Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Vinay Simha BN | 3384 | 91.09% | 2 | 9.09% |
Tony Lindgren | 173 | 4.66% | 5 | 22.73% |
Maxime Ripard | 92 | 2.48% | 2 | 9.09% |
Michael Walle | 27 | 0.73% | 2 | 9.09% |
Marek Vašut | 13 | 0.35% | 2 | 9.09% |
Jiri Vanek | 10 | 0.27% | 3 | 13.64% |
José Expósito | 6 | 0.16% | 1 | 4.55% |
Boris Brezillon | 3 | 0.08% | 1 | 4.55% |
Thomas Zimmermann | 3 | 0.08% | 1 | 4.55% |
Nícolas F. R. A. Prado | 2 | 0.05% | 1 | 4.55% |
Uwe Kleine-König | 2 | 0.05% | 2 | 9.09% |
Total | 3715 | 22 |
// SPDX-License-Identifier: GPL-2.0 /* * TC358775 DSI to LVDS bridge driver * * Copyright (C) 2020 SMART Wireless Computing * Author: Vinay Simha BN <simhavcs@gmail.com> * */ /* #define DEBUG */ #include <linux/bitfield.h> #include <linux/clk.h> #include <linux/device.h> #include <linux/gpio/consumer.h> #include <linux/i2c.h> #include <linux/kernel.h> #include <linux/media-bus-format.h> #include <linux/module.h> #include <linux/of_device.h> #include <linux/regulator/consumer.h> #include <linux/slab.h> #include <asm/unaligned.h> #include <drm/display/drm_dp_helper.h> #include <drm/drm_atomic_helper.h> #include <drm/drm_bridge.h> #include <drm/drm_mipi_dsi.h> #include <drm/drm_of.h> #include <drm/drm_panel.h> #include <drm/drm_probe_helper.h> #define FLD_VAL(val, start, end) FIELD_PREP(GENMASK(start, end), val) /* Registers */ /* DSI D-PHY Layer Registers */ #define D0W_DPHYCONTTX 0x0004 /* Data Lane 0 DPHY Tx Control */ #define CLW_DPHYCONTRX 0x0020 /* Clock Lane DPHY Rx Control */ #define D0W_DPHYCONTRX 0x0024 /* Data Lane 0 DPHY Rx Control */ #define D1W_DPHYCONTRX 0x0028 /* Data Lane 1 DPHY Rx Control */ #define D2W_DPHYCONTRX 0x002C /* Data Lane 2 DPHY Rx Control */ #define D3W_DPHYCONTRX 0x0030 /* Data Lane 3 DPHY Rx Control */ #define COM_DPHYCONTRX 0x0038 /* DPHY Rx Common Control */ #define CLW_CNTRL 0x0040 /* Clock Lane Control */ #define D0W_CNTRL 0x0044 /* Data Lane 0 Control */ #define D1W_CNTRL 0x0048 /* Data Lane 1 Control */ #define D2W_CNTRL 0x004C /* Data Lane 2 Control */ #define D3W_CNTRL 0x0050 /* Data Lane 3 Control */ #define DFTMODE_CNTRL 0x0054 /* DFT Mode Control */ /* DSI PPI Layer Registers */ #define PPI_STARTPPI 0x0104 /* START control bit of PPI-TX function. */ #define PPI_START_FUNCTION 1 #define PPI_BUSYPPI 0x0108 #define PPI_LINEINITCNT 0x0110 /* Line Initialization Wait Counter */ #define PPI_LPTXTIMECNT 0x0114 #define PPI_LANEENABLE 0x0134 /* Enables each lane at the PPI layer. */ #define PPI_TX_RX_TA 0x013C /* DSI Bus Turn Around timing parameters */ /* Analog timer function enable */ #define PPI_CLS_ATMR 0x0140 /* Delay for Clock Lane in LPRX */ #define PPI_D0S_ATMR 0x0144 /* Delay for Data Lane 0 in LPRX */ #define PPI_D1S_ATMR 0x0148 /* Delay for Data Lane 1 in LPRX */ #define PPI_D2S_ATMR 0x014C /* Delay for Data Lane 2 in LPRX */ #define PPI_D3S_ATMR 0x0150 /* Delay for Data Lane 3 in LPRX */ #define PPI_D0S_CLRSIPOCOUNT 0x0164 /* For lane 0 */ #define PPI_D1S_CLRSIPOCOUNT 0x0168 /* For lane 1 */ #define PPI_D2S_CLRSIPOCOUNT 0x016C /* For lane 2 */ #define PPI_D3S_CLRSIPOCOUNT 0x0170 /* For lane 3 */ #define CLS_PRE 0x0180 /* Digital Counter inside of PHY IO */ #define D0S_PRE 0x0184 /* Digital Counter inside of PHY IO */ #define D1S_PRE 0x0188 /* Digital Counter inside of PHY IO */ #define D2S_PRE 0x018C /* Digital Counter inside of PHY IO */ #define D3S_PRE 0x0190 /* Digital Counter inside of PHY IO */ #define CLS_PREP 0x01A0 /* Digital Counter inside of PHY IO */ #define D0S_PREP 0x01A4 /* Digital Counter inside of PHY IO */ #define D1S_PREP 0x01A8 /* Digital Counter inside of PHY IO */ #define D2S_PREP 0x01AC /* Digital Counter inside of PHY IO */ #define D3S_PREP 0x01B0 /* Digital Counter inside of PHY IO */ #define CLS_ZERO 0x01C0 /* Digital Counter inside of PHY IO */ #define D0S_ZERO 0x01C4 /* Digital Counter inside of PHY IO */ #define D1S_ZERO 0x01C8 /* Digital Counter inside of PHY IO */ #define D2S_ZERO 0x01CC /* Digital Counter inside of PHY IO */ #define D3S_ZERO 0x01D0 /* Digital Counter inside of PHY IO */ #define PPI_CLRFLG 0x01E0 /* PRE Counters has reached set values */ #define PPI_CLRSIPO 0x01E4 /* Clear SIPO values, Slave mode use only. */ #define HSTIMEOUT 0x01F0 /* HS Rx Time Out Counter */ #define HSTIMEOUTENABLE 0x01F4 /* Enable HS Rx Time Out Counter */ #define DSI_STARTDSI 0x0204 /* START control bit of DSI-TX function */ #define DSI_RX_START 1 #define DSI_BUSYDSI 0x0208 #define DSI_LANEENABLE 0x0210 /* Enables each lane at the Protocol layer. */ #define DSI_LANESTATUS0 0x0214 /* Displays lane is in HS RX mode. */ #define DSI_LANESTATUS1 0x0218 /* Displays lane is in ULPS or STOP state */ #define DSI_INTSTATUS 0x0220 /* Interrupt Status */ #define DSI_INTMASK 0x0224 /* Interrupt Mask */ #define DSI_INTCLR 0x0228 /* Interrupt Clear */ #define DSI_LPTXTO 0x0230 /* Low Power Tx Time Out Counter */ #define DSIERRCNT 0x0300 /* DSI Error Count */ #define APLCTRL 0x0400 /* Application Layer Control */ #define RDPKTLN 0x0404 /* Command Read Packet Length */ #define VPCTRL 0x0450 /* Video Path Control */ #define EVTMODE BIT(5) /* Video event mode enable, tc35876x only */ #define HTIM1 0x0454 /* Horizontal Timing Control 1 */ #define HTIM2 0x0458 /* Horizontal Timing Control 2 */ #define VTIM1 0x045C /* Vertical Timing Control 1 */ #define VTIM2 0x0460 /* Vertical Timing Control 2 */ #define VFUEN 0x0464 /* Video Frame Timing Update Enable */ #define VFUEN_EN BIT(0) /* Upload Enable */ /* Mux Input Select for LVDS LINK Input */ #define LV_MX0003 0x0480 /* Bit 0 to 3 */ #define LV_MX0407 0x0484 /* Bit 4 to 7 */ #define LV_MX0811 0x0488 /* Bit 8 to 11 */ #define LV_MX1215 0x048C /* Bit 12 to 15 */ #define LV_MX1619 0x0490 /* Bit 16 to 19 */ #define LV_MX2023 0x0494 /* Bit 20 to 23 */ #define LV_MX2427 0x0498 /* Bit 24 to 27 */ #define LV_MX(b0, b1, b2, b3) (FLD_VAL(b0, 4, 0) | FLD_VAL(b1, 12, 8) | \ FLD_VAL(b2, 20, 16) | FLD_VAL(b3, 28, 24)) /* Input bit numbers used in mux registers */ enum { LVI_R0, LVI_R1, LVI_R2, LVI_R3, LVI_R4, LVI_R5, LVI_R6, LVI_R7, LVI_G0, LVI_G1, LVI_G2, LVI_G3, LVI_G4, LVI_G5, LVI_G6, LVI_G7, LVI_B0, LVI_B1, LVI_B2, LVI_B3, LVI_B4, LVI_B5, LVI_B6, LVI_B7, LVI_HS, LVI_VS, LVI_DE, LVI_L0 }; #define LVCFG 0x049C /* LVDS Configuration */ #define LVPHY0 0x04A0 /* LVDS PHY 0 */ #define LV_PHY0_RST(v) FLD_VAL(v, 22, 22) /* PHY reset */ #define LV_PHY0_IS(v) FLD_VAL(v, 15, 14) #define LV_PHY0_ND(v) FLD_VAL(v, 4, 0) /* Frequency range select */ #define LV_PHY0_PRBS_ON(v) FLD_VAL(v, 20, 16) /* Clock/Data Flag pins */ #define LVPHY1 0x04A4 /* LVDS PHY 1 */ #define SYSSTAT 0x0500 /* System Status */ #define SYSRST 0x0504 /* System Reset */ #define SYS_RST_I2CS BIT(0) /* Reset I2C-Slave controller */ #define SYS_RST_I2CM BIT(1) /* Reset I2C-Master controller */ #define SYS_RST_LCD BIT(2) /* Reset LCD controller */ #define SYS_RST_BM BIT(3) /* Reset Bus Management controller */ #define SYS_RST_DSIRX BIT(4) /* Reset DSI-RX and App controller */ #define SYS_RST_REG BIT(5) /* Reset Register module */ /* GPIO Registers */ #define GPIOC 0x0520 /* GPIO Control */ #define GPIOO 0x0524 /* GPIO Output */ #define GPIOI 0x0528 /* GPIO Input */ /* I2C Registers */ #define I2CTIMCTRL 0x0540 /* I2C IF Timing and Enable Control */ #define I2CMADDR 0x0544 /* I2C Master Addressing */ #define WDATAQ 0x0548 /* Write Data Queue */ #define RDATAQ 0x054C /* Read Data Queue */ /* Chip ID and Revision ID Register */ #define IDREG 0x0580 #define LPX_PERIOD 4 #define TTA_GET 0x40000 #define TTA_SURE 6 #define SINGLE_LINK 1 #define DUAL_LINK 2 #define TC358775XBG_ID 0x00007500 /* Debug Registers */ #define DEBUG00 0x05A0 /* Debug */ #define DEBUG01 0x05A4 /* LVDS Data */ #define DSI_CLEN_BIT BIT(0) #define DIVIDE_BY_3 3 /* PCLK=DCLK/3 */ #define DIVIDE_BY_6 6 /* PCLK=DCLK/6 */ #define LVCFG_LVEN_BIT BIT(0) #define L0EN BIT(1) #define TC358775_VPCTRL_VSDELAY__MASK 0x3FF00000 #define TC358775_VPCTRL_VSDELAY__SHIFT 20 static inline u32 TC358775_VPCTRL_VSDELAY(uint32_t val) { return ((val) << TC358775_VPCTRL_VSDELAY__SHIFT) & TC358775_VPCTRL_VSDELAY__MASK; } #define TC358775_VPCTRL_OPXLFMT__MASK 0x00000100 #define TC358775_VPCTRL_OPXLFMT__SHIFT 8 static inline u32 TC358775_VPCTRL_OPXLFMT(uint32_t val) { return ((val) << TC358775_VPCTRL_OPXLFMT__SHIFT) & TC358775_VPCTRL_OPXLFMT__MASK; } #define TC358775_VPCTRL_MSF__MASK 0x00000001 #define TC358775_VPCTRL_MSF__SHIFT 0 static inline u32 TC358775_VPCTRL_MSF(uint32_t val) { return ((val) << TC358775_VPCTRL_MSF__SHIFT) & TC358775_VPCTRL_MSF__MASK; } #define TC358775_LVCFG_PCLKDIV__MASK 0x000000f0 #define TC358775_LVCFG_PCLKDIV__SHIFT 4 static inline u32 TC358775_LVCFG_PCLKDIV(uint32_t val) { return ((val) << TC358775_LVCFG_PCLKDIV__SHIFT) & TC358775_LVCFG_PCLKDIV__MASK; } #define TC358775_LVCFG_LVDLINK__MASK 0x00000002 #define TC358775_LVCFG_LVDLINK__SHIFT 1 static inline u32 TC358775_LVCFG_LVDLINK(uint32_t val) { return ((val) << TC358775_LVCFG_LVDLINK__SHIFT) & TC358775_LVCFG_LVDLINK__MASK; } enum tc358775_ports { TC358775_DSI_IN, TC358775_LVDS_OUT0, TC358775_LVDS_OUT1, }; enum tc3587x5_type { TC358765 = 0x65, TC358775 = 0x75, }; struct tc_data { struct i2c_client *i2c; struct device *dev; struct drm_bridge bridge; struct drm_bridge *panel_bridge; struct device_node *host_node; struct mipi_dsi_device *dsi; u8 num_dsi_lanes; struct regulator *vdd; struct regulator *vddio; struct gpio_desc *reset_gpio; struct gpio_desc *stby_gpio; u8 lvds_link; /* single-link or dual-link */ u8 bpc; enum tc3587x5_type type; }; static inline struct tc_data *bridge_to_tc(struct drm_bridge *b) { return container_of(b, struct tc_data, bridge); } static void tc_bridge_pre_enable(struct drm_bridge *bridge) { struct tc_data *tc = bridge_to_tc(bridge); struct device *dev = &tc->dsi->dev; int ret; ret = regulator_enable(tc->vddio); if (ret < 0) dev_err(dev, "regulator vddio enable failed, %d\n", ret); usleep_range(10000, 11000); ret = regulator_enable(tc->vdd); if (ret < 0) dev_err(dev, "regulator vdd enable failed, %d\n", ret); usleep_range(10000, 11000); gpiod_set_value(tc->stby_gpio, 0); usleep_range(10000, 11000); gpiod_set_value(tc->reset_gpio, 0); usleep_range(10, 20); } static void tc_bridge_post_disable(struct drm_bridge *bridge) { struct tc_data *tc = bridge_to_tc(bridge); struct device *dev = &tc->dsi->dev; int ret; gpiod_set_value(tc->reset_gpio, 1); usleep_range(10, 20); gpiod_set_value(tc->stby_gpio, 1); usleep_range(10000, 11000); ret = regulator_disable(tc->vdd); if (ret < 0) dev_err(dev, "regulator vdd disable failed, %d\n", ret); usleep_range(10000, 11000); ret = regulator_disable(tc->vddio); if (ret < 0) dev_err(dev, "regulator vddio disable failed, %d\n", ret); usleep_range(10000, 11000); } static void d2l_read(struct i2c_client *i2c, u16 addr, u32 *val) { int ret; u8 buf_addr[2]; put_unaligned_be16(addr, buf_addr); ret = i2c_master_send(i2c, buf_addr, sizeof(buf_addr)); if (ret < 0) goto fail; ret = i2c_master_recv(i2c, (u8 *)val, sizeof(*val)); if (ret < 0) goto fail; pr_debug("d2l: I2C : addr:%04x value:%08x\n", addr, *val); return; fail: dev_err(&i2c->dev, "Error %d reading from subaddress 0x%x\n", ret, addr); } static void d2l_write(struct i2c_client *i2c, u16 addr, u32 val) { u8 data[6]; int ret; put_unaligned_be16(addr, data); put_unaligned_le32(val, data + 2); ret = i2c_master_send(i2c, data, ARRAY_SIZE(data)); if (ret < 0) dev_err(&i2c->dev, "Error %d writing to subaddress 0x%x\n", ret, addr); } /* helper function to access bus_formats */ static struct drm_connector *get_connector(struct drm_encoder *encoder) { struct drm_device *dev = encoder->dev; struct drm_connector *connector; list_for_each_entry(connector, &dev->mode_config.connector_list, head) if (connector->encoder == encoder) return connector; return NULL; } static void tc_bridge_enable(struct drm_bridge *bridge) { struct tc_data *tc = bridge_to_tc(bridge); u32 hback_porch, hsync_len, hfront_porch, hactive, htime1, htime2; u32 vback_porch, vsync_len, vfront_porch, vactive, vtime1, vtime2; u32 val = 0; u16 dsiclk, clkdiv, byteclk, t1, t2, t3, vsdelay; struct drm_display_mode *mode; struct drm_connector *connector = get_connector(bridge->encoder); mode = &bridge->encoder->crtc->state->adjusted_mode; hback_porch = mode->htotal - mode->hsync_end; hsync_len = mode->hsync_end - mode->hsync_start; vback_porch = mode->vtotal - mode->vsync_end; vsync_len = mode->vsync_end - mode->vsync_start; htime1 = (hback_porch << 16) + hsync_len; vtime1 = (vback_porch << 16) + vsync_len; hfront_porch = mode->hsync_start - mode->hdisplay; hactive = mode->hdisplay; vfront_porch = mode->vsync_start - mode->vdisplay; vactive = mode->vdisplay; htime2 = (hfront_porch << 16) + hactive; vtime2 = (vfront_porch << 16) + vactive; d2l_read(tc->i2c, IDREG, &val); dev_info(tc->dev, "DSI2LVDS Chip ID.%02x Revision ID. %02x **\n", (val >> 8) & 0xFF, val & 0xFF); d2l_write(tc->i2c, SYSRST, SYS_RST_REG | SYS_RST_DSIRX | SYS_RST_BM | SYS_RST_LCD | SYS_RST_I2CM); usleep_range(30000, 40000); d2l_write(tc->i2c, PPI_TX_RX_TA, TTA_GET | TTA_SURE); d2l_write(tc->i2c, PPI_LPTXTIMECNT, LPX_PERIOD); d2l_write(tc->i2c, PPI_D0S_CLRSIPOCOUNT, 3); d2l_write(tc->i2c, PPI_D1S_CLRSIPOCOUNT, 3); d2l_write(tc->i2c, PPI_D2S_CLRSIPOCOUNT, 3); d2l_write(tc->i2c, PPI_D3S_CLRSIPOCOUNT, 3); val = ((L0EN << tc->num_dsi_lanes) - L0EN) | DSI_CLEN_BIT; d2l_write(tc->i2c, PPI_LANEENABLE, val); d2l_write(tc->i2c, DSI_LANEENABLE, val); d2l_write(tc->i2c, PPI_STARTPPI, PPI_START_FUNCTION); d2l_write(tc->i2c, DSI_STARTDSI, DSI_RX_START); /* Video event mode vs pulse mode bit, does not exist for tc358775 */ if (tc->type == TC358765) val = EVTMODE; else val = 0; if (tc->bpc == 8) val |= TC358775_VPCTRL_OPXLFMT(1); else /* bpc = 6; */ val |= TC358775_VPCTRL_MSF(1); dsiclk = mode->crtc_clock * 3 * tc->bpc / tc->num_dsi_lanes / 1000; clkdiv = dsiclk / (tc->lvds_link == DUAL_LINK ? DIVIDE_BY_6 : DIVIDE_BY_3); byteclk = dsiclk / 4; t1 = hactive * (tc->bpc * 3 / 8) / tc->num_dsi_lanes; t2 = ((100000 / clkdiv)) * (hactive + hback_porch + hsync_len + hfront_porch) / 1000; t3 = ((t2 * byteclk) / 100) - (hactive * (tc->bpc * 3 / 8) / tc->num_dsi_lanes); vsdelay = (clkdiv * (t1 + t3) / byteclk) - hback_porch - hsync_len - hactive; val |= TC358775_VPCTRL_VSDELAY(vsdelay); d2l_write(tc->i2c, VPCTRL, val); d2l_write(tc->i2c, HTIM1, htime1); d2l_write(tc->i2c, VTIM1, vtime1); d2l_write(tc->i2c, HTIM2, htime2); d2l_write(tc->i2c, VTIM2, vtime2); d2l_write(tc->i2c, VFUEN, VFUEN_EN); d2l_write(tc->i2c, SYSRST, SYS_RST_LCD); d2l_write(tc->i2c, LVPHY0, LV_PHY0_PRBS_ON(4) | LV_PHY0_ND(6)); dev_dbg(tc->dev, "bus_formats %04x bpc %d\n", connector->display_info.bus_formats[0], tc->bpc); if (connector->display_info.bus_formats[0] == MEDIA_BUS_FMT_RGB888_1X7X4_SPWG) { /* VESA-24 */ d2l_write(tc->i2c, LV_MX0003, LV_MX(LVI_R0, LVI_R1, LVI_R2, LVI_R3)); d2l_write(tc->i2c, LV_MX0407, LV_MX(LVI_R4, LVI_R7, LVI_R5, LVI_G0)); d2l_write(tc->i2c, LV_MX0811, LV_MX(LVI_G1, LVI_G2, LVI_G6, LVI_G7)); d2l_write(tc->i2c, LV_MX1215, LV_MX(LVI_G3, LVI_G4, LVI_G5, LVI_B0)); d2l_write(tc->i2c, LV_MX1619, LV_MX(LVI_B6, LVI_B7, LVI_B1, LVI_B2)); d2l_write(tc->i2c, LV_MX2023, LV_MX(LVI_B3, LVI_B4, LVI_B5, LVI_L0)); d2l_write(tc->i2c, LV_MX2427, LV_MX(LVI_HS, LVI_VS, LVI_DE, LVI_R6)); } else { /* JEIDA-18 and JEIDA-24 */ d2l_write(tc->i2c, LV_MX0003, LV_MX(LVI_R2, LVI_R3, LVI_R4, LVI_R5)); d2l_write(tc->i2c, LV_MX0407, LV_MX(LVI_R6, LVI_R1, LVI_R7, LVI_G2)); d2l_write(tc->i2c, LV_MX0811, LV_MX(LVI_G3, LVI_G4, LVI_G0, LVI_G1)); d2l_write(tc->i2c, LV_MX1215, LV_MX(LVI_G5, LVI_G6, LVI_G7, LVI_B2)); d2l_write(tc->i2c, LV_MX1619, LV_MX(LVI_B0, LVI_B1, LVI_B3, LVI_B4)); d2l_write(tc->i2c, LV_MX2023, LV_MX(LVI_B5, LVI_B6, LVI_B7, LVI_L0)); d2l_write(tc->i2c, LV_MX2427, LV_MX(LVI_HS, LVI_VS, LVI_DE, LVI_R0)); } d2l_write(tc->i2c, VFUEN, VFUEN_EN); val = LVCFG_LVEN_BIT; if (tc->lvds_link == DUAL_LINK) { val |= TC358775_LVCFG_LVDLINK(1); val |= TC358775_LVCFG_PCLKDIV(DIVIDE_BY_6); } else { val |= TC358775_LVCFG_PCLKDIV(DIVIDE_BY_3); } d2l_write(tc->i2c, LVCFG, val); } static enum drm_mode_status tc_mode_valid(struct drm_bridge *bridge, const struct drm_display_info *info, const struct drm_display_mode *mode) { struct tc_data *tc = bridge_to_tc(bridge); /* * Maximum pixel clock speed 135MHz for single-link * 270MHz for dual-link */ if ((mode->clock > 135000 && tc->lvds_link == SINGLE_LINK) || (mode->clock > 270000 && tc->lvds_link == DUAL_LINK)) return MODE_CLOCK_HIGH; switch (info->bus_formats[0]) { case MEDIA_BUS_FMT_RGB888_1X7X4_SPWG: case MEDIA_BUS_FMT_RGB888_1X7X4_JEIDA: /* RGB888 */ tc->bpc = 8; break; case MEDIA_BUS_FMT_RGB666_1X7X3_SPWG: /* RGB666 */ tc->bpc = 6; break; default: dev_warn(tc->dev, "unsupported LVDS bus format 0x%04x\n", info->bus_formats[0]); return MODE_NOMODE; } return MODE_OK; } static int tc358775_parse_dt(struct device_node *np, struct tc_data *tc) { struct device_node *endpoint; struct device_node *remote; int dsi_lanes = -1; endpoint = of_graph_get_endpoint_by_regs(tc->dev->of_node, TC358775_DSI_IN, -1); dsi_lanes = drm_of_get_data_lanes_count(endpoint, 1, 4); /* Quirk old dtb: Use data lanes from the DSI host side instead of bridge */ if (dsi_lanes == -EINVAL || dsi_lanes == -ENODEV) { remote = of_graph_get_remote_endpoint(endpoint); dsi_lanes = drm_of_get_data_lanes_count(remote, 1, 4); of_node_put(remote); if (dsi_lanes >= 1) dev_warn(tc->dev, "no dsi-lanes for the bridge, using host lanes\n"); } of_node_put(endpoint); if (dsi_lanes < 0) return dsi_lanes; tc->num_dsi_lanes = dsi_lanes; tc->host_node = of_graph_get_remote_node(np, 0, 0); if (!tc->host_node) return -ENODEV; of_node_put(tc->host_node); tc->lvds_link = SINGLE_LINK; endpoint = of_graph_get_endpoint_by_regs(tc->dev->of_node, TC358775_LVDS_OUT1, -1); if (endpoint) { remote = of_graph_get_remote_port_parent(endpoint); of_node_put(endpoint); if (remote) { if (of_device_is_available(remote)) tc->lvds_link = DUAL_LINK; of_node_put(remote); } } dev_dbg(tc->dev, "no.of dsi lanes: %d\n", tc->num_dsi_lanes); dev_dbg(tc->dev, "operating in %d-link mode\n", tc->lvds_link); return 0; } static int tc_bridge_attach(struct drm_bridge *bridge, enum drm_bridge_attach_flags flags) { struct tc_data *tc = bridge_to_tc(bridge); /* Attach the panel-bridge to the dsi bridge */ return drm_bridge_attach(bridge->encoder, tc->panel_bridge, &tc->bridge, flags); } static const struct drm_bridge_funcs tc_bridge_funcs = { .attach = tc_bridge_attach, .pre_enable = tc_bridge_pre_enable, .enable = tc_bridge_enable, .mode_valid = tc_mode_valid, .post_disable = tc_bridge_post_disable, }; static int tc_attach_host(struct tc_data *tc) { struct device *dev = &tc->i2c->dev; struct mipi_dsi_host *host; struct mipi_dsi_device *dsi; int ret; const struct mipi_dsi_device_info info = { .type = "tc358775", .channel = 0, .node = NULL, }; host = of_find_mipi_dsi_host_by_node(tc->host_node); if (!host) return dev_err_probe(dev, -EPROBE_DEFER, "failed to find dsi host\n"); dsi = devm_mipi_dsi_device_register_full(dev, host, &info); if (IS_ERR(dsi)) { dev_err(dev, "failed to create dsi device\n"); return PTR_ERR(dsi); } tc->dsi = dsi; dsi->lanes = tc->num_dsi_lanes; dsi->format = MIPI_DSI_FMT_RGB888; dsi->mode_flags = MIPI_DSI_MODE_VIDEO | MIPI_DSI_MODE_VIDEO_BURST | MIPI_DSI_MODE_LPM; /* * The hs_rate and lp_rate are data rate values. The HS mode is * differential, while the LP mode is single ended. As the HS mode * uses DDR, the DSI clock frequency is half the hs_rate. The 10 Mbs * data rate for LP mode is not specified in the bridge data sheet, * but seems to be part of the MIPI DSI spec. */ if (tc->type == TC358765) dsi->hs_rate = 800000000; else dsi->hs_rate = 1000000000; dsi->lp_rate = 10000000; ret = devm_mipi_dsi_attach(dev, dsi); if (ret < 0) { dev_err(dev, "failed to attach dsi to host\n"); return ret; } return 0; } static int tc_probe(struct i2c_client *client) { struct device *dev = &client->dev; struct tc_data *tc; int ret; tc = devm_kzalloc(dev, sizeof(*tc), GFP_KERNEL); if (!tc) return -ENOMEM; tc->dev = dev; tc->i2c = client; tc->type = (enum tc3587x5_type)(unsigned long)of_device_get_match_data(dev); tc->panel_bridge = devm_drm_of_get_bridge(dev, dev->of_node, TC358775_LVDS_OUT0, 0); if (IS_ERR(tc->panel_bridge)) return PTR_ERR(tc->panel_bridge); ret = tc358775_parse_dt(dev->of_node, tc); if (ret) return ret; tc->vddio = devm_regulator_get(dev, "vddio-supply"); if (IS_ERR(tc->vddio)) { ret = PTR_ERR(tc->vddio); dev_err(dev, "vddio-supply not found\n"); return ret; } tc->vdd = devm_regulator_get(dev, "vdd-supply"); if (IS_ERR(tc->vdd)) { ret = PTR_ERR(tc->vdd); dev_err(dev, "vdd-supply not found\n"); return ret; } tc->stby_gpio = devm_gpiod_get_optional(dev, "stby", GPIOD_OUT_HIGH); if (IS_ERR(tc->stby_gpio)) return PTR_ERR(tc->stby_gpio); tc->reset_gpio = devm_gpiod_get(dev, "reset", GPIOD_OUT_HIGH); if (IS_ERR(tc->reset_gpio)) { ret = PTR_ERR(tc->reset_gpio); dev_err(dev, "cannot get reset-gpios %d\n", ret); return ret; } tc->bridge.funcs = &tc_bridge_funcs; tc->bridge.of_node = dev->of_node; tc->bridge.pre_enable_prev_first = true; drm_bridge_add(&tc->bridge); i2c_set_clientdata(client, tc); ret = tc_attach_host(tc); if (ret) goto err_bridge_remove; return 0; err_bridge_remove: drm_bridge_remove(&tc->bridge); return ret; } static void tc_remove(struct i2c_client *client) { struct tc_data *tc = i2c_get_clientdata(client); drm_bridge_remove(&tc->bridge); } static const struct i2c_device_id tc358775_i2c_ids[] = { { "tc358765", TC358765, }, { "tc358775", TC358775, }, { } }; MODULE_DEVICE_TABLE(i2c, tc358775_i2c_ids); static const struct of_device_id tc358775_of_ids[] = { { .compatible = "toshiba,tc358765", .data = (void *)TC358765, }, { .compatible = "toshiba,tc358775", .data = (void *)TC358775, }, { } }; MODULE_DEVICE_TABLE(of, tc358775_of_ids); static struct i2c_driver tc358775_driver = { .driver = { .name = "tc358775", .of_match_table = tc358775_of_ids, }, .id_table = tc358775_i2c_ids, .probe = tc_probe, .remove = tc_remove, }; module_i2c_driver(tc358775_driver); MODULE_AUTHOR("Vinay Simha BN <simhavcs@gmail.com>"); MODULE_DESCRIPTION("TC358775 DSI/LVDS bridge driver"); MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1