Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Chris Wilson | 5216 | 59.65% | 64 | 56.64% |
Matthew Auld | 1504 | 17.20% | 8 | 7.08% |
Abdiel Janulgue | 1243 | 14.21% | 2 | 1.77% |
Maarten Lankhorst | 358 | 4.09% | 8 | 7.08% |
Dave Gordon | 116 | 1.33% | 2 | 1.77% |
Thomas Hellstrom | 100 | 1.14% | 4 | 3.54% |
Michał Winiarski | 68 | 0.78% | 2 | 1.77% |
Ville Syrjälä | 42 | 0.48% | 1 | 0.88% |
Ryan Roberts | 20 | 0.23% | 1 | 0.88% |
Jani Nikula | 18 | 0.21% | 7 | 6.19% |
Andrzej Hajda | 16 | 0.18% | 1 | 0.88% |
Daniele Ceraolo Spurio | 10 | 0.11% | 1 | 0.88% |
Eric Anholt | 9 | 0.10% | 1 | 0.88% |
Lucas De Marchi | 7 | 0.08% | 1 | 0.88% |
Tvrtko A. Ursulin | 4 | 0.05% | 1 | 0.88% |
Christian König | 3 | 0.03% | 2 | 1.77% |
Daniel Vetter | 3 | 0.03% | 1 | 0.88% |
Niranjana Vishwanathapura | 2 | 0.02% | 1 | 0.88% |
Joonas Lahtinen | 2 | 0.02% | 1 | 0.88% |
Liam R. Howlett | 1 | 0.01% | 1 | 0.88% |
Fei Yang | 1 | 0.01% | 1 | 0.88% |
Arunpravin Pannerslvam | 1 | 0.01% | 1 | 0.88% |
Matthew Brost | 1 | 0.01% | 1 | 0.88% |
Total | 8745 | 113 |
/* * SPDX-License-Identifier: MIT * * Copyright © 2016 Intel Corporation */ #include <linux/highmem.h> #include <linux/prime_numbers.h> #include "gem/i915_gem_internal.h" #include "gem/i915_gem_lmem.h" #include "gem/i915_gem_region.h" #include "gem/i915_gem_ttm.h" #include "gem/i915_gem_ttm_move.h" #include "gt/intel_engine_pm.h" #include "gt/intel_gpu_commands.h" #include "gt/intel_gt.h" #include "gt/intel_gt_pm.h" #include "gt/intel_migrate.h" #include "i915_reg.h" #include "i915_ttm_buddy_manager.h" #include "huge_gem_object.h" #include "i915_selftest.h" #include "selftests/i915_random.h" #include "selftests/igt_flush_test.h" #include "selftests/igt_reset.h" #include "selftests/igt_mmap.h" struct tile { unsigned int width; unsigned int height; unsigned int stride; unsigned int size; unsigned int tiling; unsigned int swizzle; }; static u64 swizzle_bit(unsigned int bit, u64 offset) { return (offset & BIT_ULL(bit)) >> (bit - 6); } static u64 tiled_offset(const struct tile *tile, u64 v) { u64 x, y; if (tile->tiling == I915_TILING_NONE) return v; y = div64_u64_rem(v, tile->stride, &x); v = div64_u64_rem(y, tile->height, &y) * tile->stride * tile->height; if (tile->tiling == I915_TILING_X) { v += y * tile->width; v += div64_u64_rem(x, tile->width, &x) << tile->size; v += x; } else if (tile->width == 128) { const unsigned int ytile_span = 16; const unsigned int ytile_height = 512; v += y * ytile_span; v += div64_u64_rem(x, ytile_span, &x) * ytile_height; v += x; } else { const unsigned int ytile_span = 32; const unsigned int ytile_height = 256; v += y * ytile_span; v += div64_u64_rem(x, ytile_span, &x) * ytile_height; v += x; } switch (tile->swizzle) { case I915_BIT_6_SWIZZLE_9: v ^= swizzle_bit(9, v); break; case I915_BIT_6_SWIZZLE_9_10: v ^= swizzle_bit(9, v) ^ swizzle_bit(10, v); break; case I915_BIT_6_SWIZZLE_9_11: v ^= swizzle_bit(9, v) ^ swizzle_bit(11, v); break; case I915_BIT_6_SWIZZLE_9_10_11: v ^= swizzle_bit(9, v) ^ swizzle_bit(10, v) ^ swizzle_bit(11, v); break; } return v; } static int check_partial_mapping(struct drm_i915_gem_object *obj, const struct tile *tile, struct rnd_state *prng) { const unsigned long npages = obj->base.size / PAGE_SIZE; struct drm_i915_private *i915 = to_i915(obj->base.dev); struct i915_gtt_view view; struct i915_vma *vma; unsigned long offset; unsigned long page; u32 __iomem *io; struct page *p; unsigned int n; u32 *cpu; int err; err = i915_gem_object_set_tiling(obj, tile->tiling, tile->stride); if (err) { pr_err("Failed to set tiling mode=%u, stride=%u, err=%d\n", tile->tiling, tile->stride, err); return err; } GEM_BUG_ON(i915_gem_object_get_tiling(obj) != tile->tiling); GEM_BUG_ON(i915_gem_object_get_stride(obj) != tile->stride); i915_gem_object_lock(obj, NULL); err = i915_gem_object_set_to_gtt_domain(obj, true); i915_gem_object_unlock(obj); if (err) { pr_err("Failed to flush to GTT write domain; err=%d\n", err); return err; } page = i915_prandom_u32_max_state(npages, prng); view = compute_partial_view(obj, page, MIN_CHUNK_PAGES); vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE); if (IS_ERR(vma)) { pr_err("Failed to pin partial view: offset=%lu; err=%d\n", page, (int)PTR_ERR(vma)); return PTR_ERR(vma); } n = page - view.partial.offset; GEM_BUG_ON(n >= view.partial.size); io = i915_vma_pin_iomap(vma); i915_vma_unpin(vma); if (IS_ERR(io)) { pr_err("Failed to iomap partial view: offset=%lu; err=%d\n", page, (int)PTR_ERR(io)); err = PTR_ERR(io); goto out; } iowrite32(page, io + n * PAGE_SIZE / sizeof(*io)); i915_vma_unpin_iomap(vma); offset = tiled_offset(tile, page << PAGE_SHIFT); if (offset >= obj->base.size) goto out; intel_gt_flush_ggtt_writes(to_gt(i915)); p = i915_gem_object_get_page(obj, offset >> PAGE_SHIFT); cpu = kmap(p) + offset_in_page(offset); drm_clflush_virt_range(cpu, sizeof(*cpu)); if (*cpu != (u32)page) { pr_err("Partial view for %lu [%u] (offset=%llu, size=%u [%llu, row size %u], fence=%d, tiling=%d, stride=%d) misalignment, expected write to page (%lu + %u [0x%lx]) of 0x%x, found 0x%x\n", page, n, view.partial.offset, view.partial.size, vma->size >> PAGE_SHIFT, tile->tiling ? tile_row_pages(obj) : 0, vma->fence ? vma->fence->id : -1, tile->tiling, tile->stride, offset >> PAGE_SHIFT, (unsigned int)offset_in_page(offset), offset, (u32)page, *cpu); err = -EINVAL; } *cpu = 0; drm_clflush_virt_range(cpu, sizeof(*cpu)); kunmap(p); out: i915_gem_object_lock(obj, NULL); i915_vma_destroy(vma); i915_gem_object_unlock(obj); return err; } static int check_partial_mappings(struct drm_i915_gem_object *obj, const struct tile *tile, unsigned long end_time) { const unsigned int nreal = obj->scratch / PAGE_SIZE; const unsigned long npages = obj->base.size / PAGE_SIZE; struct drm_i915_private *i915 = to_i915(obj->base.dev); struct i915_vma *vma; unsigned long page; int err; err = i915_gem_object_set_tiling(obj, tile->tiling, tile->stride); if (err) { pr_err("Failed to set tiling mode=%u, stride=%u, err=%d\n", tile->tiling, tile->stride, err); return err; } GEM_BUG_ON(i915_gem_object_get_tiling(obj) != tile->tiling); GEM_BUG_ON(i915_gem_object_get_stride(obj) != tile->stride); i915_gem_object_lock(obj, NULL); err = i915_gem_object_set_to_gtt_domain(obj, true); i915_gem_object_unlock(obj); if (err) { pr_err("Failed to flush to GTT write domain; err=%d\n", err); return err; } for_each_prime_number_from(page, 1, npages) { struct i915_gtt_view view = compute_partial_view(obj, page, MIN_CHUNK_PAGES); unsigned long offset; u32 __iomem *io; struct page *p; unsigned int n; u32 *cpu; GEM_BUG_ON(view.partial.size > nreal); cond_resched(); vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE); if (IS_ERR(vma)) { pr_err("Failed to pin partial view: offset=%lu; err=%d\n", page, (int)PTR_ERR(vma)); return PTR_ERR(vma); } n = page - view.partial.offset; GEM_BUG_ON(n >= view.partial.size); io = i915_vma_pin_iomap(vma); i915_vma_unpin(vma); if (IS_ERR(io)) { pr_err("Failed to iomap partial view: offset=%lu; err=%d\n", page, (int)PTR_ERR(io)); return PTR_ERR(io); } iowrite32(page, io + n * PAGE_SIZE / sizeof(*io)); i915_vma_unpin_iomap(vma); offset = tiled_offset(tile, page << PAGE_SHIFT); if (offset >= obj->base.size) continue; intel_gt_flush_ggtt_writes(to_gt(i915)); p = i915_gem_object_get_page(obj, offset >> PAGE_SHIFT); cpu = kmap(p) + offset_in_page(offset); drm_clflush_virt_range(cpu, sizeof(*cpu)); if (*cpu != (u32)page) { pr_err("Partial view for %lu [%u] (offset=%llu, size=%u [%llu, row size %u], fence=%d, tiling=%d, stride=%d) misalignment, expected write to page (%lu + %u [0x%lx]) of 0x%x, found 0x%x\n", page, n, view.partial.offset, view.partial.size, vma->size >> PAGE_SHIFT, tile->tiling ? tile_row_pages(obj) : 0, vma->fence ? vma->fence->id : -1, tile->tiling, tile->stride, offset >> PAGE_SHIFT, (unsigned int)offset_in_page(offset), offset, (u32)page, *cpu); err = -EINVAL; } *cpu = 0; drm_clflush_virt_range(cpu, sizeof(*cpu)); kunmap(p); if (err) return err; i915_gem_object_lock(obj, NULL); i915_vma_destroy(vma); i915_gem_object_unlock(obj); if (igt_timeout(end_time, "%s: timed out after tiling=%d stride=%d\n", __func__, tile->tiling, tile->stride)) return -EINTR; } return 0; } static unsigned int setup_tile_size(struct tile *tile, struct drm_i915_private *i915) { if (GRAPHICS_VER(i915) <= 2) { tile->height = 16; tile->width = 128; tile->size = 11; } else if (tile->tiling == I915_TILING_Y && HAS_128_BYTE_Y_TILING(i915)) { tile->height = 32; tile->width = 128; tile->size = 12; } else { tile->height = 8; tile->width = 512; tile->size = 12; } if (GRAPHICS_VER(i915) < 4) return 8192 / tile->width; else if (GRAPHICS_VER(i915) < 7) return 128 * I965_FENCE_MAX_PITCH_VAL / tile->width; else return 128 * GEN7_FENCE_MAX_PITCH_VAL / tile->width; } static int igt_partial_tiling(void *arg) { const unsigned int nreal = 1 << 12; /* largest tile row x2 */ struct drm_i915_private *i915 = arg; struct drm_i915_gem_object *obj; intel_wakeref_t wakeref; int tiling; int err; if (!i915_ggtt_has_aperture(to_gt(i915)->ggtt)) return 0; /* We want to check the page mapping and fencing of a large object * mmapped through the GTT. The object we create is larger than can * possibly be mmaped as a whole, and so we must use partial GGTT vma. * We then check that a write through each partial GGTT vma ends up * in the right set of pages within the object, and with the expected * tiling, which we verify by manual swizzling. */ obj = huge_gem_object(i915, nreal << PAGE_SHIFT, (1 + next_prime_number(to_gt(i915)->ggtt->vm.total >> PAGE_SHIFT)) << PAGE_SHIFT); if (IS_ERR(obj)) return PTR_ERR(obj); err = i915_gem_object_pin_pages_unlocked(obj); if (err) { pr_err("Failed to allocate %u pages (%lu total), err=%d\n", nreal, obj->base.size / PAGE_SIZE, err); goto out; } wakeref = intel_runtime_pm_get(&i915->runtime_pm); if (1) { IGT_TIMEOUT(end); struct tile tile; tile.height = 1; tile.width = 1; tile.size = 0; tile.stride = 0; tile.swizzle = I915_BIT_6_SWIZZLE_NONE; tile.tiling = I915_TILING_NONE; err = check_partial_mappings(obj, &tile, end); if (err && err != -EINTR) goto out_unlock; } for (tiling = I915_TILING_X; tiling <= I915_TILING_Y; tiling++) { IGT_TIMEOUT(end); unsigned int max_pitch; unsigned int pitch; struct tile tile; if (i915->gem_quirks & GEM_QUIRK_PIN_SWIZZLED_PAGES) /* * The swizzling pattern is actually unknown as it * varies based on physical address of each page. * See i915_gem_detect_bit_6_swizzle(). */ break; tile.tiling = tiling; switch (tiling) { case I915_TILING_X: tile.swizzle = to_gt(i915)->ggtt->bit_6_swizzle_x; break; case I915_TILING_Y: tile.swizzle = to_gt(i915)->ggtt->bit_6_swizzle_y; break; } GEM_BUG_ON(tile.swizzle == I915_BIT_6_SWIZZLE_UNKNOWN); if (tile.swizzle == I915_BIT_6_SWIZZLE_9_17 || tile.swizzle == I915_BIT_6_SWIZZLE_9_10_17) continue; max_pitch = setup_tile_size(&tile, i915); for (pitch = max_pitch; pitch; pitch >>= 1) { tile.stride = tile.width * pitch; err = check_partial_mappings(obj, &tile, end); if (err == -EINTR) goto next_tiling; if (err) goto out_unlock; if (pitch > 2 && GRAPHICS_VER(i915) >= 4) { tile.stride = tile.width * (pitch - 1); err = check_partial_mappings(obj, &tile, end); if (err == -EINTR) goto next_tiling; if (err) goto out_unlock; } if (pitch < max_pitch && GRAPHICS_VER(i915) >= 4) { tile.stride = tile.width * (pitch + 1); err = check_partial_mappings(obj, &tile, end); if (err == -EINTR) goto next_tiling; if (err) goto out_unlock; } } if (GRAPHICS_VER(i915) >= 4) { for_each_prime_number(pitch, max_pitch) { tile.stride = tile.width * pitch; err = check_partial_mappings(obj, &tile, end); if (err == -EINTR) goto next_tiling; if (err) goto out_unlock; } } next_tiling: ; } out_unlock: intel_runtime_pm_put(&i915->runtime_pm, wakeref); i915_gem_object_unpin_pages(obj); out: i915_gem_object_put(obj); return err; } static int igt_smoke_tiling(void *arg) { const unsigned int nreal = 1 << 12; /* largest tile row x2 */ struct drm_i915_private *i915 = arg; struct drm_i915_gem_object *obj; intel_wakeref_t wakeref; I915_RND_STATE(prng); unsigned long count; IGT_TIMEOUT(end); int err; if (!i915_ggtt_has_aperture(to_gt(i915)->ggtt)) return 0; /* * igt_partial_tiling() does an exhastive check of partial tiling * chunking, but will undoubtably run out of time. Here, we do a * randomised search and hope over many runs of 1s with different * seeds we will do a thorough check. * * Remember to look at the st_seed if we see a flip-flop in BAT! */ if (i915->gem_quirks & GEM_QUIRK_PIN_SWIZZLED_PAGES) return 0; obj = huge_gem_object(i915, nreal << PAGE_SHIFT, (1 + next_prime_number(to_gt(i915)->ggtt->vm.total >> PAGE_SHIFT)) << PAGE_SHIFT); if (IS_ERR(obj)) return PTR_ERR(obj); err = i915_gem_object_pin_pages_unlocked(obj); if (err) { pr_err("Failed to allocate %u pages (%lu total), err=%d\n", nreal, obj->base.size / PAGE_SIZE, err); goto out; } wakeref = intel_runtime_pm_get(&i915->runtime_pm); count = 0; do { struct tile tile; tile.tiling = i915_prandom_u32_max_state(I915_TILING_Y + 1, &prng); switch (tile.tiling) { case I915_TILING_NONE: tile.height = 1; tile.width = 1; tile.size = 0; tile.stride = 0; tile.swizzle = I915_BIT_6_SWIZZLE_NONE; break; case I915_TILING_X: tile.swizzle = to_gt(i915)->ggtt->bit_6_swizzle_x; break; case I915_TILING_Y: tile.swizzle = to_gt(i915)->ggtt->bit_6_swizzle_y; break; } if (tile.swizzle == I915_BIT_6_SWIZZLE_9_17 || tile.swizzle == I915_BIT_6_SWIZZLE_9_10_17) continue; if (tile.tiling != I915_TILING_NONE) { unsigned int max_pitch = setup_tile_size(&tile, i915); tile.stride = i915_prandom_u32_max_state(max_pitch, &prng); tile.stride = (1 + tile.stride) * tile.width; if (GRAPHICS_VER(i915) < 4) tile.stride = rounddown_pow_of_two(tile.stride); } err = check_partial_mapping(obj, &tile, &prng); if (err) break; count++; } while (!__igt_timeout(end, NULL)); pr_info("%s: Completed %lu trials\n", __func__, count); intel_runtime_pm_put(&i915->runtime_pm, wakeref); i915_gem_object_unpin_pages(obj); out: i915_gem_object_put(obj); return err; } static int make_obj_busy(struct drm_i915_gem_object *obj) { struct drm_i915_private *i915 = to_i915(obj->base.dev); struct intel_engine_cs *engine; for_each_uabi_engine(engine, i915) { struct i915_request *rq; struct i915_vma *vma; struct i915_gem_ww_ctx ww; int err; vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL); if (IS_ERR(vma)) return PTR_ERR(vma); i915_gem_ww_ctx_init(&ww, false); retry: err = i915_gem_object_lock(obj, &ww); if (!err) err = i915_vma_pin_ww(vma, &ww, 0, 0, PIN_USER); if (err) goto err; rq = intel_engine_create_kernel_request(engine); if (IS_ERR(rq)) { err = PTR_ERR(rq); goto err_unpin; } err = i915_vma_move_to_active(vma, rq, EXEC_OBJECT_WRITE); i915_request_add(rq); err_unpin: i915_vma_unpin(vma); err: if (err == -EDEADLK) { err = i915_gem_ww_ctx_backoff(&ww); if (!err) goto retry; } i915_gem_ww_ctx_fini(&ww); if (err) return err; } i915_gem_object_put(obj); /* leave it only alive via its active ref */ return 0; } static enum i915_mmap_type default_mapping(struct drm_i915_private *i915) { if (HAS_LMEM(i915)) return I915_MMAP_TYPE_FIXED; return I915_MMAP_TYPE_GTT; } static struct drm_i915_gem_object * create_sys_or_internal(struct drm_i915_private *i915, unsigned long size) { if (HAS_LMEM(i915)) { struct intel_memory_region *sys_region = i915->mm.regions[INTEL_REGION_SMEM]; return __i915_gem_object_create_user(i915, size, &sys_region, 1); } return i915_gem_object_create_internal(i915, size); } static bool assert_mmap_offset(struct drm_i915_private *i915, unsigned long size, int expected) { struct drm_i915_gem_object *obj; u64 offset; int ret; obj = create_sys_or_internal(i915, size); if (IS_ERR(obj)) return expected && expected == PTR_ERR(obj); ret = __assign_mmap_offset(obj, default_mapping(i915), &offset, NULL); i915_gem_object_put(obj); return ret == expected; } static void disable_retire_worker(struct drm_i915_private *i915) { i915_gem_driver_unregister__shrinker(i915); intel_gt_pm_get_untracked(to_gt(i915)); cancel_delayed_work_sync(&to_gt(i915)->requests.retire_work); } static void restore_retire_worker(struct drm_i915_private *i915) { igt_flush_test(i915); intel_gt_pm_put_untracked(to_gt(i915)); i915_gem_driver_register__shrinker(i915); } static void mmap_offset_lock(struct drm_i915_private *i915) __acquires(&i915->drm.vma_offset_manager->vm_lock) { write_lock(&i915->drm.vma_offset_manager->vm_lock); } static void mmap_offset_unlock(struct drm_i915_private *i915) __releases(&i915->drm.vma_offset_manager->vm_lock) { write_unlock(&i915->drm.vma_offset_manager->vm_lock); } static int igt_mmap_offset_exhaustion(void *arg) { struct drm_i915_private *i915 = arg; struct drm_mm *mm = &i915->drm.vma_offset_manager->vm_addr_space_mm; struct drm_i915_gem_object *obj; struct drm_mm_node *hole, *next; int loop, err = 0; u64 offset; int enospc = HAS_LMEM(i915) ? -ENXIO : -ENOSPC; /* Disable background reaper */ disable_retire_worker(i915); GEM_BUG_ON(!to_gt(i915)->awake); intel_gt_retire_requests(to_gt(i915)); i915_gem_drain_freed_objects(i915); /* Trim the device mmap space to only a page */ mmap_offset_lock(i915); loop = 1; /* PAGE_SIZE units */ list_for_each_entry_safe(hole, next, &mm->hole_stack, hole_stack) { struct drm_mm_node *resv; resv = kzalloc(sizeof(*resv), GFP_NOWAIT); if (!resv) { err = -ENOMEM; goto out_park; } resv->start = drm_mm_hole_node_start(hole) + loop; resv->size = hole->hole_size - loop; resv->color = -1ul; loop = 0; if (!resv->size) { kfree(resv); continue; } pr_debug("Reserving hole [%llx + %llx]\n", resv->start, resv->size); err = drm_mm_reserve_node(mm, resv); if (err) { pr_err("Failed to trim VMA manager, err=%d\n", err); kfree(resv); goto out_park; } } GEM_BUG_ON(!list_is_singular(&mm->hole_stack)); mmap_offset_unlock(i915); /* Just fits! */ if (!assert_mmap_offset(i915, PAGE_SIZE, 0)) { pr_err("Unable to insert object into single page hole\n"); err = -EINVAL; goto out; } /* Too large */ if (!assert_mmap_offset(i915, 2 * PAGE_SIZE, enospc)) { pr_err("Unexpectedly succeeded in inserting too large object into single page hole\n"); err = -EINVAL; goto out; } /* Fill the hole, further allocation attempts should then fail */ obj = create_sys_or_internal(i915, PAGE_SIZE); if (IS_ERR(obj)) { err = PTR_ERR(obj); pr_err("Unable to create object for reclaimed hole\n"); goto out; } err = __assign_mmap_offset(obj, default_mapping(i915), &offset, NULL); if (err) { pr_err("Unable to insert object into reclaimed hole\n"); goto err_obj; } if (!assert_mmap_offset(i915, PAGE_SIZE, enospc)) { pr_err("Unexpectedly succeeded in inserting object into no holes!\n"); err = -EINVAL; goto err_obj; } i915_gem_object_put(obj); /* Now fill with busy dead objects that we expect to reap */ for (loop = 0; loop < 3; loop++) { if (intel_gt_is_wedged(to_gt(i915))) break; obj = i915_gem_object_create_internal(i915, PAGE_SIZE); if (IS_ERR(obj)) { err = PTR_ERR(obj); goto out; } err = make_obj_busy(obj); if (err) { pr_err("[loop %d] Failed to busy the object\n", loop); goto err_obj; } } out: mmap_offset_lock(i915); out_park: drm_mm_for_each_node_safe(hole, next, mm) { if (hole->color != -1ul) continue; drm_mm_remove_node(hole); kfree(hole); } mmap_offset_unlock(i915); restore_retire_worker(i915); return err; err_obj: i915_gem_object_put(obj); goto out; } static int gtt_set(struct drm_i915_gem_object *obj) { intel_wakeref_t wakeref; struct i915_vma *vma; void __iomem *map; int err = 0; vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, PIN_MAPPABLE); if (IS_ERR(vma)) return PTR_ERR(vma); wakeref = intel_gt_pm_get(vma->vm->gt); map = i915_vma_pin_iomap(vma); i915_vma_unpin(vma); if (IS_ERR(map)) { err = PTR_ERR(map); goto out; } memset_io(map, POISON_INUSE, obj->base.size); i915_vma_unpin_iomap(vma); out: intel_gt_pm_put(vma->vm->gt, wakeref); return err; } static int gtt_check(struct drm_i915_gem_object *obj) { intel_wakeref_t wakeref; struct i915_vma *vma; void __iomem *map; int err = 0; vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, PIN_MAPPABLE); if (IS_ERR(vma)) return PTR_ERR(vma); wakeref = intel_gt_pm_get(vma->vm->gt); map = i915_vma_pin_iomap(vma); i915_vma_unpin(vma); if (IS_ERR(map)) { err = PTR_ERR(map); goto out; } if (memchr_inv((void __force *)map, POISON_FREE, obj->base.size)) { pr_err("%s: Write via mmap did not land in backing store (GTT)\n", obj->mm.region->name); err = -EINVAL; } i915_vma_unpin_iomap(vma); out: intel_gt_pm_put(vma->vm->gt, wakeref); return err; } static int wc_set(struct drm_i915_gem_object *obj) { void *vaddr; vaddr = i915_gem_object_pin_map_unlocked(obj, I915_MAP_WC); if (IS_ERR(vaddr)) return PTR_ERR(vaddr); memset(vaddr, POISON_INUSE, obj->base.size); i915_gem_object_flush_map(obj); i915_gem_object_unpin_map(obj); return 0; } static int wc_check(struct drm_i915_gem_object *obj) { void *vaddr; int err = 0; vaddr = i915_gem_object_pin_map_unlocked(obj, I915_MAP_WC); if (IS_ERR(vaddr)) return PTR_ERR(vaddr); if (memchr_inv(vaddr, POISON_FREE, obj->base.size)) { pr_err("%s: Write via mmap did not land in backing store (WC)\n", obj->mm.region->name); err = -EINVAL; } i915_gem_object_unpin_map(obj); return err; } static bool can_mmap(struct drm_i915_gem_object *obj, enum i915_mmap_type type) { struct drm_i915_private *i915 = to_i915(obj->base.dev); bool no_map; if (obj->ops->mmap_offset) return type == I915_MMAP_TYPE_FIXED; else if (type == I915_MMAP_TYPE_FIXED) return false; if (type == I915_MMAP_TYPE_GTT && !i915_ggtt_has_aperture(to_gt(i915)->ggtt)) return false; i915_gem_object_lock(obj, NULL); no_map = (type != I915_MMAP_TYPE_GTT && !i915_gem_object_has_struct_page(obj) && !i915_gem_object_has_iomem(obj)); i915_gem_object_unlock(obj); return !no_map; } #define expand32(x) (((x) << 0) | ((x) << 8) | ((x) << 16) | ((x) << 24)) static int __igt_mmap(struct drm_i915_private *i915, struct drm_i915_gem_object *obj, enum i915_mmap_type type) { struct vm_area_struct *area; unsigned long addr; int err, i; u64 offset; if (!can_mmap(obj, type)) return 0; err = wc_set(obj); if (err == -ENXIO) err = gtt_set(obj); if (err) return err; err = __assign_mmap_offset(obj, type, &offset, NULL); if (err) return err; addr = igt_mmap_offset(i915, offset, obj->base.size, PROT_WRITE, MAP_SHARED); if (IS_ERR_VALUE(addr)) return addr; pr_debug("igt_mmap(%s, %d) @ %lx\n", obj->mm.region->name, type, addr); mmap_read_lock(current->mm); area = vma_lookup(current->mm, addr); mmap_read_unlock(current->mm); if (!area) { pr_err("%s: Did not create a vm_area_struct for the mmap\n", obj->mm.region->name); err = -EINVAL; goto out_unmap; } for (i = 0; i < obj->base.size / sizeof(u32); i++) { u32 __user *ux = u64_to_user_ptr((u64)(addr + i * sizeof(*ux))); u32 x; if (get_user(x, ux)) { pr_err("%s: Unable to read from mmap, offset:%zd\n", obj->mm.region->name, i * sizeof(x)); err = -EFAULT; goto out_unmap; } if (x != expand32(POISON_INUSE)) { pr_err("%s: Read incorrect value from mmap, offset:%zd, found:%x, expected:%x\n", obj->mm.region->name, i * sizeof(x), x, expand32(POISON_INUSE)); err = -EINVAL; goto out_unmap; } x = expand32(POISON_FREE); if (put_user(x, ux)) { pr_err("%s: Unable to write to mmap, offset:%zd\n", obj->mm.region->name, i * sizeof(x)); err = -EFAULT; goto out_unmap; } } if (type == I915_MMAP_TYPE_GTT) intel_gt_flush_ggtt_writes(to_gt(i915)); err = wc_check(obj); if (err == -ENXIO) err = gtt_check(obj); out_unmap: vm_munmap(addr, obj->base.size); return err; } static int igt_mmap(void *arg) { struct drm_i915_private *i915 = arg; struct intel_memory_region *mr; enum intel_region_id id; for_each_memory_region(mr, i915, id) { unsigned long sizes[] = { PAGE_SIZE, mr->min_page_size, SZ_4M, }; int i; if (mr->private) continue; for (i = 0; i < ARRAY_SIZE(sizes); i++) { struct drm_i915_gem_object *obj; int err; obj = __i915_gem_object_create_user(i915, sizes[i], &mr, 1); if (obj == ERR_PTR(-ENODEV)) continue; if (IS_ERR(obj)) return PTR_ERR(obj); err = __igt_mmap(i915, obj, I915_MMAP_TYPE_GTT); if (err == 0) err = __igt_mmap(i915, obj, I915_MMAP_TYPE_WC); if (err == 0) err = __igt_mmap(i915, obj, I915_MMAP_TYPE_FIXED); i915_gem_object_put(obj); if (err) return err; } } return 0; } static void igt_close_objects(struct drm_i915_private *i915, struct list_head *objects) { struct drm_i915_gem_object *obj, *on; list_for_each_entry_safe(obj, on, objects, st_link) { i915_gem_object_lock(obj, NULL); if (i915_gem_object_has_pinned_pages(obj)) i915_gem_object_unpin_pages(obj); /* No polluting the memory region between tests */ __i915_gem_object_put_pages(obj); i915_gem_object_unlock(obj); list_del(&obj->st_link); i915_gem_object_put(obj); } cond_resched(); i915_gem_drain_freed_objects(i915); } static void igt_make_evictable(struct list_head *objects) { struct drm_i915_gem_object *obj; list_for_each_entry(obj, objects, st_link) { i915_gem_object_lock(obj, NULL); if (i915_gem_object_has_pinned_pages(obj)) i915_gem_object_unpin_pages(obj); i915_gem_object_unlock(obj); } cond_resched(); } static int igt_fill_mappable(struct intel_memory_region *mr, struct list_head *objects) { u64 size, total; int err; total = 0; size = resource_size(&mr->io); do { struct drm_i915_gem_object *obj; obj = i915_gem_object_create_region(mr, size, 0, 0); if (IS_ERR(obj)) { err = PTR_ERR(obj); goto err_close; } list_add(&obj->st_link, objects); err = i915_gem_object_pin_pages_unlocked(obj); if (err) { if (err != -ENXIO && err != -ENOMEM) goto err_close; if (size == mr->min_page_size) { err = 0; break; } size >>= 1; continue; } total += obj->base.size; } while (1); pr_info("%s filled=%lluMiB\n", __func__, total >> 20); return 0; err_close: igt_close_objects(mr->i915, objects); return err; } static int ___igt_mmap_migrate(struct drm_i915_private *i915, struct drm_i915_gem_object *obj, unsigned long addr, bool unfaultable) { struct vm_area_struct *area; int err = 0, i; pr_info("igt_mmap(%s, %d) @ %lx\n", obj->mm.region->name, I915_MMAP_TYPE_FIXED, addr); mmap_read_lock(current->mm); area = vma_lookup(current->mm, addr); mmap_read_unlock(current->mm); if (!area) { pr_err("%s: Did not create a vm_area_struct for the mmap\n", obj->mm.region->name); err = -EINVAL; goto out_unmap; } for (i = 0; i < obj->base.size / sizeof(u32); i++) { u32 __user *ux = u64_to_user_ptr((u64)(addr + i * sizeof(*ux))); u32 x; if (get_user(x, ux)) { err = -EFAULT; if (!unfaultable) { pr_err("%s: Unable to read from mmap, offset:%zd\n", obj->mm.region->name, i * sizeof(x)); goto out_unmap; } continue; } if (unfaultable) { pr_err("%s: Faulted unmappable memory\n", obj->mm.region->name); err = -EINVAL; goto out_unmap; } if (x != expand32(POISON_INUSE)) { pr_err("%s: Read incorrect value from mmap, offset:%zd, found:%x, expected:%x\n", obj->mm.region->name, i * sizeof(x), x, expand32(POISON_INUSE)); err = -EINVAL; goto out_unmap; } x = expand32(POISON_FREE); if (put_user(x, ux)) { pr_err("%s: Unable to write to mmap, offset:%zd\n", obj->mm.region->name, i * sizeof(x)); err = -EFAULT; goto out_unmap; } } if (unfaultable) { if (err == -EFAULT) err = 0; } else { obj->flags &= ~I915_BO_ALLOC_GPU_ONLY; err = wc_check(obj); } out_unmap: vm_munmap(addr, obj->base.size); return err; } #define IGT_MMAP_MIGRATE_TOPDOWN (1 << 0) #define IGT_MMAP_MIGRATE_FILL (1 << 1) #define IGT_MMAP_MIGRATE_EVICTABLE (1 << 2) #define IGT_MMAP_MIGRATE_UNFAULTABLE (1 << 3) #define IGT_MMAP_MIGRATE_FAIL_GPU (1 << 4) static int __igt_mmap_migrate(struct intel_memory_region **placements, int n_placements, struct intel_memory_region *expected_mr, unsigned int flags) { struct drm_i915_private *i915 = placements[0]->i915; struct drm_i915_gem_object *obj; struct i915_request *rq = NULL; unsigned long addr; LIST_HEAD(objects); u64 offset; int err; obj = __i915_gem_object_create_user(i915, PAGE_SIZE, placements, n_placements); if (IS_ERR(obj)) return PTR_ERR(obj); if (flags & IGT_MMAP_MIGRATE_TOPDOWN) obj->flags |= I915_BO_ALLOC_GPU_ONLY; err = __assign_mmap_offset(obj, I915_MMAP_TYPE_FIXED, &offset, NULL); if (err) goto out_put; /* * This will eventually create a GEM context, due to opening dummy drm * file, which needs a tiny amount of mappable device memory for the top * level paging structures(and perhaps scratch), so make sure we * allocate early, to avoid tears. */ addr = igt_mmap_offset(i915, offset, obj->base.size, PROT_WRITE, MAP_SHARED); if (IS_ERR_VALUE(addr)) { err = addr; goto out_put; } if (flags & IGT_MMAP_MIGRATE_FILL) { err = igt_fill_mappable(placements[0], &objects); if (err) goto out_put; } err = i915_gem_object_lock(obj, NULL); if (err) goto out_put; err = i915_gem_object_pin_pages(obj); if (err) { i915_gem_object_unlock(obj); goto out_put; } err = intel_context_migrate_clear(to_gt(i915)->migrate.context, NULL, obj->mm.pages->sgl, obj->pat_index, i915_gem_object_is_lmem(obj), expand32(POISON_INUSE), &rq); i915_gem_object_unpin_pages(obj); if (rq) { err = dma_resv_reserve_fences(obj->base.resv, 1); if (!err) dma_resv_add_fence(obj->base.resv, &rq->fence, DMA_RESV_USAGE_KERNEL); i915_request_put(rq); } i915_gem_object_unlock(obj); if (err) goto out_put; if (flags & IGT_MMAP_MIGRATE_EVICTABLE) igt_make_evictable(&objects); if (flags & IGT_MMAP_MIGRATE_FAIL_GPU) { err = i915_gem_object_lock(obj, NULL); if (err) goto out_put; /* * Ensure we only simulate the gpu failuire when faulting the * pages. */ err = i915_gem_object_wait_moving_fence(obj, true); i915_gem_object_unlock(obj); if (err) goto out_put; i915_ttm_migrate_set_failure_modes(true, false); } err = ___igt_mmap_migrate(i915, obj, addr, flags & IGT_MMAP_MIGRATE_UNFAULTABLE); if (!err && obj->mm.region != expected_mr) { pr_err("%s region mismatch %s\n", __func__, expected_mr->name); err = -EINVAL; } if (flags & IGT_MMAP_MIGRATE_FAIL_GPU) { struct intel_gt *gt; unsigned int id; i915_ttm_migrate_set_failure_modes(false, false); for_each_gt(gt, i915, id) { intel_wakeref_t wakeref; bool wedged; mutex_lock(>->reset.mutex); wedged = test_bit(I915_WEDGED, >->reset.flags); mutex_unlock(>->reset.mutex); if (!wedged) { pr_err("gt(%u) not wedged\n", id); err = -EINVAL; continue; } wakeref = intel_runtime_pm_get(gt->uncore->rpm); igt_global_reset_lock(gt); intel_gt_reset(gt, ALL_ENGINES, NULL); igt_global_reset_unlock(gt); intel_runtime_pm_put(gt->uncore->rpm, wakeref); } if (!i915_gem_object_has_unknown_state(obj)) { pr_err("object missing unknown_state\n"); err = -EINVAL; } } out_put: i915_gem_object_put(obj); igt_close_objects(i915, &objects); return err; } static int igt_mmap_migrate(void *arg) { struct drm_i915_private *i915 = arg; struct intel_memory_region *system = i915->mm.regions[INTEL_REGION_SMEM]; struct intel_memory_region *mr; enum intel_region_id id; for_each_memory_region(mr, i915, id) { struct intel_memory_region *mixed[] = { mr, system }; struct intel_memory_region *single[] = { mr }; struct ttm_resource_manager *man = mr->region_private; struct resource saved_io; int err; if (mr->private) continue; if (!resource_size(&mr->io)) continue; /* * For testing purposes let's force small BAR, if not already * present. */ saved_io = mr->io; if (resource_size(&mr->io) == mr->total) { resource_size_t io_size = resource_size(&mr->io); io_size = rounddown_pow_of_two(io_size >> 1); if (io_size < PAGE_SIZE) continue; mr->io = DEFINE_RES_MEM(mr->io.start, io_size); i915_ttm_buddy_man_force_visible_size(man, io_size >> PAGE_SHIFT); } /* * Allocate in the mappable portion, should be no suprises here. */ err = __igt_mmap_migrate(mixed, ARRAY_SIZE(mixed), mr, 0); if (err) goto out_io_size; /* * Allocate in the non-mappable portion, but force migrating to * the mappable portion on fault (LMEM -> LMEM) */ err = __igt_mmap_migrate(single, ARRAY_SIZE(single), mr, IGT_MMAP_MIGRATE_TOPDOWN | IGT_MMAP_MIGRATE_FILL | IGT_MMAP_MIGRATE_EVICTABLE); if (err) goto out_io_size; /* * Allocate in the non-mappable portion, but force spilling into * system memory on fault (LMEM -> SMEM) */ err = __igt_mmap_migrate(mixed, ARRAY_SIZE(mixed), system, IGT_MMAP_MIGRATE_TOPDOWN | IGT_MMAP_MIGRATE_FILL); if (err) goto out_io_size; /* * Allocate in the non-mappable portion, but since the mappable * portion is already full, and we can't spill to system memory, * then we should expect the fault to fail. */ err = __igt_mmap_migrate(single, ARRAY_SIZE(single), mr, IGT_MMAP_MIGRATE_TOPDOWN | IGT_MMAP_MIGRATE_FILL | IGT_MMAP_MIGRATE_UNFAULTABLE); if (err) goto out_io_size; /* * Allocate in the non-mappable portion, but force migrating to * the mappable portion on fault (LMEM -> LMEM). We then also * simulate a gpu error when moving the pages when faulting the * pages, which should result in wedging the gpu and returning * SIGBUS in the fault handler, since we can't fallback to * memcpy. */ err = __igt_mmap_migrate(single, ARRAY_SIZE(single), mr, IGT_MMAP_MIGRATE_TOPDOWN | IGT_MMAP_MIGRATE_FILL | IGT_MMAP_MIGRATE_EVICTABLE | IGT_MMAP_MIGRATE_FAIL_GPU | IGT_MMAP_MIGRATE_UNFAULTABLE); out_io_size: mr->io = saved_io; i915_ttm_buddy_man_force_visible_size(man, resource_size(&mr->io) >> PAGE_SHIFT); if (err) return err; } return 0; } static const char *repr_mmap_type(enum i915_mmap_type type) { switch (type) { case I915_MMAP_TYPE_GTT: return "gtt"; case I915_MMAP_TYPE_WB: return "wb"; case I915_MMAP_TYPE_WC: return "wc"; case I915_MMAP_TYPE_UC: return "uc"; case I915_MMAP_TYPE_FIXED: return "fixed"; default: return "unknown"; } } static bool can_access(struct drm_i915_gem_object *obj) { bool access; i915_gem_object_lock(obj, NULL); access = i915_gem_object_has_struct_page(obj) || i915_gem_object_has_iomem(obj); i915_gem_object_unlock(obj); return access; } static int __igt_mmap_access(struct drm_i915_private *i915, struct drm_i915_gem_object *obj, enum i915_mmap_type type) { unsigned long __user *ptr; unsigned long A, B; unsigned long x, y; unsigned long addr; int err; u64 offset; memset(&A, 0xAA, sizeof(A)); memset(&B, 0xBB, sizeof(B)); if (!can_mmap(obj, type) || !can_access(obj)) return 0; err = __assign_mmap_offset(obj, type, &offset, NULL); if (err) return err; addr = igt_mmap_offset(i915, offset, obj->base.size, PROT_WRITE, MAP_SHARED); if (IS_ERR_VALUE(addr)) return addr; ptr = (unsigned long __user *)addr; err = __put_user(A, ptr); if (err) { pr_err("%s(%s): failed to write into user mmap\n", obj->mm.region->name, repr_mmap_type(type)); goto out_unmap; } intel_gt_flush_ggtt_writes(to_gt(i915)); err = access_process_vm(current, addr, &x, sizeof(x), 0); if (err != sizeof(x)) { pr_err("%s(%s): access_process_vm() read failed\n", obj->mm.region->name, repr_mmap_type(type)); goto out_unmap; } err = access_process_vm(current, addr, &B, sizeof(B), FOLL_WRITE); if (err != sizeof(B)) { pr_err("%s(%s): access_process_vm() write failed\n", obj->mm.region->name, repr_mmap_type(type)); goto out_unmap; } intel_gt_flush_ggtt_writes(to_gt(i915)); err = __get_user(y, ptr); if (err) { pr_err("%s(%s): failed to read from user mmap\n", obj->mm.region->name, repr_mmap_type(type)); goto out_unmap; } if (x != A || y != B) { pr_err("%s(%s): failed to read/write values, found (%lx, %lx)\n", obj->mm.region->name, repr_mmap_type(type), x, y); err = -EINVAL; goto out_unmap; } out_unmap: vm_munmap(addr, obj->base.size); return err; } static int igt_mmap_access(void *arg) { struct drm_i915_private *i915 = arg; struct intel_memory_region *mr; enum intel_region_id id; for_each_memory_region(mr, i915, id) { struct drm_i915_gem_object *obj; int err; if (mr->private) continue; obj = __i915_gem_object_create_user(i915, PAGE_SIZE, &mr, 1); if (obj == ERR_PTR(-ENODEV)) continue; if (IS_ERR(obj)) return PTR_ERR(obj); err = __igt_mmap_access(i915, obj, I915_MMAP_TYPE_GTT); if (err == 0) err = __igt_mmap_access(i915, obj, I915_MMAP_TYPE_WB); if (err == 0) err = __igt_mmap_access(i915, obj, I915_MMAP_TYPE_WC); if (err == 0) err = __igt_mmap_access(i915, obj, I915_MMAP_TYPE_UC); if (err == 0) err = __igt_mmap_access(i915, obj, I915_MMAP_TYPE_FIXED); i915_gem_object_put(obj); if (err) return err; } return 0; } static int __igt_mmap_gpu(struct drm_i915_private *i915, struct drm_i915_gem_object *obj, enum i915_mmap_type type) { struct intel_engine_cs *engine; unsigned long addr; u32 __user *ux; u32 bbe; int err; u64 offset; /* * Verify that the mmap access into the backing store aligns with * that of the GPU, i.e. that mmap is indeed writing into the same * page as being read by the GPU. */ if (!can_mmap(obj, type)) return 0; err = wc_set(obj); if (err == -ENXIO) err = gtt_set(obj); if (err) return err; err = __assign_mmap_offset(obj, type, &offset, NULL); if (err) return err; addr = igt_mmap_offset(i915, offset, obj->base.size, PROT_WRITE, MAP_SHARED); if (IS_ERR_VALUE(addr)) return addr; ux = u64_to_user_ptr((u64)addr); bbe = MI_BATCH_BUFFER_END; if (put_user(bbe, ux)) { pr_err("%s: Unable to write to mmap\n", obj->mm.region->name); err = -EFAULT; goto out_unmap; } if (type == I915_MMAP_TYPE_GTT) intel_gt_flush_ggtt_writes(to_gt(i915)); for_each_uabi_engine(engine, i915) { struct i915_request *rq; struct i915_vma *vma; struct i915_gem_ww_ctx ww; vma = i915_vma_instance(obj, engine->kernel_context->vm, NULL); if (IS_ERR(vma)) { err = PTR_ERR(vma); goto out_unmap; } i915_gem_ww_ctx_init(&ww, false); retry: err = i915_gem_object_lock(obj, &ww); if (!err) err = i915_vma_pin_ww(vma, &ww, 0, 0, PIN_USER); if (err) goto out_ww; rq = i915_request_create(engine->kernel_context); if (IS_ERR(rq)) { err = PTR_ERR(rq); goto out_unpin; } err = i915_vma_move_to_active(vma, rq, 0); err = engine->emit_bb_start(rq, i915_vma_offset(vma), 0, 0); i915_request_get(rq); i915_request_add(rq); if (i915_request_wait(rq, 0, HZ / 5) < 0) { struct drm_printer p = drm_info_printer(engine->i915->drm.dev); pr_err("%s(%s, %s): Failed to execute batch\n", __func__, engine->name, obj->mm.region->name); intel_engine_dump(engine, &p, "%s\n", engine->name); intel_gt_set_wedged(engine->gt); err = -EIO; } i915_request_put(rq); out_unpin: i915_vma_unpin(vma); out_ww: if (err == -EDEADLK) { err = i915_gem_ww_ctx_backoff(&ww); if (!err) goto retry; } i915_gem_ww_ctx_fini(&ww); if (err) goto out_unmap; } out_unmap: vm_munmap(addr, obj->base.size); return err; } static int igt_mmap_gpu(void *arg) { struct drm_i915_private *i915 = arg; struct intel_memory_region *mr; enum intel_region_id id; for_each_memory_region(mr, i915, id) { struct drm_i915_gem_object *obj; int err; if (mr->private) continue; obj = __i915_gem_object_create_user(i915, PAGE_SIZE, &mr, 1); if (obj == ERR_PTR(-ENODEV)) continue; if (IS_ERR(obj)) return PTR_ERR(obj); err = __igt_mmap_gpu(i915, obj, I915_MMAP_TYPE_GTT); if (err == 0) err = __igt_mmap_gpu(i915, obj, I915_MMAP_TYPE_WC); if (err == 0) err = __igt_mmap_gpu(i915, obj, I915_MMAP_TYPE_FIXED); i915_gem_object_put(obj); if (err) return err; } return 0; } static int check_present_pte(pte_t *pte, unsigned long addr, void *data) { pte_t ptent = ptep_get(pte); if (!pte_present(ptent) || pte_none(ptent)) { pr_err("missing PTE:%lx\n", (addr - (unsigned long)data) >> PAGE_SHIFT); return -EINVAL; } return 0; } static int check_absent_pte(pte_t *pte, unsigned long addr, void *data) { pte_t ptent = ptep_get(pte); if (pte_present(ptent) && !pte_none(ptent)) { pr_err("present PTE:%lx; expected to be revoked\n", (addr - (unsigned long)data) >> PAGE_SHIFT); return -EINVAL; } return 0; } static int check_present(unsigned long addr, unsigned long len) { return apply_to_page_range(current->mm, addr, len, check_present_pte, (void *)addr); } static int check_absent(unsigned long addr, unsigned long len) { return apply_to_page_range(current->mm, addr, len, check_absent_pte, (void *)addr); } static int prefault_range(u64 start, u64 len) { const char __user *addr, *end; char __maybe_unused c; int err; addr = u64_to_user_ptr(start); end = addr + len; for (; addr < end; addr += PAGE_SIZE) { err = __get_user(c, addr); if (err) return err; } return __get_user(c, end - 1); } static int __igt_mmap_revoke(struct drm_i915_private *i915, struct drm_i915_gem_object *obj, enum i915_mmap_type type) { unsigned long addr; int err; u64 offset; if (!can_mmap(obj, type)) return 0; err = __assign_mmap_offset(obj, type, &offset, NULL); if (err) return err; addr = igt_mmap_offset(i915, offset, obj->base.size, PROT_WRITE, MAP_SHARED); if (IS_ERR_VALUE(addr)) return addr; err = prefault_range(addr, obj->base.size); if (err) goto out_unmap; err = check_present(addr, obj->base.size); if (err) { pr_err("%s: was not present\n", obj->mm.region->name); goto out_unmap; } /* * After unbinding the object from the GGTT, its address may be reused * for other objects. Ergo we have to revoke the previous mmap PTE * access as it no longer points to the same object. */ i915_gem_object_lock(obj, NULL); err = i915_gem_object_unbind(obj, I915_GEM_OBJECT_UNBIND_ACTIVE); i915_gem_object_unlock(obj); if (err) { pr_err("Failed to unbind object!\n"); goto out_unmap; } if (type != I915_MMAP_TYPE_GTT) { i915_gem_object_lock(obj, NULL); __i915_gem_object_put_pages(obj); i915_gem_object_unlock(obj); if (i915_gem_object_has_pages(obj)) { pr_err("Failed to put-pages object!\n"); err = -EINVAL; goto out_unmap; } } err = check_absent(addr, obj->base.size); if (err) { pr_err("%s: was not absent\n", obj->mm.region->name); goto out_unmap; } out_unmap: vm_munmap(addr, obj->base.size); return err; } static int igt_mmap_revoke(void *arg) { struct drm_i915_private *i915 = arg; struct intel_memory_region *mr; enum intel_region_id id; for_each_memory_region(mr, i915, id) { struct drm_i915_gem_object *obj; int err; if (mr->private) continue; obj = __i915_gem_object_create_user(i915, PAGE_SIZE, &mr, 1); if (obj == ERR_PTR(-ENODEV)) continue; if (IS_ERR(obj)) return PTR_ERR(obj); err = __igt_mmap_revoke(i915, obj, I915_MMAP_TYPE_GTT); if (err == 0) err = __igt_mmap_revoke(i915, obj, I915_MMAP_TYPE_WC); if (err == 0) err = __igt_mmap_revoke(i915, obj, I915_MMAP_TYPE_FIXED); i915_gem_object_put(obj); if (err) return err; } return 0; } int i915_gem_mman_live_selftests(struct drm_i915_private *i915) { static const struct i915_subtest tests[] = { SUBTEST(igt_partial_tiling), SUBTEST(igt_smoke_tiling), SUBTEST(igt_mmap_offset_exhaustion), SUBTEST(igt_mmap), SUBTEST(igt_mmap_migrate), SUBTEST(igt_mmap_access), SUBTEST(igt_mmap_revoke), SUBTEST(igt_mmap_gpu), }; return i915_live_subtests(tests, i915); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1