Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Inki Dae | 1433 | 24.17% | 21 | 12.88% |
YoungJun Cho | 973 | 16.41% | 6 | 3.68% |
Marek Szyprowski | 548 | 9.24% | 12 | 7.36% |
Christoph Manszewski | 515 | 8.69% | 2 | 1.23% |
Gustavo Padovan | 510 | 8.60% | 23 | 14.11% |
Sean Paul | 358 | 6.04% | 8 | 4.91% |
Andrzej Hajda | 340 | 5.73% | 19 | 11.66% |
Joonyoung Shim | 316 | 5.33% | 16 | 9.82% |
Tomasz Figa | 210 | 3.54% | 5 | 3.07% |
Martin Jücker | 139 | 2.34% | 1 | 0.61% |
Leela Krishna Amudala | 90 | 1.52% | 3 | 1.84% |
Chanho Park | 80 | 1.35% | 1 | 0.61% |
Akshu Agrawal | 70 | 1.18% | 1 | 0.61% |
Prathyush K | 68 | 1.15% | 3 | 1.84% |
Hyungwon Hwang | 66 | 1.11% | 3 | 1.84% |
Krzysztof Kozlowski | 39 | 0.66% | 5 | 3.07% |
Tobias Jakobi | 32 | 0.54% | 4 | 2.45% |
Sachin Kamat | 22 | 0.37% | 6 | 3.68% |
Rahul Sharma | 20 | 0.34% | 1 | 0.61% |
Sam Ravnborg | 13 | 0.22% | 1 | 0.61% |
Paul Cercueil | 9 | 0.15% | 1 | 0.61% |
Alban Browaeys | 9 | 0.15% | 1 | 0.61% |
Eun-Chul Kim | 7 | 0.12% | 1 | 0.61% |
Daniel Vetter | 7 | 0.12% | 3 | 1.84% |
Thierry Reding | 7 | 0.12% | 1 | 0.61% |
Sjoerd Simons | 7 | 0.12% | 1 | 0.61% |
Lad Prabhakar | 7 | 0.12% | 1 | 0.61% |
Seung-Woo Kim | 6 | 0.10% | 2 | 1.23% |
Ville Syrjälä | 6 | 0.10% | 1 | 0.61% |
Vikas Sajjan | 5 | 0.08% | 3 | 1.84% |
Daniel Stone | 4 | 0.07% | 2 | 1.23% |
caihuoqing | 3 | 0.05% | 1 | 0.61% |
Arnd Bergmann | 3 | 0.05% | 1 | 0.61% |
Ajay Kumar | 3 | 0.05% | 1 | 0.61% |
Uwe Kleine-König | 2 | 0.03% | 1 | 0.61% |
Thomas Gleixner | 2 | 0.03% | 1 | 0.61% |
Total | 5929 | 163 |
// SPDX-License-Identifier: GPL-2.0-or-later /* exynos_drm_fimd.c * * Copyright (C) 2011 Samsung Electronics Co.Ltd * Authors: * Joonyoung Shim <jy0922.shim@samsung.com> * Inki Dae <inki.dae@samsung.com> */ #include <linux/clk.h> #include <linux/component.h> #include <linux/kernel.h> #include <linux/mfd/syscon.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/pm_runtime.h> #include <linux/regmap.h> #include <video/of_display_timing.h> #include <video/of_videomode.h> #include <video/samsung_fimd.h> #include <drm/drm_blend.h> #include <drm/drm_fourcc.h> #include <drm/drm_framebuffer.h> #include <drm/drm_vblank.h> #include <drm/exynos_drm.h> #include "exynos_drm_crtc.h" #include "exynos_drm_drv.h" #include "exynos_drm_fb.h" #include "exynos_drm_plane.h" /* * FIMD stands for Fully Interactive Mobile Display and * as a display controller, it transfers contents drawn on memory * to a LCD Panel through Display Interfaces such as RGB or * CPU Interface. */ #define MIN_FB_WIDTH_FOR_16WORD_BURST 128 /* position control register for hardware window 0, 2 ~ 4.*/ #define VIDOSD_A(win) (VIDOSD_BASE + 0x00 + (win) * 16) #define VIDOSD_B(win) (VIDOSD_BASE + 0x04 + (win) * 16) /* * size control register for hardware windows 0 and alpha control register * for hardware windows 1 ~ 4 */ #define VIDOSD_C(win) (VIDOSD_BASE + 0x08 + (win) * 16) /* size control register for hardware windows 1 ~ 2. */ #define VIDOSD_D(win) (VIDOSD_BASE + 0x0C + (win) * 16) #define VIDWnALPHA0(win) (VIDW_ALPHA + 0x00 + (win) * 8) #define VIDWnALPHA1(win) (VIDW_ALPHA + 0x04 + (win) * 8) #define VIDWx_BUF_START(win, buf) (VIDW_BUF_START(buf) + (win) * 8) #define VIDWx_BUF_START_S(win, buf) (VIDW_BUF_START_S(buf) + (win) * 8) #define VIDWx_BUF_END(win, buf) (VIDW_BUF_END(buf) + (win) * 8) #define VIDWx_BUF_SIZE(win, buf) (VIDW_BUF_SIZE(buf) + (win) * 4) /* color key control register for hardware window 1 ~ 4. */ #define WKEYCON0_BASE(x) ((WKEYCON0 + 0x140) + ((x - 1) * 8)) /* color key value register for hardware window 1 ~ 4. */ #define WKEYCON1_BASE(x) ((WKEYCON1 + 0x140) + ((x - 1) * 8)) /* I80 trigger control register */ #define TRIGCON 0x1A4 #define TRGMODE_ENABLE (1 << 0) #define SWTRGCMD_ENABLE (1 << 1) /* Exynos3250, 3472, 5260 5410, 5420 and 5422 only supported. */ #define HWTRGEN_ENABLE (1 << 3) #define HWTRGMASK_ENABLE (1 << 4) /* Exynos3250, 3472, 5260, 5420 and 5422 only supported. */ #define HWTRIGEN_PER_ENABLE (1 << 31) /* display mode change control register except exynos4 */ #define VIDOUT_CON 0x000 #define VIDOUT_CON_F_I80_LDI0 (0x2 << 8) /* I80 interface control for main LDI register */ #define I80IFCONFAx(x) (0x1B0 + (x) * 4) #define I80IFCONFBx(x) (0x1B8 + (x) * 4) #define LCD_CS_SETUP(x) ((x) << 16) #define LCD_WR_SETUP(x) ((x) << 12) #define LCD_WR_ACTIVE(x) ((x) << 8) #define LCD_WR_HOLD(x) ((x) << 4) #define I80IFEN_ENABLE (1 << 0) /* FIMD has totally five hardware windows. */ #define WINDOWS_NR 5 /* HW trigger flag on i80 panel. */ #define I80_HW_TRG (1 << 1) struct fimd_driver_data { unsigned int timing_base; unsigned int lcdblk_offset; unsigned int lcdblk_vt_shift; unsigned int lcdblk_bypass_shift; unsigned int lcdblk_mic_bypass_shift; unsigned int trg_type; unsigned int has_shadowcon:1; unsigned int has_clksel:1; unsigned int has_limited_fmt:1; unsigned int has_vidoutcon:1; unsigned int has_vtsel:1; unsigned int has_mic_bypass:1; unsigned int has_dp_clk:1; unsigned int has_hw_trigger:1; unsigned int has_trigger_per_te:1; unsigned int has_bgr_support:1; }; static struct fimd_driver_data s3c64xx_fimd_driver_data = { .timing_base = 0x0, .has_clksel = 1, .has_limited_fmt = 1, }; static struct fimd_driver_data s5pv210_fimd_driver_data = { .timing_base = 0x0, .has_shadowcon = 1, .has_clksel = 1, }; static struct fimd_driver_data exynos3_fimd_driver_data = { .timing_base = 0x20000, .lcdblk_offset = 0x210, .lcdblk_bypass_shift = 1, .has_shadowcon = 1, .has_vidoutcon = 1, }; static struct fimd_driver_data exynos4_fimd_driver_data = { .timing_base = 0x0, .lcdblk_offset = 0x210, .lcdblk_vt_shift = 10, .lcdblk_bypass_shift = 1, .has_shadowcon = 1, .has_vtsel = 1, .has_bgr_support = 1, }; static struct fimd_driver_data exynos5_fimd_driver_data = { .timing_base = 0x20000, .lcdblk_offset = 0x214, .lcdblk_vt_shift = 24, .lcdblk_bypass_shift = 15, .has_shadowcon = 1, .has_vidoutcon = 1, .has_vtsel = 1, .has_dp_clk = 1, .has_bgr_support = 1, }; static struct fimd_driver_data exynos5420_fimd_driver_data = { .timing_base = 0x20000, .lcdblk_offset = 0x214, .lcdblk_vt_shift = 24, .lcdblk_bypass_shift = 15, .lcdblk_mic_bypass_shift = 11, .has_shadowcon = 1, .has_vidoutcon = 1, .has_vtsel = 1, .has_mic_bypass = 1, .has_dp_clk = 1, .has_bgr_support = 1, }; struct fimd_context { struct device *dev; struct drm_device *drm_dev; void *dma_priv; struct exynos_drm_crtc *crtc; struct exynos_drm_plane planes[WINDOWS_NR]; struct exynos_drm_plane_config configs[WINDOWS_NR]; struct clk *bus_clk; struct clk *lcd_clk; void __iomem *regs; struct regmap *sysreg; unsigned long irq_flags; u32 vidcon0; u32 vidcon1; u32 vidout_con; u32 i80ifcon; bool i80_if; bool suspended; wait_queue_head_t wait_vsync_queue; atomic_t wait_vsync_event; atomic_t win_updated; atomic_t triggering; u32 clkdiv; const struct fimd_driver_data *driver_data; struct drm_encoder *encoder; struct exynos_drm_clk dp_clk; }; static const struct of_device_id fimd_driver_dt_match[] = { { .compatible = "samsung,s3c6400-fimd", .data = &s3c64xx_fimd_driver_data }, { .compatible = "samsung,s5pv210-fimd", .data = &s5pv210_fimd_driver_data }, { .compatible = "samsung,exynos3250-fimd", .data = &exynos3_fimd_driver_data }, { .compatible = "samsung,exynos4210-fimd", .data = &exynos4_fimd_driver_data }, { .compatible = "samsung,exynos5250-fimd", .data = &exynos5_fimd_driver_data }, { .compatible = "samsung,exynos5420-fimd", .data = &exynos5420_fimd_driver_data }, {}, }; MODULE_DEVICE_TABLE(of, fimd_driver_dt_match); static const enum drm_plane_type fimd_win_types[WINDOWS_NR] = { DRM_PLANE_TYPE_PRIMARY, DRM_PLANE_TYPE_OVERLAY, DRM_PLANE_TYPE_OVERLAY, DRM_PLANE_TYPE_OVERLAY, DRM_PLANE_TYPE_CURSOR, }; static const uint32_t fimd_formats[] = { DRM_FORMAT_C8, DRM_FORMAT_XRGB1555, DRM_FORMAT_RGB565, DRM_FORMAT_XRGB8888, DRM_FORMAT_ARGB8888, }; static const uint32_t fimd_extended_formats[] = { DRM_FORMAT_C8, DRM_FORMAT_XRGB1555, DRM_FORMAT_XBGR1555, DRM_FORMAT_RGB565, DRM_FORMAT_BGR565, DRM_FORMAT_XRGB8888, DRM_FORMAT_XBGR8888, DRM_FORMAT_ARGB8888, DRM_FORMAT_ABGR8888, }; static const unsigned int capabilities[WINDOWS_NR] = { 0, EXYNOS_DRM_PLANE_CAP_WIN_BLEND | EXYNOS_DRM_PLANE_CAP_PIX_BLEND, EXYNOS_DRM_PLANE_CAP_WIN_BLEND | EXYNOS_DRM_PLANE_CAP_PIX_BLEND, EXYNOS_DRM_PLANE_CAP_WIN_BLEND | EXYNOS_DRM_PLANE_CAP_PIX_BLEND, EXYNOS_DRM_PLANE_CAP_WIN_BLEND | EXYNOS_DRM_PLANE_CAP_PIX_BLEND, }; static inline void fimd_set_bits(struct fimd_context *ctx, u32 reg, u32 mask, u32 val) { val = (val & mask) | (readl(ctx->regs + reg) & ~mask); writel(val, ctx->regs + reg); } static int fimd_enable_vblank(struct exynos_drm_crtc *crtc) { struct fimd_context *ctx = crtc->ctx; u32 val; if (ctx->suspended) return -EPERM; if (!test_and_set_bit(0, &ctx->irq_flags)) { val = readl(ctx->regs + VIDINTCON0); val |= VIDINTCON0_INT_ENABLE; if (ctx->i80_if) { val |= VIDINTCON0_INT_I80IFDONE; val |= VIDINTCON0_INT_SYSMAINCON; val &= ~VIDINTCON0_INT_SYSSUBCON; } else { val |= VIDINTCON0_INT_FRAME; val &= ~VIDINTCON0_FRAMESEL0_MASK; val |= VIDINTCON0_FRAMESEL0_FRONTPORCH; val &= ~VIDINTCON0_FRAMESEL1_MASK; val |= VIDINTCON0_FRAMESEL1_NONE; } writel(val, ctx->regs + VIDINTCON0); } return 0; } static void fimd_disable_vblank(struct exynos_drm_crtc *crtc) { struct fimd_context *ctx = crtc->ctx; u32 val; if (ctx->suspended) return; if (test_and_clear_bit(0, &ctx->irq_flags)) { val = readl(ctx->regs + VIDINTCON0); val &= ~VIDINTCON0_INT_ENABLE; if (ctx->i80_if) { val &= ~VIDINTCON0_INT_I80IFDONE; val &= ~VIDINTCON0_INT_SYSMAINCON; val &= ~VIDINTCON0_INT_SYSSUBCON; } else val &= ~VIDINTCON0_INT_FRAME; writel(val, ctx->regs + VIDINTCON0); } } static void fimd_wait_for_vblank(struct exynos_drm_crtc *crtc) { struct fimd_context *ctx = crtc->ctx; if (ctx->suspended) return; atomic_set(&ctx->wait_vsync_event, 1); /* * wait for FIMD to signal VSYNC interrupt or return after * timeout which is set to 50ms (refresh rate of 20). */ if (!wait_event_timeout(ctx->wait_vsync_queue, !atomic_read(&ctx->wait_vsync_event), HZ/20)) DRM_DEV_DEBUG_KMS(ctx->dev, "vblank wait timed out.\n"); } static void fimd_enable_video_output(struct fimd_context *ctx, unsigned int win, bool enable) { u32 val = readl(ctx->regs + WINCON(win)); if (enable) val |= WINCONx_ENWIN; else val &= ~WINCONx_ENWIN; writel(val, ctx->regs + WINCON(win)); } static void fimd_enable_shadow_channel_path(struct fimd_context *ctx, unsigned int win, bool enable) { u32 val = readl(ctx->regs + SHADOWCON); if (enable) val |= SHADOWCON_CHx_ENABLE(win); else val &= ~SHADOWCON_CHx_ENABLE(win); writel(val, ctx->regs + SHADOWCON); } static int fimd_clear_channels(struct exynos_drm_crtc *crtc) { struct fimd_context *ctx = crtc->ctx; unsigned int win, ch_enabled = 0; int ret; /* Hardware is in unknown state, so ensure it gets enabled properly */ ret = pm_runtime_resume_and_get(ctx->dev); if (ret < 0) { dev_err(ctx->dev, "failed to enable FIMD device.\n"); return ret; } clk_prepare_enable(ctx->bus_clk); clk_prepare_enable(ctx->lcd_clk); /* Check if any channel is enabled. */ for (win = 0; win < WINDOWS_NR; win++) { u32 val = readl(ctx->regs + WINCON(win)); if (val & WINCONx_ENWIN) { fimd_enable_video_output(ctx, win, false); if (ctx->driver_data->has_shadowcon) fimd_enable_shadow_channel_path(ctx, win, false); ch_enabled = 1; } } /* Wait for vsync, as disable channel takes effect at next vsync */ if (ch_enabled) { ctx->suspended = false; fimd_enable_vblank(ctx->crtc); fimd_wait_for_vblank(ctx->crtc); fimd_disable_vblank(ctx->crtc); ctx->suspended = true; } clk_disable_unprepare(ctx->lcd_clk); clk_disable_unprepare(ctx->bus_clk); pm_runtime_put(ctx->dev); return 0; } static int fimd_atomic_check(struct exynos_drm_crtc *crtc, struct drm_crtc_state *state) { struct drm_display_mode *mode = &state->adjusted_mode; struct fimd_context *ctx = crtc->ctx; unsigned long ideal_clk, lcd_rate; u32 clkdiv; if (mode->clock == 0) { DRM_DEV_ERROR(ctx->dev, "Mode has zero clock value.\n"); return -EINVAL; } ideal_clk = mode->clock * 1000; if (ctx->i80_if) { /* * The frame done interrupt should be occurred prior to the * next TE signal. */ ideal_clk *= 2; } lcd_rate = clk_get_rate(ctx->lcd_clk); if (2 * lcd_rate < ideal_clk) { DRM_DEV_ERROR(ctx->dev, "sclk_fimd clock too low(%lu) for requested pixel clock(%lu)\n", lcd_rate, ideal_clk); return -EINVAL; } /* Find the clock divider value that gets us closest to ideal_clk */ clkdiv = DIV_ROUND_CLOSEST(lcd_rate, ideal_clk); if (clkdiv >= 0x200) { DRM_DEV_ERROR(ctx->dev, "requested pixel clock(%lu) too low\n", ideal_clk); return -EINVAL; } ctx->clkdiv = (clkdiv < 0x100) ? clkdiv : 0xff; return 0; } static void fimd_setup_trigger(struct fimd_context *ctx) { void __iomem *timing_base = ctx->regs + ctx->driver_data->timing_base; u32 trg_type = ctx->driver_data->trg_type; u32 val = readl(timing_base + TRIGCON); val &= ~(TRGMODE_ENABLE); if (trg_type == I80_HW_TRG) { if (ctx->driver_data->has_hw_trigger) val |= HWTRGEN_ENABLE | HWTRGMASK_ENABLE; if (ctx->driver_data->has_trigger_per_te) val |= HWTRIGEN_PER_ENABLE; } else { val |= TRGMODE_ENABLE; } writel(val, timing_base + TRIGCON); } static void fimd_commit(struct exynos_drm_crtc *crtc) { struct fimd_context *ctx = crtc->ctx; struct drm_display_mode *mode = &crtc->base.state->adjusted_mode; const struct fimd_driver_data *driver_data = ctx->driver_data; void __iomem *timing_base = ctx->regs + driver_data->timing_base; u32 val; if (ctx->suspended) return; /* nothing to do if we haven't set the mode yet */ if (mode->htotal == 0 || mode->vtotal == 0) return; if (ctx->i80_if) { val = ctx->i80ifcon | I80IFEN_ENABLE; writel(val, timing_base + I80IFCONFAx(0)); /* disable auto frame rate */ writel(0, timing_base + I80IFCONFBx(0)); /* set video type selection to I80 interface */ if (driver_data->has_vtsel && ctx->sysreg && regmap_update_bits(ctx->sysreg, driver_data->lcdblk_offset, 0x3 << driver_data->lcdblk_vt_shift, 0x1 << driver_data->lcdblk_vt_shift)) { DRM_DEV_ERROR(ctx->dev, "Failed to update sysreg for I80 i/f.\n"); return; } } else { int vsync_len, vbpd, vfpd, hsync_len, hbpd, hfpd; u32 vidcon1; /* setup polarity values */ vidcon1 = ctx->vidcon1; if (mode->flags & DRM_MODE_FLAG_NVSYNC) vidcon1 |= VIDCON1_INV_VSYNC; if (mode->flags & DRM_MODE_FLAG_NHSYNC) vidcon1 |= VIDCON1_INV_HSYNC; writel(vidcon1, ctx->regs + driver_data->timing_base + VIDCON1); /* setup vertical timing values. */ vsync_len = mode->crtc_vsync_end - mode->crtc_vsync_start; vbpd = mode->crtc_vtotal - mode->crtc_vsync_end; vfpd = mode->crtc_vsync_start - mode->crtc_vdisplay; val = VIDTCON0_VBPD(vbpd - 1) | VIDTCON0_VFPD(vfpd - 1) | VIDTCON0_VSPW(vsync_len - 1); writel(val, ctx->regs + driver_data->timing_base + VIDTCON0); /* setup horizontal timing values. */ hsync_len = mode->crtc_hsync_end - mode->crtc_hsync_start; hbpd = mode->crtc_htotal - mode->crtc_hsync_end; hfpd = mode->crtc_hsync_start - mode->crtc_hdisplay; val = VIDTCON1_HBPD(hbpd - 1) | VIDTCON1_HFPD(hfpd - 1) | VIDTCON1_HSPW(hsync_len - 1); writel(val, ctx->regs + driver_data->timing_base + VIDTCON1); } if (driver_data->has_vidoutcon) writel(ctx->vidout_con, timing_base + VIDOUT_CON); /* set bypass selection */ if (ctx->sysreg && regmap_update_bits(ctx->sysreg, driver_data->lcdblk_offset, 0x1 << driver_data->lcdblk_bypass_shift, 0x1 << driver_data->lcdblk_bypass_shift)) { DRM_DEV_ERROR(ctx->dev, "Failed to update sysreg for bypass setting.\n"); return; } /* TODO: When MIC is enabled for display path, the lcdblk_mic_bypass * bit should be cleared. */ if (driver_data->has_mic_bypass && ctx->sysreg && regmap_update_bits(ctx->sysreg, driver_data->lcdblk_offset, 0x1 << driver_data->lcdblk_mic_bypass_shift, 0x1 << driver_data->lcdblk_mic_bypass_shift)) { DRM_DEV_ERROR(ctx->dev, "Failed to update sysreg for bypass mic.\n"); return; } /* setup horizontal and vertical display size. */ val = VIDTCON2_LINEVAL(mode->vdisplay - 1) | VIDTCON2_HOZVAL(mode->hdisplay - 1) | VIDTCON2_LINEVAL_E(mode->vdisplay - 1) | VIDTCON2_HOZVAL_E(mode->hdisplay - 1); writel(val, ctx->regs + driver_data->timing_base + VIDTCON2); fimd_setup_trigger(ctx); /* * fields of register with prefix '_F' would be updated * at vsync(same as dma start) */ val = ctx->vidcon0; val |= VIDCON0_ENVID | VIDCON0_ENVID_F; if (ctx->driver_data->has_clksel) val |= VIDCON0_CLKSEL_LCD; if (ctx->clkdiv > 1) val |= VIDCON0_CLKVAL_F(ctx->clkdiv - 1) | VIDCON0_CLKDIR; writel(val, ctx->regs + VIDCON0); } static void fimd_win_set_bldeq(struct fimd_context *ctx, unsigned int win, unsigned int alpha, unsigned int pixel_alpha) { u32 mask = BLENDEQ_A_FUNC_F(0xf) | BLENDEQ_B_FUNC_F(0xf); u32 val = 0; switch (pixel_alpha) { case DRM_MODE_BLEND_PIXEL_NONE: case DRM_MODE_BLEND_COVERAGE: val |= BLENDEQ_A_FUNC_F(BLENDEQ_ALPHA_A); val |= BLENDEQ_B_FUNC_F(BLENDEQ_ONE_MINUS_ALPHA_A); break; case DRM_MODE_BLEND_PREMULTI: default: if (alpha != DRM_BLEND_ALPHA_OPAQUE) { val |= BLENDEQ_A_FUNC_F(BLENDEQ_ALPHA0); val |= BLENDEQ_B_FUNC_F(BLENDEQ_ONE_MINUS_ALPHA_A); } else { val |= BLENDEQ_A_FUNC_F(BLENDEQ_ONE); val |= BLENDEQ_B_FUNC_F(BLENDEQ_ONE_MINUS_ALPHA_A); } break; } fimd_set_bits(ctx, BLENDEQx(win), mask, val); } static void fimd_win_set_bldmod(struct fimd_context *ctx, unsigned int win, unsigned int alpha, unsigned int pixel_alpha) { u32 win_alpha_l = (alpha >> 8) & 0xf; u32 win_alpha_h = alpha >> 12; u32 val = 0; switch (pixel_alpha) { case DRM_MODE_BLEND_PIXEL_NONE: break; case DRM_MODE_BLEND_COVERAGE: case DRM_MODE_BLEND_PREMULTI: default: val |= WINCON1_ALPHA_SEL; val |= WINCON1_BLD_PIX; val |= WINCON1_ALPHA_MUL; break; } fimd_set_bits(ctx, WINCON(win), WINCONx_BLEND_MODE_MASK, val); /* OSD alpha */ val = VIDISD14C_ALPHA0_R(win_alpha_h) | VIDISD14C_ALPHA0_G(win_alpha_h) | VIDISD14C_ALPHA0_B(win_alpha_h) | VIDISD14C_ALPHA1_R(0x0) | VIDISD14C_ALPHA1_G(0x0) | VIDISD14C_ALPHA1_B(0x0); writel(val, ctx->regs + VIDOSD_C(win)); val = VIDW_ALPHA_R(win_alpha_l) | VIDW_ALPHA_G(win_alpha_l) | VIDW_ALPHA_B(win_alpha_l); writel(val, ctx->regs + VIDWnALPHA0(win)); val = VIDW_ALPHA_R(0x0) | VIDW_ALPHA_G(0x0) | VIDW_ALPHA_B(0x0); writel(val, ctx->regs + VIDWnALPHA1(win)); fimd_set_bits(ctx, BLENDCON, BLENDCON_NEW_MASK, BLENDCON_NEW_8BIT_ALPHA_VALUE); } static void fimd_win_set_pixfmt(struct fimd_context *ctx, unsigned int win, struct drm_framebuffer *fb, int width) { struct exynos_drm_plane *plane = &ctx->planes[win]; struct exynos_drm_plane_state *state = to_exynos_plane_state(plane->base.state); uint32_t pixel_format = fb->format->format; unsigned int alpha = state->base.alpha; u32 val = WINCONx_ENWIN; unsigned int pixel_alpha; if (fb->format->has_alpha) pixel_alpha = state->base.pixel_blend_mode; else pixel_alpha = DRM_MODE_BLEND_PIXEL_NONE; /* * In case of s3c64xx, window 0 doesn't support alpha channel. * So the request format is ARGB8888 then change it to XRGB8888. */ if (ctx->driver_data->has_limited_fmt && !win) { if (pixel_format == DRM_FORMAT_ARGB8888) pixel_format = DRM_FORMAT_XRGB8888; } switch (pixel_format) { case DRM_FORMAT_C8: val |= WINCON0_BPPMODE_8BPP_PALETTE; val |= WINCONx_BURSTLEN_8WORD; val |= WINCONx_BYTSWP; break; case DRM_FORMAT_XRGB1555: case DRM_FORMAT_XBGR1555: val |= WINCON0_BPPMODE_16BPP_1555; val |= WINCONx_HAWSWP; val |= WINCONx_BURSTLEN_16WORD; break; case DRM_FORMAT_RGB565: case DRM_FORMAT_BGR565: val |= WINCON0_BPPMODE_16BPP_565; val |= WINCONx_HAWSWP; val |= WINCONx_BURSTLEN_16WORD; break; case DRM_FORMAT_XRGB8888: case DRM_FORMAT_XBGR8888: val |= WINCON0_BPPMODE_24BPP_888; val |= WINCONx_WSWP; val |= WINCONx_BURSTLEN_16WORD; break; case DRM_FORMAT_ARGB8888: case DRM_FORMAT_ABGR8888: default: val |= WINCON1_BPPMODE_25BPP_A1888; val |= WINCONx_WSWP; val |= WINCONx_BURSTLEN_16WORD; break; } switch (pixel_format) { case DRM_FORMAT_XBGR1555: case DRM_FORMAT_XBGR8888: case DRM_FORMAT_ABGR8888: case DRM_FORMAT_BGR565: writel(WIN_RGB_ORDER_REVERSE, ctx->regs + WIN_RGB_ORDER(win)); break; default: writel(WIN_RGB_ORDER_FORWARD, ctx->regs + WIN_RGB_ORDER(win)); break; } /* * Setting dma-burst to 16Word causes permanent tearing for very small * buffers, e.g. cursor buffer. Burst Mode switching which based on * plane size is not recommended as plane size varies alot towards the * end of the screen and rapid movement causes unstable DMA, but it is * still better to change dma-burst than displaying garbage. */ if (width < MIN_FB_WIDTH_FOR_16WORD_BURST) { val &= ~WINCONx_BURSTLEN_MASK; val |= WINCONx_BURSTLEN_4WORD; } fimd_set_bits(ctx, WINCON(win), ~WINCONx_BLEND_MODE_MASK, val); /* hardware window 0 doesn't support alpha channel. */ if (win != 0) { fimd_win_set_bldmod(ctx, win, alpha, pixel_alpha); fimd_win_set_bldeq(ctx, win, alpha, pixel_alpha); } } static void fimd_win_set_colkey(struct fimd_context *ctx, unsigned int win) { unsigned int keycon0 = 0, keycon1 = 0; keycon0 = ~(WxKEYCON0_KEYBL_EN | WxKEYCON0_KEYEN_F | WxKEYCON0_DIRCON) | WxKEYCON0_COMPKEY(0); keycon1 = WxKEYCON1_COLVAL(0xffffffff); writel(keycon0, ctx->regs + WKEYCON0_BASE(win)); writel(keycon1, ctx->regs + WKEYCON1_BASE(win)); } /** * fimd_shadow_protect_win() - disable updating values from shadow registers at vsync * * @ctx: local driver data * @win: window to protect registers for * @protect: 1 to protect (disable updates) */ static void fimd_shadow_protect_win(struct fimd_context *ctx, unsigned int win, bool protect) { u32 reg, bits, val; /* * SHADOWCON/PRTCON register is used for enabling timing. * * for example, once only width value of a register is set, * if the dma is started then fimd hardware could malfunction so * with protect window setting, the register fields with prefix '_F' * wouldn't be updated at vsync also but updated once unprotect window * is set. */ if (ctx->driver_data->has_shadowcon) { reg = SHADOWCON; bits = SHADOWCON_WINx_PROTECT(win); } else { reg = PRTCON; bits = PRTCON_PROTECT; } val = readl(ctx->regs + reg); if (protect) val |= bits; else val &= ~bits; writel(val, ctx->regs + reg); } static void fimd_atomic_begin(struct exynos_drm_crtc *crtc) { struct fimd_context *ctx = crtc->ctx; int i; if (ctx->suspended) return; for (i = 0; i < WINDOWS_NR; i++) fimd_shadow_protect_win(ctx, i, true); } static void fimd_atomic_flush(struct exynos_drm_crtc *crtc) { struct fimd_context *ctx = crtc->ctx; int i; if (ctx->suspended) return; for (i = 0; i < WINDOWS_NR; i++) fimd_shadow_protect_win(ctx, i, false); exynos_crtc_handle_event(crtc); } static void fimd_update_plane(struct exynos_drm_crtc *crtc, struct exynos_drm_plane *plane) { struct exynos_drm_plane_state *state = to_exynos_plane_state(plane->base.state); struct fimd_context *ctx = crtc->ctx; struct drm_framebuffer *fb = state->base.fb; dma_addr_t dma_addr; unsigned long val, size, offset; unsigned int last_x, last_y, buf_offsize, line_size; unsigned int win = plane->index; unsigned int cpp = fb->format->cpp[0]; unsigned int pitch = fb->pitches[0]; if (ctx->suspended) return; offset = state->src.x * cpp; offset += state->src.y * pitch; /* buffer start address */ dma_addr = exynos_drm_fb_dma_addr(fb, 0) + offset; val = (unsigned long)dma_addr; writel(val, ctx->regs + VIDWx_BUF_START(win, 0)); /* buffer end address */ size = pitch * state->crtc.h; val = (unsigned long)(dma_addr + size); writel(val, ctx->regs + VIDWx_BUF_END(win, 0)); DRM_DEV_DEBUG_KMS(ctx->dev, "start addr = 0x%lx, end addr = 0x%lx, size = 0x%lx\n", (unsigned long)dma_addr, val, size); DRM_DEV_DEBUG_KMS(ctx->dev, "ovl_width = %d, ovl_height = %d\n", state->crtc.w, state->crtc.h); /* buffer size */ buf_offsize = pitch - (state->crtc.w * cpp); line_size = state->crtc.w * cpp; val = VIDW_BUF_SIZE_OFFSET(buf_offsize) | VIDW_BUF_SIZE_PAGEWIDTH(line_size) | VIDW_BUF_SIZE_OFFSET_E(buf_offsize) | VIDW_BUF_SIZE_PAGEWIDTH_E(line_size); writel(val, ctx->regs + VIDWx_BUF_SIZE(win, 0)); /* OSD position */ val = VIDOSDxA_TOPLEFT_X(state->crtc.x) | VIDOSDxA_TOPLEFT_Y(state->crtc.y) | VIDOSDxA_TOPLEFT_X_E(state->crtc.x) | VIDOSDxA_TOPLEFT_Y_E(state->crtc.y); writel(val, ctx->regs + VIDOSD_A(win)); last_x = state->crtc.x + state->crtc.w; if (last_x) last_x--; last_y = state->crtc.y + state->crtc.h; if (last_y) last_y--; val = VIDOSDxB_BOTRIGHT_X(last_x) | VIDOSDxB_BOTRIGHT_Y(last_y) | VIDOSDxB_BOTRIGHT_X_E(last_x) | VIDOSDxB_BOTRIGHT_Y_E(last_y); writel(val, ctx->regs + VIDOSD_B(win)); DRM_DEV_DEBUG_KMS(ctx->dev, "osd pos: tx = %d, ty = %d, bx = %d, by = %d\n", state->crtc.x, state->crtc.y, last_x, last_y); /* OSD size */ if (win != 3 && win != 4) { u32 offset = VIDOSD_D(win); if (win == 0) offset = VIDOSD_C(win); val = state->crtc.w * state->crtc.h; writel(val, ctx->regs + offset); DRM_DEV_DEBUG_KMS(ctx->dev, "osd size = 0x%x\n", (unsigned int)val); } fimd_win_set_pixfmt(ctx, win, fb, state->src.w); /* hardware window 0 doesn't support color key. */ if (win != 0) fimd_win_set_colkey(ctx, win); fimd_enable_video_output(ctx, win, true); if (ctx->driver_data->has_shadowcon) fimd_enable_shadow_channel_path(ctx, win, true); if (ctx->i80_if) atomic_set(&ctx->win_updated, 1); } static void fimd_disable_plane(struct exynos_drm_crtc *crtc, struct exynos_drm_plane *plane) { struct fimd_context *ctx = crtc->ctx; unsigned int win = plane->index; if (ctx->suspended) return; fimd_enable_video_output(ctx, win, false); if (ctx->driver_data->has_shadowcon) fimd_enable_shadow_channel_path(ctx, win, false); } static void fimd_atomic_enable(struct exynos_drm_crtc *crtc) { struct fimd_context *ctx = crtc->ctx; if (!ctx->suspended) return; ctx->suspended = false; if (pm_runtime_resume_and_get(ctx->dev) < 0) { dev_warn(ctx->dev, "failed to enable FIMD device.\n"); return; } /* if vblank was enabled status, enable it again. */ if (test_and_clear_bit(0, &ctx->irq_flags)) fimd_enable_vblank(ctx->crtc); fimd_commit(ctx->crtc); } static void fimd_atomic_disable(struct exynos_drm_crtc *crtc) { struct fimd_context *ctx = crtc->ctx; int i; if (ctx->suspended) return; /* * We need to make sure that all windows are disabled before we * suspend that connector. Otherwise we might try to scan from * a destroyed buffer later. */ for (i = 0; i < WINDOWS_NR; i++) fimd_disable_plane(crtc, &ctx->planes[i]); fimd_enable_vblank(crtc); fimd_wait_for_vblank(crtc); fimd_disable_vblank(crtc); writel(0, ctx->regs + VIDCON0); pm_runtime_put_sync(ctx->dev); ctx->suspended = true; } static void fimd_trigger(struct device *dev) { struct fimd_context *ctx = dev_get_drvdata(dev); const struct fimd_driver_data *driver_data = ctx->driver_data; void *timing_base = ctx->regs + driver_data->timing_base; u32 reg; /* * Skips triggering if in triggering state, because multiple triggering * requests can cause panel reset. */ if (atomic_read(&ctx->triggering)) return; /* Enters triggering mode */ atomic_set(&ctx->triggering, 1); reg = readl(timing_base + TRIGCON); reg |= (TRGMODE_ENABLE | SWTRGCMD_ENABLE); writel(reg, timing_base + TRIGCON); /* * Exits triggering mode if vblank is not enabled yet, because when the * VIDINTCON0 register is not set, it can not exit from triggering mode. */ if (!test_bit(0, &ctx->irq_flags)) atomic_set(&ctx->triggering, 0); } static void fimd_te_handler(struct exynos_drm_crtc *crtc) { struct fimd_context *ctx = crtc->ctx; u32 trg_type = ctx->driver_data->trg_type; /* Checks the crtc is detached already from encoder */ if (!ctx->drm_dev) return; if (trg_type == I80_HW_TRG) goto out; /* * If there is a page flip request, triggers and handles the page flip * event so that current fb can be updated into panel GRAM. */ if (atomic_add_unless(&ctx->win_updated, -1, 0)) fimd_trigger(ctx->dev); out: /* Wakes up vsync event queue */ if (atomic_read(&ctx->wait_vsync_event)) { atomic_set(&ctx->wait_vsync_event, 0); wake_up(&ctx->wait_vsync_queue); } if (test_bit(0, &ctx->irq_flags)) drm_crtc_handle_vblank(&ctx->crtc->base); } static void fimd_dp_clock_enable(struct exynos_drm_clk *clk, bool enable) { struct fimd_context *ctx = container_of(clk, struct fimd_context, dp_clk); u32 val = enable ? DP_MIE_CLK_DP_ENABLE : DP_MIE_CLK_DISABLE; writel(val, ctx->regs + DP_MIE_CLKCON); } static const struct exynos_drm_crtc_ops fimd_crtc_ops = { .atomic_enable = fimd_atomic_enable, .atomic_disable = fimd_atomic_disable, .enable_vblank = fimd_enable_vblank, .disable_vblank = fimd_disable_vblank, .atomic_begin = fimd_atomic_begin, .update_plane = fimd_update_plane, .disable_plane = fimd_disable_plane, .atomic_flush = fimd_atomic_flush, .atomic_check = fimd_atomic_check, .te_handler = fimd_te_handler, }; static irqreturn_t fimd_irq_handler(int irq, void *dev_id) { struct fimd_context *ctx = (struct fimd_context *)dev_id; u32 val, clear_bit; val = readl(ctx->regs + VIDINTCON1); clear_bit = ctx->i80_if ? VIDINTCON1_INT_I80 : VIDINTCON1_INT_FRAME; if (val & clear_bit) writel(clear_bit, ctx->regs + VIDINTCON1); /* check the crtc is detached already from encoder */ if (!ctx->drm_dev) goto out; if (!ctx->i80_if) drm_crtc_handle_vblank(&ctx->crtc->base); if (ctx->i80_if) { /* Exits triggering mode */ atomic_set(&ctx->triggering, 0); } else { /* set wait vsync event to zero and wake up queue. */ if (atomic_read(&ctx->wait_vsync_event)) { atomic_set(&ctx->wait_vsync_event, 0); wake_up(&ctx->wait_vsync_queue); } } out: return IRQ_HANDLED; } static int fimd_bind(struct device *dev, struct device *master, void *data) { struct fimd_context *ctx = dev_get_drvdata(dev); struct drm_device *drm_dev = data; struct exynos_drm_plane *exynos_plane; unsigned int i; int ret; ctx->drm_dev = drm_dev; for (i = 0; i < WINDOWS_NR; i++) { if (ctx->driver_data->has_bgr_support) { ctx->configs[i].pixel_formats = fimd_extended_formats; ctx->configs[i].num_pixel_formats = ARRAY_SIZE(fimd_extended_formats); } else { ctx->configs[i].pixel_formats = fimd_formats; ctx->configs[i].num_pixel_formats = ARRAY_SIZE(fimd_formats); } ctx->configs[i].zpos = i; ctx->configs[i].type = fimd_win_types[i]; ctx->configs[i].capabilities = capabilities[i]; ret = exynos_plane_init(drm_dev, &ctx->planes[i], i, &ctx->configs[i]); if (ret) return ret; } exynos_plane = &ctx->planes[DEFAULT_WIN]; ctx->crtc = exynos_drm_crtc_create(drm_dev, &exynos_plane->base, EXYNOS_DISPLAY_TYPE_LCD, &fimd_crtc_ops, ctx); if (IS_ERR(ctx->crtc)) return PTR_ERR(ctx->crtc); if (ctx->driver_data->has_dp_clk) { ctx->dp_clk.enable = fimd_dp_clock_enable; ctx->crtc->pipe_clk = &ctx->dp_clk; } if (ctx->encoder) exynos_dpi_bind(drm_dev, ctx->encoder); if (is_drm_iommu_supported(drm_dev)) { int ret; ret = fimd_clear_channels(ctx->crtc); if (ret < 0) return ret; } return exynos_drm_register_dma(drm_dev, dev, &ctx->dma_priv); } static void fimd_unbind(struct device *dev, struct device *master, void *data) { struct fimd_context *ctx = dev_get_drvdata(dev); fimd_atomic_disable(ctx->crtc); exynos_drm_unregister_dma(ctx->drm_dev, ctx->dev, &ctx->dma_priv); if (ctx->encoder) exynos_dpi_remove(ctx->encoder); } static const struct component_ops fimd_component_ops = { .bind = fimd_bind, .unbind = fimd_unbind, }; static int fimd_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct fimd_context *ctx; struct device_node *i80_if_timings; int ret; if (!dev->of_node) return -ENODEV; ctx = devm_kzalloc(dev, sizeof(*ctx), GFP_KERNEL); if (!ctx) return -ENOMEM; ctx->dev = dev; ctx->suspended = true; ctx->driver_data = of_device_get_match_data(dev); if (of_property_read_bool(dev->of_node, "samsung,invert-vden")) ctx->vidcon1 |= VIDCON1_INV_VDEN; if (of_property_read_bool(dev->of_node, "samsung,invert-vclk")) ctx->vidcon1 |= VIDCON1_INV_VCLK; i80_if_timings = of_get_child_by_name(dev->of_node, "i80-if-timings"); if (i80_if_timings) { u32 val; ctx->i80_if = true; if (ctx->driver_data->has_vidoutcon) ctx->vidout_con |= VIDOUT_CON_F_I80_LDI0; else ctx->vidcon0 |= VIDCON0_VIDOUT_I80_LDI0; /* * The user manual describes that this "DSI_EN" bit is required * to enable I80 24-bit data interface. */ ctx->vidcon0 |= VIDCON0_DSI_EN; if (of_property_read_u32(i80_if_timings, "cs-setup", &val)) val = 0; ctx->i80ifcon = LCD_CS_SETUP(val); if (of_property_read_u32(i80_if_timings, "wr-setup", &val)) val = 0; ctx->i80ifcon |= LCD_WR_SETUP(val); if (of_property_read_u32(i80_if_timings, "wr-active", &val)) val = 1; ctx->i80ifcon |= LCD_WR_ACTIVE(val); if (of_property_read_u32(i80_if_timings, "wr-hold", &val)) val = 0; ctx->i80ifcon |= LCD_WR_HOLD(val); } of_node_put(i80_if_timings); ctx->sysreg = syscon_regmap_lookup_by_phandle(dev->of_node, "samsung,sysreg"); if (IS_ERR(ctx->sysreg)) { dev_warn(dev, "failed to get system register.\n"); ctx->sysreg = NULL; } ctx->bus_clk = devm_clk_get(dev, "fimd"); if (IS_ERR(ctx->bus_clk)) { dev_err(dev, "failed to get bus clock\n"); return PTR_ERR(ctx->bus_clk); } ctx->lcd_clk = devm_clk_get(dev, "sclk_fimd"); if (IS_ERR(ctx->lcd_clk)) { dev_err(dev, "failed to get lcd clock\n"); return PTR_ERR(ctx->lcd_clk); } ctx->regs = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(ctx->regs)) return PTR_ERR(ctx->regs); ret = platform_get_irq_byname(pdev, ctx->i80_if ? "lcd_sys" : "vsync"); if (ret < 0) return ret; ret = devm_request_irq(dev, ret, fimd_irq_handler, 0, "drm_fimd", ctx); if (ret) { dev_err(dev, "irq request failed.\n"); return ret; } init_waitqueue_head(&ctx->wait_vsync_queue); atomic_set(&ctx->wait_vsync_event, 0); platform_set_drvdata(pdev, ctx); ctx->encoder = exynos_dpi_probe(dev); if (IS_ERR(ctx->encoder)) return PTR_ERR(ctx->encoder); pm_runtime_enable(dev); ret = component_add(dev, &fimd_component_ops); if (ret) goto err_disable_pm_runtime; return ret; err_disable_pm_runtime: pm_runtime_disable(dev); return ret; } static void fimd_remove(struct platform_device *pdev) { pm_runtime_disable(&pdev->dev); component_del(&pdev->dev, &fimd_component_ops); } static int exynos_fimd_suspend(struct device *dev) { struct fimd_context *ctx = dev_get_drvdata(dev); clk_disable_unprepare(ctx->lcd_clk); clk_disable_unprepare(ctx->bus_clk); return 0; } static int exynos_fimd_resume(struct device *dev) { struct fimd_context *ctx = dev_get_drvdata(dev); int ret; ret = clk_prepare_enable(ctx->bus_clk); if (ret < 0) { DRM_DEV_ERROR(dev, "Failed to prepare_enable the bus clk [%d]\n", ret); return ret; } ret = clk_prepare_enable(ctx->lcd_clk); if (ret < 0) { DRM_DEV_ERROR(dev, "Failed to prepare_enable the lcd clk [%d]\n", ret); return ret; } return 0; } static DEFINE_RUNTIME_DEV_PM_OPS(exynos_fimd_pm_ops, exynos_fimd_suspend, exynos_fimd_resume, NULL); struct platform_driver fimd_driver = { .probe = fimd_probe, .remove_new = fimd_remove, .driver = { .name = "exynos4-fb", .pm = pm_ptr(&exynos_fimd_pm_ops), .of_match_table = fimd_driver_dt_match, }, };
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1