom > hubbub2->watermarks.dcn4.a.frac_urg_bw_nom) { hubbub2->watermarks.dcn4.a.frac_urg_bw_nom = watermarks->dcn4.a.frac_urg_bw_nom; REG_SET(DCHUBBUB_ARB_FRAC_URG_BW_NOM_A, 0, DCHUBBUB_ARB_FRAC_URG_BW_NOM_A, watermarks->dcn4.a.frac_urg_bw_nom); } else if (watermarks->dcn4.a.frac_urg_bw_nom < hubbub2->watermarks.dcn4.a.frac_urg_bw_nom) wm_pending = true; if (safe_to_lower || watermarks->dcn4.a.frac_urg_bw_mall > hubbub2->watermarks.dcn4.a.frac_urg_bw_mall) { hubbub2->watermarks.dcn4.a.frac_urg_bw_mall = watermarks->dcn4.a.frac_urg_bw_mall; REG_SET(DCHUBBUB_ARB_FRAC_URG_BW_MALL_A, 0, DCHUBBUB_ARB_FRAC_URG_BW_MALL_A, watermarks->dcn4.a.frac_urg_bw_mall); } else if (watermarks->dcn4.a.frac_urg_bw_mall < hubbub2->watermarks.dcn4.a.frac_urg_bw_mall) wm_pending = true; if (safe_to_lower || watermarks->dcn4.a.refcyc_per_trip_to_mem > hubbub2->watermarks.dcn4.a.refcyc_per_trip_to_mem) { hubbub2->watermarks.dcn4.a.refcyc_per_trip_to_mem = watermarks->dcn4.a.refcyc_per_trip_to_mem; REG_SET(DCHUBBUB_ARB_REFCYC_PER_TRIP_TO_MEMORY_A, 0, DCHUBBUB_ARB_REFCYC_PER_TRIP_TO_MEMORY_A, watermarks->dcn4.a.refcyc_per_trip_to_mem); } else if (watermarks->dcn4.a.refcyc_per_trip_to_mem < hubbub2->watermarks.dcn4.a.refcyc_per_trip_to_mem) wm_pending = true; if (safe_to_lower || watermarks->dcn4.a.refcyc_per_meta_trip_to_mem > hubbub2->watermarks.dcn4.a.refcyc_per_meta_trip_to_mem) { hubbub2->watermarks.dcn4.a.refcyc_per_meta_trip_to_mem = watermarks->dcn4.a.refcyc_per_meta_trip_to_mem; REG_SET(DCHUBBUB_ARB_REFCYC_PER_META_TRIP_A, 0, DCHUBBUB_ARB_REFCYC_PER_META_TRIP_A, watermarks->dcn4.a.refcyc_per_meta_trip_to_mem); } else if (watermarks->dcn4.a.refcyc_per_meta_trip_to_mem < hubbub2->watermarks.dcn4.a.refcyc_per_meta_trip_to_mem) wm_pending = true; /* clock state B */ if (safe_to_lower || watermarks->dcn4.b.urgent > hubbub2->watermarks.dcn4.b.urgent) { hubbub2->watermarks.dcn4.b.urgent = watermarks->dcn4.b.urgent; REG_SET(DCHUBBUB_ARB_DATA_URGENCY_WATERMARK_B, 0, DCHUBBUB_ARB_DATA_URGENCY_WATERMARK_B, watermarks->dcn4.b.urgent); DC_LOG_BANDWIDTH_CALCS("URGENCY_WATERMARK_B calculated =%d\n" "HW register value = 0x%x\n", watermarks->dcn4.b.urgent, watermarks->dcn4.b.urgent); } else if (watermarks->dcn4.b.urgent < hubbub2->watermarks.dcn4.b.urgent) wm_pending = true; /* determine the transfer time for a quantity of data for a particular requestor.*/ if (safe_to_lower || watermarks->dcn4.b.frac_urg_bw_flip > hubbub2->watermarks.dcn4.b.frac_urg_bw_flip) { hubbub2->watermarks.dcn4.b.frac_urg_bw_flip = watermarks->dcn4.b.frac_urg_bw_flip; REG_SET(DCHUBBUB_ARB_FRAC_URG_BW_FLIP_B, 0, DCHUBBUB_ARB_FRAC_URG_BW_FLIP_B, watermarks->dcn4.b.frac_urg_bw_flip); } else if (watermarks->dcn4.b.frac_urg_bw_flip < hubbub2->watermarks.dcn4.b.frac_urg_bw_flip) wm_pending = true; if (safe_to_lower || watermarks->dcn4.b.frac_urg_bw_nom > hubbub2->watermarks.dcn4.b.frac_urg_bw_nom) { hubbub2->watermarks.dcn4.b.frac_urg_bw_nom = watermarks->dcn4.b.frac_urg_bw_nom; REG_SET(DCHUBBUB_ARB_FRAC_URG_BW_NOM_B, 0, DCHUBBUB_ARB_FRAC_URG_BW_NOM_B, watermarks->dcn4.b.frac_urg_bw_nom); } else if (watermarks->dcn4.b.frac_urg_bw_nom < hubbub2->watermarks.dcn4.b.frac_urg_bw_nom) wm_pending = true; if (safe_to_lower || watermarks->dcn4.b.frac_urg_bw_mall > hubbub2->watermarks.dcn4.b.frac_urg_bw_mall) { hubbub2->watermarks.dcn4.b.frac_urg_bw_mall = watermarks->dcn4.b.frac_urg_bw_mall; REG_SET(DCHUBBUB_ARB_FRAC_URG_BW_MALL_B, 0, DCHUBBUB_ARB_FRAC_URG_BW_MALL_B, watermarks->dcn4.b.frac_urg_bw_mall); } else if (watermarks->dcn4.b.frac_urg_bw_mall < hubbub2->watermarks.dcn4.b.frac_urg_bw_mall) wm_pending = true; if (safe_to_lower || watermarks->dcn4.b.refcyc_per_trip_to_mem > hubbub2->watermarks.dcn4.b.refcyc_per_trip_to_mem) { hubbub2->watermarks.dcn4.b.refcyc_per_trip_to_mem = watermarks->dcn4.b.refcyc_per_trip_to_mem; REG_SET(DCHUBBUB_ARB_REFCYC_PER_TRIP_TO_MEMORY_B, 0, DCHUBBUB_ARB_REFCYC_PER_TRIP_TO_MEMORY_B, watermarks->dcn4.b.refcyc_per_trip_to_mem); } else if (watermarks->dcn4.b.refcyc_per_trip_to_mem < hubbub2->watermarks.dcn4.b.refcyc_per_trip_to_mem) wm_pending = true; if (safe_to_lower || watermarks->dcn4.b.refcyc_per_meta_trip_to_mem > hubbub2->watermarks.dcn4.b.refcyc_per_meta_trip_to_mem) { hubbub2->watermarks.dcn4.b.refcyc_per_meta_trip_to_mem = watermarks->dcn4.b.refcyc_per_meta_trip_to_mem; REG_SET(DCHUBBUB_ARB_REFCYC_PER_META_TRIP_B, 0, DCHUBBUB_ARB_REFCYC_PER_META_TRIP_B, watermarks->dcn4.b.refcyc_per_meta_trip_to_mem); } else if (watermarks->dcn4.b.refcyc_per_meta_trip_to_mem < hubbub2->watermarks.dcn4.b.refcyc_per_meta_trip_to_mem) wm_pending = true; return wm_pending; } bool hubbub401_program_stutter_watermarks( struct hubbub *hubbub, union dcn_watermark_set *watermarks, unsigned int refclk_mhz, bool safe_to_lower) { struct dcn20_hubbub *hubbub2 = TO_DCN20_HUBBUB(hubbub); bool wm_pending = false; /* clock state A */ if (safe_to_lower || watermarks->dcn4.a.sr_enter > hubbub2->watermarks.dcn4.a.sr_enter) { hubbub2->watermarks.dcn4.a.sr_enter = watermarks->dcn4.a.sr_enter; REG_SET(DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK_A, 0, DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK_A, watermarks->dcn4.a.sr_enter); DC_LOG_BANDWIDTH_CALCS("SR_ENTER_EXIT_WATERMARK_A calculated =%d\n" "HW register value = 0x%x\n", watermarks->dcn4.a.sr_enter, watermarks->dcn4.a.sr_enter); // On dGPU Z states are N/A, so program all other 3 Stutter Enter wm A with the same value REG_SET(DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK1_A, 0, DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK1_A, watermarks->dcn4.a.sr_enter); REG_SET(DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK2_A, 0, DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK2_A, watermarks->dcn4.a.sr_enter); REG_SET(DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK3_A, 0, DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK3_A, watermarks->dcn4.a.sr_enter); } else if (watermarks->dcn4.a.sr_enter < hubbub2->watermarks.dcn4.a.sr_enter) wm_pending = true; if (safe_to_lower || watermarks->dcn4.a.sr_exit > hubbub2->watermarks.dcn4.a.sr_exit) { hubbub2->watermarks.dcn4.a.sr_exit = watermarks->dcn4.a.sr_exit; REG_SET(DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK_A, 0, DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK_A, watermarks->dcn4.a.sr_exit); DC_LOG_BANDWIDTH_CALCS("SR_EXIT_WATERMARK_A calculated =%d\n" "HW register value = 0x%x\n", watermarks->dcn4.a.sr_exit, watermarks->dcn4.a.sr_exit); // On dGPU Z states are N/A, so program all other 3 Stutter Exit wm A with the same value REG_SET(DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK1_A, 0, DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK1_A, watermarks->dcn4.a.sr_exit); REG_SET(DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK2_A, 0, DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK2_A, watermarks->dcn4.a.sr_exit); REG_SET(DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK3_A, 0, DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK3_A, watermarks->dcn4.a.sr_exit); } else if (watermarks->dcn4.a.sr_exit < hubbub2->watermarks.dcn4.a.sr_exit) wm_pending = true; /* clock state B */ if (safe_to_lower || watermarks->dcn4.b.sr_enter > hubbub2->watermarks.dcn4.b.sr_enter) { hubbub2->watermarks.dcn4.b.sr_enter = watermarks->dcn4.b.sr_enter; REG_SET(DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK_B, 0, DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK_B, watermarks->dcn4.b.sr_enter); DC_LOG_BANDWIDTH_CALCS("SR_ENTER_EXIT_WATERMARK_B calculated =%d\n" "HW register value = 0x%x\n", watermarks->dcn4.b.sr_enter, watermarks->dcn4.b.sr_enter); // On dGPU Z states are N/A, so program all other 3 Stutter Enter wm A with the same value REG_SET(DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK1_B, 0, DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK1_B, watermarks->dcn4.b.sr_enter); REG_SET(DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK2_B, 0, DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK2_B, watermarks->dcn4.b.sr_enter); REG_SET(DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK3_B, 0, DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK3_B, watermarks->dcn4.b.sr_enter); } else if (watermarks->dcn4.b.sr_enter < hubbub2->watermarks.dcn4.b.sr_enter) wm_pending = true; if (safe_to_lower || watermarks->dcn4.b.sr_exit > hubbub2->watermarks.dcn4.b.sr_exit) { hubbub2->watermarks.dcn4.b.sr_exit = watermarks->dcn4.b.sr_exit; REG_SET(DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK_B, 0, DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK_B, watermarks->dcn4.b.sr_exit); DC_LOG_BANDWIDTH_CALCS("SR_EXIT_WATERMARK_B calculated =%d\n" "HW register value = 0x%x\n", watermarks->dcn4.b.sr_exit, watermarks->dcn4.b.sr_exit); // On dGPU Z states are N/A, so program all other 3 Stutter Exit wm A with the same value REG_SET(DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK1_B, 0, DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK1_B, watermarks->dcn4.b.sr_exit); REG_SET(DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK2_B, 0, DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK2_B, watermarks->dcn4.b.sr_exit); REG_SET(DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK3_B, 0, DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK3_B, watermarks->dcn4.b.sr_exit); } else if (watermarks->dcn4.b.sr_exit < hubbub2->watermarks.dcn4.b.sr_exit) wm_pending = true; return wm_pending; } bool hubbub401_program_pstate_watermarks( struct hubbub *hubbub, union dcn_watermark_set *watermarks, unsigned int refclk_mhz, bool safe_to_lower) { struct dcn20_hubbub *hubbub2 = TO_DCN20_HUBBUB(hubbub); bool wm_pending = false; /* Section for UCLK_PSTATE_CHANGE_WATERMARKS */ /* clock state A */ if (safe_to_lower || watermarks->dcn4.a.uclk_pstate > hubbub2->watermarks.dcn4.a.uclk_pstate) { hubbub2->watermarks.dcn4.a.uclk_pstate = watermarks->dcn4.a.uclk_pstate; REG_SET(DCHUBBUB_ARB_UCLK_PSTATE_CHANGE_WATERMARK_A, 0, DCHUBBUB_ARB_UCLK_PSTATE_CHANGE_WATERMARK_A, watermarks->dcn4.a.uclk_pstate); DC_LOG_BANDWIDTH_CALCS("DRAM_CLK_CHANGE_WATERMARK_A calculated =%d\n" "HW register value = 0x%x\n\n", watermarks->dcn4.a.uclk_pstate, watermarks->dcn4.a.uclk_pstate); } else if (watermarks->dcn4.a.uclk_pstate < hubbub2->watermarks.dcn4.a.uclk_pstate) wm_pending = true; /* clock state B */ if (safe_to_lower || watermarks->dcn4.b.uclk_pstate > hubbub2->watermarks.dcn4.b.uclk_pstate) { hubbub2->watermarks.dcn4.b.uclk_pstate = watermarks->dcn4.b.uclk_pstate; REG_SET(DCHUBBUB_ARB_UCLK_PSTATE_CHANGE_WATERMARK_B, 0, DCHUBBUB_ARB_UCLK_PSTATE_CHANGE_WATERMARK_B, watermarks->dcn4.b.uclk_pstate); DC_LOG_BANDWIDTH_CALCS("DRAM_CLK_CHANGE_WATERMARK_B calculated =%d\n" "HW register value = 0x%x\n\n", watermarks->dcn4.b.uclk_pstate, watermarks->dcn4.b.uclk_pstate); } else if (watermarks->dcn4.b.uclk_pstate < hubbub2->watermarks.dcn4.b.uclk_pstate) wm_pending = true; /* Section for UCLK_PSTATE_CHANGE_WATERMARKS1 (DUMMY_PSTATE/TEMP_READ/PPT) */ if (safe_to_lower || watermarks->dcn4.a.temp_read_or_ppt > hubbub2->watermarks.dcn4.a.temp_read_or_ppt) { hubbub2->watermarks.dcn4.a.temp_read_or_ppt = watermarks->dcn4.a.temp_read_or_ppt; REG_SET(DCHUBBUB_ARB_UCLK_PSTATE_CHANGE_WATERMARK1_A, 0, DCHUBBUB_ARB_UCLK_PSTATE_CHANGE_WATERMARK1_A, watermarks->dcn4.a.temp_read_or_ppt); DC_LOG_BANDWIDTH_CALCS("DRAM_CLK_CHANGE_WATERMARK1_A calculated =%d\n" "HW register value = 0x%x\n\n", watermarks->dcn4.a.temp_read_or_ppt, watermarks->dcn4.a.temp_read_or_ppt); } else if (watermarks->dcn4.a.temp_read_or_ppt < hubbub2->watermarks.dcn4.a.temp_read_or_ppt) wm_pending = true; /* clock state B */ if (safe_to_lower || watermarks->dcn4.b.temp_read_or_ppt > hubbub2->watermarks.dcn4.b.temp_read_or_ppt) { hubbub2->watermarks.dcn4.b.temp_read_or_ppt = watermarks->dcn4.b.temp_read_or_ppt; REG_SET(DCHUBBUB_ARB_UCLK_PSTATE_CHANGE_WATERMARK1_B, 0, DCHUBBUB_ARB_UCLK_PSTATE_CHANGE_WATERMARK1_B, watermarks->dcn4.b.temp_read_or_ppt); DC_LOG_BANDWIDTH_CALCS("DRAM_CLK_CHANGE_WATERMARK1_B calculated =%d\n" "HW register value = 0x%x\n\n", watermarks->dcn4.b.temp_read_or_ppt, watermarks->dcn4.b.temp_read_or_ppt); } else if (watermarks->dcn4.b.temp_read_or_ppt < hubbub2->watermarks.dcn4.b.temp_read_or_ppt) wm_pending = true; /* Section for FCLK_PSTATE_CHANGE_WATERMARKS */ /* clock state A */ if (safe_to_lower || watermarks->dcn4.a.fclk_pstate > hubbub2->watermarks.dcn4.a.fclk_pstate) { hubbub2->watermarks.dcn4.a.fclk_pstate = watermarks->dcn4.a.fclk_pstate; REG_SET(DCHUBBUB_ARB_FCLK_PSTATE_CHANGE_WATERMARK_A, 0, DCHUBBUB_ARB_FCLK_PSTATE_CHANGE_WATERMARK_A, watermarks->dcn4.a.fclk_pstate); DC_LOG_BANDWIDTH_CALCS("FCLK_CHANGE_WATERMARK_A calculated =%d\n" "HW register value = 0x%x\n\n", watermarks->dcn4.a.fclk_pstate, watermarks->dcn4.a.fclk_pstate); } else if (watermarks->dcn4.a.fclk_pstate < hubbub2->watermarks.dcn4.a.fclk_pstate) wm_pending = true; /* clock state B */ if (safe_to_lower || watermarks->dcn4.b.fclk_pstate > hubbub2->watermarks.dcn4.b.fclk_pstate) { hubbub2->watermarks.dcn4.b.fclk_pstate = watermarks->dcn4.b.fclk_pstate; REG_SET(DCHUBBUB_ARB_FCLK_PSTATE_CHANGE_WATERMARK_B, 0, DCHUBBUB_ARB_FCLK_PSTATE_CHANGE_WATERMARK_B, watermarks->dcn4.b.fclk_pstate); DC_LOG_BANDWIDTH_CALCS("FCLK_CHANGE_WATERMARK_B calculated =%d\n" "HW register value = 0x%x\n\n", watermarks->dcn4.b.fclk_pstate, watermarks->dcn4.b.fclk_pstate); } else if (watermarks->dcn4.b.fclk_pstate < hubbub2->watermarks.dcn4.b.fclk_pstate) wm_pending = true; /* Section for FCLK_CHANGE_WATERMARKS1 (DUMMY_PSTATE/TEMP_READ/PPT) */ if (safe_to_lower || watermarks->dcn4.a.temp_read_or_ppt > hubbub2->watermarks.dcn4.a.temp_read_or_ppt) { hubbub2->watermarks.dcn4.a.temp_read_or_ppt = watermarks->dcn4.a.temp_read_or_ppt; REG_SET(DCHUBBUB_ARB_FCLK_PSTATE_CHANGE_WATERMARK1_A, 0, DCHUBBUB_ARB_FCLK_PSTATE_CHANGE_WATERMARK1_A, watermarks->dcn4.a.temp_read_or_ppt); DC_LOG_BANDWIDTH_CALCS("FCLK_CHANGE_WATERMARK1_A calculated =%d\n" "HW register value = 0x%x\n\n", watermarks->dcn4.a.temp_read_or_ppt, watermarks->dcn4.a.temp_read_or_ppt); } else if (watermarks->dcn4.a.temp_read_or_ppt < hubbub2->watermarks.dcn4.a.temp_read_or_ppt) wm_pending = true; /* clock state B */ if (safe_to_lower || watermarks->dcn4.b.temp_read_or_ppt > hubbub2->watermarks.dcn4.b.temp_read_or_ppt) { hubbub2->watermarks.dcn4.b.temp_read_or_ppt = watermarks->dcn4.b.temp_read_or_ppt; REG_SET(DCHUBBUB_ARB_FCLK_PSTATE_CHANGE_WATERMARK1_B, 0, DCHUBBUB_ARB_FCLK_PSTATE_CHANGE_WATERMARK1_B, watermarks->dcn4.b.temp_read_or_ppt); DC_LOG_BANDWIDTH_CALCS("FCLK_CHANGE_WATERMARK1_B calculated =%d\n" "HW register value = 0x%x\n\n", watermarks->dcn4.b.temp_read_or_ppt, watermarks->dcn4.b.temp_read_or_ppt); } else if (watermarks->dcn4.b.temp_read_or_ppt < hubbub2->watermarks.dcn4.b.temp_read_or_ppt) wm_pending = true; return wm_pending; } bool hubbub401_program_usr_watermarks( struct hubbub *hubbub, union dcn_watermark_set *watermarks, unsigned int refclk_mhz, bool safe_to_lower) { struct dcn20_hubbub *hubbub2 = TO_DCN20_HUBBUB(hubbub); bool wm_pending = false; /* clock state A */ if (safe_to_lower || watermarks->dcn4.a.usr > hubbub2->watermarks.dcn4.a.usr) { hubbub2->watermarks.dcn4.a.usr = watermarks->dcn4.a.usr; REG_SET(DCHUBBUB_ARB_USR_RETRAINING_WATERMARK_A, 0, DCHUBBUB_ARB_USR_RETRAINING_WATERMARK_A, watermarks->dcn4.a.usr); DC_LOG_BANDWIDTH_CALCS("USR_RETRAINING_WATERMARK_A calculated =%d\n" "HW register value = 0x%x\n\n", watermarks->dcn4.a.usr, watermarks->dcn4.a.usr); } else if (watermarks->dcn4.a.usr < hubbub2->watermarks.dcn4.a.usr) wm_pending = true; /* clock state B */ if (safe_to_lower || watermarks->dcn4.b.usr > hubbub2->watermarks.dcn4.b.usr) { hubbub2->watermarks.dcn4.b.usr = watermarks->dcn4.b.usr; REG_SET(DCHUBBUB_ARB_USR_RETRAINING_WATERMARK_B, 0, DCHUBBUB_ARB_USR_RETRAINING_WATERMARK_B, watermarks->dcn4.b.usr); DC_LOG_BANDWIDTH_CALCS("USR_RETRAINING_WATERMARK_B calculated =%d\n" "HW register value = 0x%x\n\n", watermarks->dcn4.b.usr, watermarks->dcn4.b.usr); } else if (watermarks->dcn4.b.usr < hubbub2->watermarks.dcn4.b.usr) wm_pending = true; return wm_pending; } static bool hubbub401_program_watermarks( struct hubbub *hubbub, union dcn_watermark_set *watermarks, unsigned int refclk_mhz, bool safe_to_lower) { bool wm_pending = false; if (hubbub401_program_urgent_watermarks(hubbub, watermarks, refclk_mhz, safe_to_lower)) wm_pending = true; if (hubbub401_program_stutter_watermarks(hubbub, watermarks, refclk_mhz, safe_to_lower)) wm_pending = true; if (hubbub401_program_pstate_watermarks(hubbub, watermarks, refclk_mhz, safe_to_lower)) wm_pending = true; if (hubbub401_program_usr_watermarks(hubbub, watermarks, refclk_mhz, safe_to_lower)) wm_pending = true; /* * The DCHub arbiter has a mechanism to dynamically rate limit the DCHub request stream to the fabric. * If the memory controller is fully utilized and the DCHub requestors are * well ahead of their amortized schedule, then it is safe to prevent the next winner * from being committed and sent to the fabric. * The utilization of the memory controller is approximated by ensuring that * the number of outstanding requests is greater than a threshold specified * by the ARB_MIN_REQ_OUTSTANDING. To determine that the DCHub requestors are well ahead of the amortized * schedule, the slack of the next winner is compared with the ARB_SAT_LEVEL in DLG RefClk cycles. * * TODO: Revisit request limit after figure out right number. request limit for RM isn't decided yet, * set maximum value (0x1FF) to turn off it for now. */ /*REG_SET(DCHUBBUB_ARB_SAT_LEVEL, 0, DCHUBBUB_ARB_SAT_LEVEL, 60 * refclk_mhz); REG_UPDATE(DCHUBBUB_ARB_DF_REQ_OUTSTAND, DCHUBBUB_ARB_MIN_REQ_OUTSTAND, 0x1FF); */ hubbub1_allow_self_refresh_control(hubbub, !hubbub->ctx->dc->debug.disable_stutter); hubbub32_force_usr_retraining_allow(hubbub, hubbub->ctx->dc->debug.force_usr_allow); return wm_pending; } /* Copy values from WM set A to all other sets */ static void hubbub401_init_watermarks(struct hubbub *hubbub) { struct dcn20_hubbub *hubbub2 = TO_DCN20_HUBBUB(hubbub); uint32_t reg; reg = REG_READ(DCHUBBUB_ARB_DATA_URGENCY_WATERMARK_A); REG_WRITE(DCHUBBUB_ARB_DATA_URGENCY_WATERMARK_B, reg); reg = REG_READ(DCHUBBUB_ARB_FRAC_URG_BW_FLIP_A); REG_WRITE(DCHUBBUB_ARB_FRAC_URG_BW_FLIP_B, reg); reg = REG_READ(DCHUBBUB_ARB_FRAC_URG_BW_NOM_A); REG_WRITE(DCHUBBUB_ARB_FRAC_URG_BW_NOM_B, reg); reg = REG_READ(DCHUBBUB_ARB_FRAC_URG_BW_MALL_A); REG_WRITE(DCHUBBUB_ARB_FRAC_URG_BW_MALL_B, reg); reg = REG_READ(DCHUBBUB_ARB_REFCYC_PER_TRIP_TO_MEMORY_A); REG_WRITE(DCHUBBUB_ARB_REFCYC_PER_TRIP_TO_MEMORY_B, reg); reg = REG_READ(DCHUBBUB_ARB_REFCYC_PER_META_TRIP_A); REG_WRITE(DCHUBBUB_ARB_REFCYC_PER_META_TRIP_B, reg); reg = REG_READ(DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK_A); REG_WRITE(DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK_B, reg); REG_WRITE(DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK1_A, reg); REG_WRITE(DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK1_B, reg); REG_WRITE(DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK2_A, reg); REG_WRITE(DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK2_B, reg); REG_WRITE(DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK3_A, reg); REG_WRITE(DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK3_B, reg); reg = REG_READ(DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK_A); REG_WRITE(DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK_B, reg); REG_WRITE(DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK1_A, reg); REG_WRITE(DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK1_B, reg); REG_WRITE(DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK2_A, reg); REG_WRITE(DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK2_B, reg); REG_WRITE(DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK3_A, reg); REG_WRITE(DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK3_B, reg); reg = REG_READ(DCHUBBUB_ARB_USR_RETRAINING_WATERMARK_A); REG_WRITE(DCHUBBUB_ARB_USR_RETRAINING_WATERMARK_B, reg); reg = REG_READ(DCHUBBUB_ARB_UCLK_PSTATE_CHANGE_WATERMARK_A); REG_WRITE(DCHUBBUB_ARB_UCLK_PSTATE_CHANGE_WATERMARK_B, reg); reg = REG_READ(DCHUBBUB_ARB_UCLK_PSTATE_CHANGE_WATERMARK1_A); REG_WRITE(DCHUBBUB_ARB_UCLK_PSTATE_CHANGE_WATERMARK1_B, reg); reg = REG_READ(DCHUBBUB_ARB_FCLK_PSTATE_CHANGE_WATERMARK_A); REG_WRITE(DCHUBBUB_ARB_FCLK_PSTATE_CHANGE_WATERMARK_B, reg); reg = REG_READ(DCHUBBUB_ARB_FCLK_PSTATE_CHANGE_WATERMARK1_A); REG_WRITE(DCHUBBUB_ARB_FCLK_PSTATE_CHANGE_WATERMARK1_B, reg); } static void hubbub401_wm_read_state(struct hubbub *hubbub, struct dcn_hubbub_wm *wm) { struct dcn20_hubbub *hubbub2 = TO_DCN20_HUBBUB(hubbub); struct dcn_hubbub_wm_set *s; memset(wm, 0, sizeof(struct dcn_hubbub_wm)); s = &wm->sets[0]; s->wm_set = 0; REG_GET(DCHUBBUB_ARB_DATA_URGENCY_WATERMARK_A, DCHUBBUB_ARB_DATA_URGENCY_WATERMARK_A, &s->data_urgent); REG_GET(DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK_A, DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK_A, &s->sr_enter); REG_GET(DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK_A, DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK_A, &s->sr_exit); REG_GET(DCHUBBUB_ARB_UCLK_PSTATE_CHANGE_WATERMARK_A, DCHUBBUB_ARB_UCLK_PSTATE_CHANGE_WATERMARK_A, &s->dram_clk_change); REG_GET(DCHUBBUB_ARB_USR_RETRAINING_WATERMARK_A, DCHUBBUB_ARB_USR_RETRAINING_WATERMARK_A, &s->usr_retrain); REG_GET(DCHUBBUB_ARB_FCLK_PSTATE_CHANGE_WATERMARK_A, DCHUBBUB_ARB_FCLK_PSTATE_CHANGE_WATERMARK_A, &s->fclk_pstate_change); s = &wm->sets[1]; s->wm_set = 1; REG_GET(DCHUBBUB_ARB_DATA_URGENCY_WATERMARK_B, DCHUBBUB_ARB_DATA_URGENCY_WATERMARK_B, &s->data_urgent); REG_GET(DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK_B, DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK_B, &s->sr_enter); REG_GET(DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK_B, DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK_B, &s->sr_exit); REG_GET(DCHUBBUB_ARB_UCLK_PSTATE_CHANGE_WATERMARK_B, DCHUBBUB_ARB_UCLK_PSTATE_CHANGE_WATERMARK_B, &s->dram_clk_change); REG_GET(DCHUBBUB_ARB_USR_RETRAINING_WATERMARK_B, DCHUBBUB_ARB_USR_RETRAINING_WATERMARK_B, &s->usr_retrain); REG_GET(DCHUBBUB_ARB_FCLK_PSTATE_CHANGE_WATERMARK_B, DCHUBBUB_ARB_FCLK_PSTATE_CHANGE_WATERMARK_B, &s->fclk_pstate_change); } bool hubbub401_dcc_support_swizzle( enum swizzle_mode_addr3_values swizzle, unsigned int plane_pitch, unsigned int bytes_per_element, enum segment_order *segment_order_horz, enum segment_order *segment_order_vert) { bool swizzle_supported = false; switch (swizzle) { case DC_ADDR3_SW_LINEAR: if ((plane_pitch * bytes_per_element) % 256 == 0) swizzle_supported = true; break; case DC_ADDR3_SW_64KB_2D: case DC_ADDR3_SW_256KB_2D: swizzle_supported = true; break; default: swizzle_supported = false; break; } if (swizzle_supported) { if (bytes_per_element == 1) { *segment_order_horz = segment_order__contiguous; *segment_order_vert = segment_order__non_contiguous; return true; } if (bytes_per_element == 2) { *segment_order_horz = segment_order__non_contiguous; *segment_order_vert = segment_order__contiguous; return true; } if (bytes_per_element == 4) { *segment_order_horz = segment_order__contiguous; *segment_order_vert = segment_order__non_contiguous; return true; } if (bytes_per_element == 8) { *segment_order_horz = segment_order__contiguous; *segment_order_vert = segment_order__non_contiguous; return true; } } return false; } bool hubbub401_dcc_support_pixel_format( enum surface_pixel_format format, unsigned int *plane0_bpe, unsigned int *plane1_bpe) { switch (format) { case SURFACE_PIXEL_FORMAT_GRPH_ARGB1555: case SURFACE_PIXEL_FORMAT_GRPH_RGB565: *plane0_bpe = 2; *plane1_bpe = 0; return true; case SURFACE_PIXEL_FORMAT_VIDEO_420_YCbCr: case SURFACE_PIXEL_FORMAT_VIDEO_420_YCrCb: *plane0_bpe = 1; *plane1_bpe = 2; return true; case SURFACE_PIXEL_FORMAT_GRPH_ARGB8888: case SURFACE_PIXEL_FORMAT_GRPH_ABGR8888: case SURFACE_PIXEL_FORMAT_GRPH_ARGB2101010: case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010: case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010_XR_BIAS: case SURFACE_PIXEL_FORMAT_GRPH_RGB111110_FIX: case SURFACE_PIXEL_FORMAT_GRPH_BGR101111_FIX: case SURFACE_PIXEL_FORMAT_GRPH_RGB111110_FLOAT: case SURFACE_PIXEL_FORMAT_GRPH_BGR101111_FLOAT: case SURFACE_PIXEL_FORMAT_GRPH_RGBE: *plane0_bpe = 4; *plane1_bpe = 0; return true; case SURFACE_PIXEL_FORMAT_GRPH_RGBE_ALPHA: *plane0_bpe = 4; *plane1_bpe = 1; return true; case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCbCr: case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCrCb: *plane0_bpe = 2; *plane1_bpe = 4; return true; case SURFACE_PIXEL_FORMAT_VIDEO_ACrYCb2101010: case SURFACE_PIXEL_FORMAT_VIDEO_CrYCbA1010102: case SURFACE_PIXEL_FORMAT_VIDEO_AYCrCb8888: *plane0_bpe = 4; *plane1_bpe = 0; return true; case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616: case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616: case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616F: case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616F: *plane0_bpe = 8; *plane1_bpe = 0; return true; default: return false; } } void hubbub401_get_blk256_size(unsigned int *blk256_width, unsigned int *blk256_height, unsigned int bytes_per_element) { if (bytes_per_element == 1) { *blk256_width = 16; *blk256_height = 16; } else if (bytes_per_element == 2) { *blk256_width = 16; *blk256_height = 8; } else if (bytes_per_element == 4) { *blk256_width = 8; *blk256_height = 8; } else if (bytes_per_element == 8) { *blk256_width = 8; *blk256_height = 4; } } void hubbub401_det_request_size( unsigned int detile_buf_size, enum surface_pixel_format format, unsigned int p0_height, unsigned int p0_width, unsigned int p0_bpe, unsigned int p1_height, unsigned int p1_width, unsigned int p1_bpe, bool *p0_req128_horz_wc, bool *p0_req128_vert_wc, bool *p1_req128_horz_wc, bool *p1_req128_vert_wc) { unsigned int blk256_height = 0; unsigned int blk256_width = 0; unsigned int p0_swath_bytes_horz_wc, p0_swath_bytes_vert_wc; unsigned int p1_swath_bytes_horz_wc, p1_swath_bytes_vert_wc; //For plane0 hubbub401_get_blk256_size(&blk256_width, &blk256_height, p0_bpe); p0_swath_bytes_horz_wc = p0_width * blk256_height * p0_bpe; p0_swath_bytes_vert_wc = p0_height * blk256_width * p0_bpe; *p0_req128_horz_wc = (2 * p0_swath_bytes_horz_wc <= detile_buf_size) ? false : /* full 256B request */ true; /* half 128b request */ *p0_req128_vert_wc = (2 * p0_swath_bytes_vert_wc <= detile_buf_size) ? false : /* full 256B request */ true; /* half 128b request */ /*For dual planes needs to be considered together */ if (p1_bpe) { hubbub401_get_blk256_size(&blk256_width, &blk256_height, p1_bpe); p1_swath_bytes_horz_wc = p1_width * blk256_height * p1_bpe; p1_swath_bytes_vert_wc = p1_height * blk256_width * p1_bpe; switch (format) { default: /* No any adjustment needed*/ break; case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCbCr: case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCrCb: /* Packing at the ratio of 3:2 is supported before the detile buffer * for YUV420 video with 10bpc (P010). Need to adjust for that. */ p0_swath_bytes_horz_wc = (((p0_swath_bytes_horz_wc * 2) / 3 + 255) / 256) * 256; p0_swath_bytes_vert_wc = (((p0_swath_bytes_vert_wc * 2) / 3 + 255) / 256) * 256; p1_swath_bytes_horz_wc = (((p1_swath_bytes_horz_wc * 2) / 3 + 255) / 256) * 256; p1_swath_bytes_vert_wc = (((p1_swath_bytes_vert_wc * 2) / 3 + 255) / 256) * 256; break; } *p0_req128_horz_wc = *p1_req128_horz_wc = (2 * p0_swath_bytes_horz_wc + 2 * p1_swath_bytes_horz_wc <= detile_buf_size) ? false : /* full 256B request */ true; /* half 128B request */ *p0_req128_vert_wc = *p1_req128_vert_wc = (2 * p0_swath_bytes_vert_wc + 2 * p1_swath_bytes_vert_wc <= detile_buf_size) ? false : /* full 256B request */ true; /* half 128B request */ /* If 128B requests are true, meaning 2 full swaths of data cannot fit * in de-tile buffer, check if one plane can use 256B request while * the other plane is using 128B requests */ if (*p0_req128_horz_wc) { // If ratio around 1:1 between p0 and p1 try to recalulate if p0 can use 256B if (p0_swath_bytes_horz_wc <= p1_swath_bytes_horz_wc + p1_swath_bytes_horz_wc / 2) { *p0_req128_horz_wc = (2 * p0_swath_bytes_horz_wc + p1_swath_bytes_horz_wc <= detile_buf_size) ? false : /* full 256B request */ true; /* half 128b request */ } else { /* ratio about 2:1 between p0 and p1, try to recalulate if p1 can use 256B */ *p1_req128_horz_wc = (p0_swath_bytes_horz_wc + 2 * p1_swath_bytes_horz_wc <= detile_buf_size) ? false : /* full 256B request */ true; /* half 128b request */ } } if (*p0_req128_vert_wc) { // If ratio around 1:1 between p0 and p1 try to recalulate if p0 can use 256B if (p0_swath_bytes_vert_wc <= p1_swath_bytes_vert_wc + p1_swath_bytes_vert_wc / 2) { *p0_req128_vert_wc = (2 * p0_swath_bytes_vert_wc + p1_swath_bytes_vert_wc <= detile_buf_size) ? false : /* full 256B request */ true; /* half 128b request */ } else { /* ratio about 2:1 between p0 and p1, try to recalulate if p1 can use 256B */ *p1_req128_vert_wc = (p0_swath_bytes_vert_wc + 2 * p1_swath_bytes_vert_wc <= detile_buf_size) ? false : /* full 256B request */ true; /* half 128b request */ } } } } bool hubbub401_get_dcc_compression_cap(struct hubbub *hubbub, const struct dc_dcc_surface_param *input, struct dc_surface_dcc_cap *output) { struct dc *dc = hubbub->ctx->dc; const unsigned int max_dcc_plane_width = dc->caps.dcc_plane_width_limit; /* DCN4_Programming_Guide_DCHUB.docx, Section 5.11.2.2 */ enum dcc_control dcc_control; unsigned int plane0_bpe, plane1_bpe; enum segment_order segment_order_horz, segment_order_vert; enum segment_order p1_segment_order_horz, p1_segment_order_vert; bool req128_horz_wc, req128_vert_wc; unsigned int plane0_width = 0, plane0_height = 0, plane1_width = 0, plane1_height = 0; bool p1_req128_horz_wc, p1_req128_vert_wc, is_dual_plane; memset(output, 0, sizeof(*output)); if (dc->debug.disable_dcc == DCC_DISABLE) return false; /* Conservatively disable DCC for cases where ODM4:1 may be required. */ if (max_dcc_plane_width != 0 && (input->surface_size.width > max_dcc_plane_width || input->plane1_size.width > max_dcc_plane_width)) return false; switch (input->format) { default: is_dual_plane = false; plane1_width = 0; plane1_height = 0; if (input->surface_size.width > 6144 + 16) plane0_width = 6160; else plane0_width = input->surface_size.width; if (input->surface_size.height > 6144 + 16) plane0_height = 6160; else plane0_height = input->surface_size.height; break; case SURFACE_PIXEL_FORMAT_VIDEO_420_YCbCr: case SURFACE_PIXEL_FORMAT_VIDEO_420_YCrCb: case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCbCr: case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCrCb: is_dual_plane = true; if (input->surface_size.width > 7680 + 16) plane0_width = 7696; else plane0_width = input->surface_size.width; if (input->surface_size.height > 4320 + 16) plane0_height = 4336; else plane0_height = input->surface_size.height; if (input->plane1_size.width > 7680 + 16) plane1_width = 7696 / 2; else plane1_width = input->plane1_size.width; if (input->plane1_size.height > 4320 + 16) plane1_height = 4336 / 2; else plane1_height = input->plane1_size.height; break; case SURFACE_PIXEL_FORMAT_GRPH_RGBE_ALPHA: is_dual_plane = true; if (input->surface_size.width > 5120 + 16) plane0_width = 5136; else plane0_width = input->surface_size.width; if (input->surface_size.height > 5120 + 16) plane0_height = 5136; else plane0_height = input->surface_size.height; if (input->plane1_size.width > 5120 + 16) plane1_width = 5136; else plane1_width = input->plane1_size.width; if (input->plane1_size.height > 5120 + 16) plane1_height = 5136; else plane1_height = input->plane1_size.height; break; } if (!hubbub->funcs->dcc_support_pixel_format_plane0_plane1(input->format, &plane0_bpe, &plane1_bpe)) return false; /* Find plane0 DCC Controls */ if (!is_dual_plane) { if (!hubbub->funcs->dcc_support_swizzle_addr3(input->swizzle_mode_addr3, input->plane0_pitch, plane0_bpe, &segment_order_horz, &segment_order_vert)) return false; hubbub401_det_request_size(TO_DCN20_HUBBUB(hubbub)->detile_buf_size, input->format, plane0_height, plane0_width, plane0_bpe, plane1_height, plane1_width, plane1_bpe, &req128_horz_wc, &req128_vert_wc, &p1_req128_horz_wc, &p1_req128_vert_wc); if (!req128_horz_wc && !req128_vert_wc) { dcc_control = dcc_control__256_256; } else if (input->scan == SCAN_DIRECTION_HORIZONTAL) { if (!req128_horz_wc) dcc_control = dcc_control__256_256; else if (segment_order_horz == segment_order__contiguous) dcc_control = dcc_control__256_128; else dcc_control = dcc_control__256_64; } else if (input->scan == SCAN_DIRECTION_VERTICAL) { if (!req128_vert_wc) dcc_control = dcc_control__256_256; else if (segment_order_vert == segment_order__contiguous) dcc_control = dcc_control__256_128; else dcc_control = dcc_control__256_64; } else { if ((req128_horz_wc && segment_order_horz == segment_order__non_contiguous) || (req128_vert_wc && segment_order_vert == segment_order__non_contiguous)) /* access_dir not known, must use most constraining */ dcc_control = dcc_control__256_64; else /* req128 is true for either horz and vert * but segment_order is contiguous */ dcc_control = dcc_control__256_128; } if (dc->debug.disable_dcc == DCC_HALF_REQ_DISALBE && dcc_control != dcc_control__256_256) return false; switch (dcc_control) { case dcc_control__256_256: output->grph.rgb.dcc_controls.dcc_256_256 = 1; output->grph.rgb.dcc_controls.dcc_256_128 = 1; output->grph.rgb.dcc_controls.dcc_256_64 = 1; break; case dcc_control__256_128: output->grph.rgb.dcc_controls.dcc_256_128 = 1; output->grph.rgb.dcc_controls.dcc_256_64 = 1; break; case dcc_control__256_64: output->grph.rgb.dcc_controls.dcc_256_64 = 1; break; default: /* Shouldn't get here */ ASSERT(0); break; } } else { /* For dual plane cases, need to examine both planes together */ if (!hubbub->funcs->dcc_support_swizzle_addr3(input->swizzle_mode_addr3, input->plane0_pitch, plane0_bpe, &segment_order_horz, &segment_order_vert)) return false; if (!hubbub->funcs->dcc_support_swizzle_addr3(input->swizzle_mode_addr3, input->plane1_pitch, plane1_bpe, &p1_segment_order_horz, &p1_segment_order_vert)) return false; hubbub401_det_request_size(TO_DCN20_HUBBUB(hubbub)->detile_buf_size, input->format, plane0_height, plane0_width, plane0_bpe, plane1_height, plane1_width, plane1_bpe, &req128_horz_wc, &req128_vert_wc, &p1_req128_horz_wc, &p1_req128_vert_wc); /* Determine Plane 0 DCC Controls */ if (!req128_horz_wc && !req128_vert_wc) { dcc_control = dcc_control__256_256; } else if (input->scan == SCAN_DIRECTION_HORIZONTAL) { if (!req128_horz_wc) dcc_control = dcc_control__256_256; else if (segment_order_horz == segment_order__contiguous) dcc_control = dcc_control__256_128; else dcc_control = dcc_control__256_64; } else if (input->scan == SCAN_DIRECTION_VERTICAL) { if (!req128_vert_wc) dcc_control = dcc_control__256_256; else if (segment_order_vert == segment_order__contiguous) dcc_control = dcc_control__256_128; else dcc_control = dcc_control__256_64; } else { if ((req128_horz_wc && segment_order_horz == segment_order__non_contiguous) || (req128_vert_wc && segment_order_vert == segment_order__non_contiguous)) /* access_dir not known, must use most constraining */ dcc_control = dcc_control__256_64; else /* req128 is true for either horz and vert * but segment_order is contiguous */ dcc_control = dcc_control__256_128; } switch (dcc_control) { case dcc_control__256_256: output->video.luma.dcc_controls.dcc_256_256 = 1; output->video.luma.dcc_controls.dcc_256_128 = 1; output->video.luma.dcc_controls.dcc_256_64 = 1; break; case dcc_control__256_128: output->video.luma.dcc_controls.dcc_256_128 = 1; output->video.luma.dcc_controls.dcc_256_64 = 1; break; case dcc_control__256_64: output->video.luma.dcc_controls.dcc_256_64 = 1; break; default: ASSERT(0); break; } /* Determine Plane 1 DCC Controls */ if (!p1_req128_horz_wc && !p1_req128_vert_wc) { dcc_control = dcc_control__256_256; } else if (input->scan == SCAN_DIRECTION_HORIZONTAL) { if (!p1_req128_horz_wc) dcc_control = dcc_control__256_256; else if (p1_segment_order_horz == segment_order__contiguous) dcc_control = dcc_control__256_128; else dcc_control = dcc_control__256_64; } else if (input->scan == SCAN_DIRECTION_VERTICAL) { if (!p1_req128_vert_wc) dcc_control = dcc_control__256_256; else if (p1_segment_order_vert == segment_order__contiguous) dcc_control = dcc_control__256_128; else dcc_control = dcc_control__256_64; } else { if ((p1_req128_horz_wc && p1_segment_order_horz == segment_order__non_contiguous) || (p1_req128_vert_wc && p1_segment_order_vert == segment_order__non_contiguous)) /* access_dir not known, must use most constraining */ dcc_control = dcc_control__256_64; else /* req128 is true for either horz and vert * but segment_order is contiguous */ dcc_control = dcc_control__256_128; } switch (dcc_control) { case dcc_control__256_256: output->video.chroma.dcc_controls.dcc_256_256 = 1; output->video.chroma.dcc_controls.dcc_256_128 = 1; output->video.chroma.dcc_controls.dcc_256_64 = 1; break; case dcc_control__256_128: output->video.chroma.dcc_controls.dcc_256_128 = 1; output->video.chroma.dcc_controls.dcc_256_64 = 1; break; case dcc_control__256_64: output->video.chroma.dcc_controls.dcc_256_64 = 1; break; default: ASSERT(0); break; } } output->capable = true; return true; } static void dcn401_program_det_segments(struct hubbub *hubbub, int hubp_inst, unsigned det_buffer_size_seg) { struct dcn20_hubbub *hubbub2 = TO_DCN20_HUBBUB(hubbub); switch (hubp_inst) { case 0: REG_UPDATE(DCHUBBUB_DET0_CTRL, DET0_SIZE, det_buffer_size_seg); hubbub2->det0_size = det_buffer_size_seg; break; case 1: REG_UPDATE(DCHUBBUB_DET1_CTRL, DET1_SIZE, det_buffer_size_seg); hubbub2->det1_size = det_buffer_size_seg; break; case 2: REG_UPDATE(DCHUBBUB_DET2_CTRL, DET2_SIZE, det_buffer_size_seg); hubbub2->det2_size = det_buffer_size_seg; break; case 3: REG_UPDATE(DCHUBBUB_DET3_CTRL, DET3_SIZE, det_buffer_size_seg); hubbub2->det3_size = det_buffer_size_seg; break; default: break; } if (hubbub2->det0_size + hubbub2->det1_size + hubbub2->det2_size + hubbub2->det3_size + hubbub2->compbuf_size_segments > hubbub2->crb_size_segs) { /* This may happen during seamless transition from ODM 2:1 to ODM4:1 */ DC_LOG_WARNING("CRB Config Warning: DET size (%d,%d,%d,%d) + Compbuf size (%d) > CRB segments (%d)\n", hubbub2->det0_size, hubbub2->det1_size, hubbub2->det2_size, hubbub2->det3_size, hubbub2->compbuf_size_segments, hubbub2->crb_size_segs); } } static void dcn401_program_compbuf_segments(struct hubbub *hubbub, unsigned compbuf_size_seg, bool safe_to_increase) { struct dcn20_hubbub *hubbub2 = TO_DCN20_HUBBUB(hubbub); unsigned int cur_compbuf_size_seg = 0; if (safe_to_increase || compbuf_size_seg <= hubbub2->compbuf_size_segments) { if (compbuf_size_seg > hubbub2->compbuf_size_segments) { REG_WAIT(DCHUBBUB_DET0_CTRL, DET0_SIZE_CURRENT, hubbub2->det0_size, 1, 100); REG_WAIT(DCHUBBUB_DET1_CTRL, DET1_SIZE_CURRENT, hubbub2->det1_size, 1, 100); REG_WAIT(DCHUBBUB_DET2_CTRL, DET2_SIZE_CURRENT, hubbub2->det2_size, 1, 100); REG_WAIT(DCHUBBUB_DET3_CTRL, DET3_SIZE_CURRENT, hubbub2->det3_size, 1, 100); } /* Should never be hit, if it is we have an erroneous hw config*/ ASSERT(hubbub2->det0_size + hubbub2->det1_size + hubbub2->det2_size + hubbub2->det3_size + compbuf_size_seg <= hubbub2->crb_size_segs); REG_UPDATE(DCHUBBUB_COMPBUF_CTRL, COMPBUF_SIZE, compbuf_size_seg); hubbub2->compbuf_size_segments = compbuf_size_seg; ASSERT(REG_GET(DCHUBBUB_COMPBUF_CTRL, CONFIG_ERROR, &cur_compbuf_size_seg) && !cur_compbuf_size_seg); } } static const struct hubbub_funcs hubbub4_01_funcs = { .update_dchub = hubbub2_update_dchub, .init_dchub_sys_ctx = hubbub3_init_dchub_sys_ctx, .init_vm_ctx = hubbub2_init_vm_ctx, .dcc_support_swizzle_addr3 = hubbub401_dcc_support_swizzle, .dcc_support_pixel_format_plane0_plane1 = hubbub401_dcc_support_pixel_format, .get_dcc_compression_cap = hubbub401_get_dcc_compression_cap, .wm_read_state = hubbub401_wm_read_state, .get_dchub_ref_freq = hubbub2_get_dchub_ref_freq, .program_watermarks = hubbub401_program_watermarks, .allow_self_refresh_control = hubbub1_allow_self_refresh_control, .is_allow_self_refresh_enabled = hubbub1_is_allow_self_refresh_enabled, .verify_allow_pstate_change_high = NULL, .force_wm_propagate_to_pipes = hubbub32_force_wm_propagate_to_pipes, .force_pstate_change_control = hubbub3_force_pstate_change_control, .init_watermarks = hubbub401_init_watermarks, .init_crb = dcn401_init_crb, .hubbub_read_state = hubbub2_read_state, .force_usr_retraining_allow = hubbub32_force_usr_retraining_allow, .set_request_limit = hubbub32_set_request_limit, .program_det_segments = dcn401_program_det_segments, .program_compbuf_segments = dcn401_program_compbuf_segments, }; void hubbub401_construct(struct dcn20_hubbub *hubbub2, struct dc_context *ctx, const struct dcn_hubbub_registers *hubbub_regs, const struct dcn_hubbub_shift *hubbub_shift, const struct dcn_hubbub_mask *hubbub_mask, int det_size_kb, int pixel_chunk_size_kb, int config_return_buffer_size_kb) { hubbub2->base.ctx = ctx; hubbub2->base.funcs = &hubbub4_01_funcs; hubbub2->regs = hubbub_regs; hubbub2->shifts = hubbub_shift; hubbub2->masks = hubbub_mask; hubbub2->detile_buf_size = det_size_kb * 1024; hubbub2->pixel_chunk_size = pixel_chunk_size_kb * 1024; hubbub2->crb_size_segs = config_return_buffer_size_kb / DCN4_01_CRB_SEGMENT_SIZE_KB; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1