Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Daniele Ceraolo Spurio | 1290 | 91.81% | 20 | 44.44% |
Andi Shyti | 25 | 1.78% | 2 | 4.44% |
John Harrison | 19 | 1.35% | 5 | 11.11% |
Alan Previn | 18 | 1.28% | 2 | 4.44% |
Michal Wajdeczko | 17 | 1.21% | 8 | 17.78% |
Fernando Pacheco | 16 | 1.14% | 1 | 2.22% |
Michał Winiarski | 7 | 0.50% | 2 | 4.44% |
Jani Nikula | 4 | 0.28% | 2 | 4.44% |
Robert M. Fosha | 3 | 0.21% | 1 | 2.22% |
Chris Wilson | 3 | 0.21% | 1 | 2.22% |
Dave Airlie | 3 | 0.21% | 1 | 2.22% |
Total | 1405 | 45 |
// SPDX-License-Identifier: MIT /* * Copyright © 2022 Intel Corporation */ #include <linux/types.h> #include "gt/intel_gt.h" #include "gt/intel_gt_print.h" #include "intel_gsc_fw.h" #include "intel_gsc_proxy.h" #include "intel_gsc_uc.h" #include "i915_drv.h" #include "i915_reg.h" static void gsc_work(struct work_struct *work) { struct intel_gsc_uc *gsc = container_of(work, typeof(*gsc), work); struct intel_gt *gt = gsc_uc_to_gt(gsc); intel_wakeref_t wakeref; u32 actions; int ret; wakeref = intel_runtime_pm_get(gt->uncore->rpm); spin_lock_irq(gt->irq_lock); actions = gsc->gsc_work_actions; gsc->gsc_work_actions = 0; spin_unlock_irq(gt->irq_lock); if (actions & GSC_ACTION_FW_LOAD) { ret = intel_gsc_uc_fw_upload(gsc); if (!ret) /* setup proxy on a new load */ actions |= GSC_ACTION_SW_PROXY; else if (ret != -EEXIST) goto out_put; /* * The HuC auth can be done both before or after the proxy init; * if done after, a proxy request will be issued and must be * serviced before the authentication can complete. * Since this worker also handles proxy requests, we can't * perform an action that requires the proxy from within it and * then stall waiting for it, because we'd be blocking the * service path. Therefore, it is easier for us to load HuC * first and do proxy later. The GSC will ack the HuC auth and * then send the HuC proxy request as part of the proxy init * flow. * Note that we can only do the GSC auth if the GuC auth was * successful. */ if (intel_uc_uses_huc(>->uc) && intel_huc_is_authenticated(>->uc.huc, INTEL_HUC_AUTH_BY_GUC)) intel_huc_auth(>->uc.huc, INTEL_HUC_AUTH_BY_GSC); } if (actions & GSC_ACTION_SW_PROXY) { if (!intel_gsc_uc_fw_init_done(gsc)) { gt_err(gt, "Proxy request received with GSC not loaded!\n"); goto out_put; } ret = intel_gsc_proxy_request_handler(gsc); if (ret) { if (actions & GSC_ACTION_FW_LOAD) { /* * A proxy failure right after firmware load means the proxy-init * step has failed so mark GSC as not usable after this */ gt_err(gt, "GSC proxy handler failed to init\n"); intel_uc_fw_change_status(&gsc->fw, INTEL_UC_FIRMWARE_LOAD_FAIL); } goto out_put; } /* mark the GSC FW init as done the first time we run this */ if (actions & GSC_ACTION_FW_LOAD) { /* * If there is a proxy establishment error, the GSC might still * complete the request handling cleanly, so we need to check the * status register to check if the proxy init was actually successful */ if (intel_gsc_uc_fw_proxy_init_done(gsc, false)) { gt_dbg(gt, "GSC Proxy initialized\n"); intel_uc_fw_change_status(&gsc->fw, INTEL_UC_FIRMWARE_RUNNING); } else { gt_err(gt, "GSC status reports proxy init not complete\n"); intel_uc_fw_change_status(&gsc->fw, INTEL_UC_FIRMWARE_LOAD_FAIL); } } } out_put: intel_runtime_pm_put(gt->uncore->rpm, wakeref); } static bool gsc_engine_supported(struct intel_gt *gt) { intel_engine_mask_t mask; /* * We reach here from i915_driver_early_probe for the primary GT before * its engine mask is set, so we use the device info engine mask for it. * For other GTs we expect the GT-specific mask to be set before we * call this function. */ GEM_BUG_ON(!gt_is_root(gt) && !gt->info.engine_mask); if (gt_is_root(gt)) mask = INTEL_INFO(gt->i915)->platform_engine_mask; else mask = gt->info.engine_mask; return __HAS_ENGINE(mask, GSC0); } void intel_gsc_uc_init_early(struct intel_gsc_uc *gsc) { struct intel_gt *gt = gsc_uc_to_gt(gsc); /* * GSC FW needs to be copied to a dedicated memory allocations for * loading (see gsc->local), so we don't need to GGTT map the FW image * itself into GGTT. */ intel_uc_fw_init_early(&gsc->fw, INTEL_UC_FW_TYPE_GSC, false); INIT_WORK(&gsc->work, gsc_work); /* we can arrive here from i915_driver_early_probe for primary * GT with it being not fully setup hence check device info's * engine mask */ if (!gsc_engine_supported(gt)) { intel_uc_fw_change_status(&gsc->fw, INTEL_UC_FIRMWARE_NOT_SUPPORTED); return; } gsc->wq = alloc_ordered_workqueue("i915_gsc", 0); if (!gsc->wq) { gt_err(gt, "failed to allocate WQ for GSC, disabling FW\n"); intel_uc_fw_change_status(&gsc->fw, INTEL_UC_FIRMWARE_NOT_SUPPORTED); } } static int gsc_allocate_and_map_vma(struct intel_gsc_uc *gsc, u32 size) { struct intel_gt *gt = gsc_uc_to_gt(gsc); struct drm_i915_gem_object *obj; struct i915_vma *vma; void __iomem *vaddr; int ret = 0; /* * The GSC FW doesn't immediately suspend after becoming idle, so there * is a chance that it could still be awake after we successfully * return from the pci suspend function, even if there are no pending * operations. * The FW might therefore try to access memory for its suspend operation * after the kernel has completed the HW suspend flow; this can cause * issues if the FW is mapped in normal RAM memory, as some of the * involved HW units might've already lost power. * The driver must therefore avoid this situation and the recommended * way to do so is to use stolen memory for the GSC memory allocation, * because stolen memory takes a different path in HW and it is * guaranteed to always work as long as the GPU itself is awake (which * it must be if the GSC is awake). */ obj = i915_gem_object_create_stolen(gt->i915, size); if (IS_ERR(obj)) return PTR_ERR(obj); vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, 0); if (IS_ERR(vma)) { ret = PTR_ERR(vma); goto err; } vaddr = i915_vma_pin_iomap(vma); i915_vma_unpin(vma); if (IS_ERR(vaddr)) { ret = PTR_ERR(vaddr); goto err; } i915_vma_make_unshrinkable(vma); gsc->local = vma; gsc->local_vaddr = vaddr; return 0; err: i915_gem_object_put(obj); return ret; } static void gsc_unmap_and_free_vma(struct intel_gsc_uc *gsc) { struct i915_vma *vma = fetch_and_zero(&gsc->local); if (!vma) return; gsc->local_vaddr = NULL; i915_vma_unpin_iomap(vma); i915_gem_object_put(vma->obj); } int intel_gsc_uc_init(struct intel_gsc_uc *gsc) { static struct lock_class_key gsc_lock; struct intel_gt *gt = gsc_uc_to_gt(gsc); struct intel_engine_cs *engine = gt->engine[GSC0]; struct intel_context *ce; int err; err = intel_uc_fw_init(&gsc->fw); if (err) goto out; err = gsc_allocate_and_map_vma(gsc, SZ_4M); if (err) goto out_fw; ce = intel_engine_create_pinned_context(engine, engine->gt->vm, SZ_4K, I915_GEM_HWS_GSC_ADDR, &gsc_lock, "gsc_context"); if (IS_ERR(ce)) { gt_err(gt, "failed to create GSC CS ctx for FW communication\n"); err = PTR_ERR(ce); goto out_vma; } gsc->ce = ce; /* if we fail to init proxy we still want to load GSC for PM */ intel_gsc_proxy_init(gsc); intel_uc_fw_change_status(&gsc->fw, INTEL_UC_FIRMWARE_LOADABLE); return 0; out_vma: gsc_unmap_and_free_vma(gsc); out_fw: intel_uc_fw_fini(&gsc->fw); out: gt_probe_error(gt, "GSC init failed %pe\n", ERR_PTR(err)); return err; } void intel_gsc_uc_fini(struct intel_gsc_uc *gsc) { if (!intel_uc_fw_is_loadable(&gsc->fw)) return; flush_work(&gsc->work); if (gsc->wq) { destroy_workqueue(gsc->wq); gsc->wq = NULL; } intel_gsc_proxy_fini(gsc); if (gsc->ce) intel_engine_destroy_pinned_context(fetch_and_zero(&gsc->ce)); gsc_unmap_and_free_vma(gsc); intel_uc_fw_fini(&gsc->fw); } void intel_gsc_uc_flush_work(struct intel_gsc_uc *gsc) { if (!intel_uc_fw_is_loadable(&gsc->fw)) return; flush_work(&gsc->work); } void intel_gsc_uc_resume(struct intel_gsc_uc *gsc) { if (!intel_uc_fw_is_loadable(&gsc->fw)) return; /* * we only want to start the GSC worker from here in the actual resume * flow and not during driver load. This is because GSC load is slow and * therefore we want to make sure that the default state init completes * first to not slow down the init thread. A separate call to * intel_gsc_uc_load_start will ensure that the GSC is loaded during * driver load. */ if (!gsc_uc_to_gt(gsc)->engine[GSC0]->default_state) return; intel_gsc_uc_load_start(gsc); } void intel_gsc_uc_load_start(struct intel_gsc_uc *gsc) { struct intel_gt *gt = gsc_uc_to_gt(gsc); if (!intel_uc_fw_is_loadable(&gsc->fw) || intel_uc_fw_is_in_error(&gsc->fw)) return; if (intel_gsc_uc_fw_init_done(gsc)) return; spin_lock_irq(gt->irq_lock); gsc->gsc_work_actions |= GSC_ACTION_FW_LOAD; spin_unlock_irq(gt->irq_lock); queue_work(gsc->wq, &gsc->work); } void intel_gsc_uc_load_status(struct intel_gsc_uc *gsc, struct drm_printer *p) { struct intel_gt *gt = gsc_uc_to_gt(gsc); struct intel_uncore *uncore = gt->uncore; intel_wakeref_t wakeref; if (!intel_gsc_uc_is_supported(gsc)) { drm_printf(p, "GSC not supported\n"); return; } if (!intel_gsc_uc_is_wanted(gsc)) { drm_printf(p, "GSC disabled\n"); return; } drm_printf(p, "GSC firmware: %s\n", gsc->fw.file_selected.path); if (gsc->fw.file_selected.path != gsc->fw.file_wanted.path) drm_printf(p, "GSC firmware wanted: %s\n", gsc->fw.file_wanted.path); drm_printf(p, "\tstatus: %s\n", intel_uc_fw_status_repr(gsc->fw.status)); drm_printf(p, "Release: %u.%u.%u.%u\n", gsc->release.major, gsc->release.minor, gsc->release.patch, gsc->release.build); drm_printf(p, "Compatibility Version: %u.%u [min expected %u.%u]\n", gsc->fw.file_selected.ver.major, gsc->fw.file_selected.ver.minor, gsc->fw.file_wanted.ver.major, gsc->fw.file_wanted.ver.minor); drm_printf(p, "SVN: %u\n", gsc->security_version); with_intel_runtime_pm(uncore->rpm, wakeref) { u32 i; for (i = 1; i <= 6; i++) { u32 status = intel_uncore_read(uncore, HECI_FWSTS(MTL_GSC_HECI1_BASE, i)); drm_printf(p, "HECI1 FWSTST%u = 0x%08x\n", i, status); } } }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1