Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Zhi Wang | 13272 | 80.33% | 22 | 18.97% |
Zhao Yan | 1007 | 6.10% | 15 | 12.93% |
fred gao | 553 | 3.35% | 9 | 7.76% |
Chris Wilson | 394 | 2.38% | 11 | 9.48% |
Tina Zhang | 337 | 2.04% | 4 | 3.45% |
Zhenyu Wang | 327 | 1.98% | 8 | 6.90% |
Xiaolin Zhang | 116 | 0.70% | 1 | 0.86% |
Changbin Du | 103 | 0.62% | 6 | 5.17% |
Hang Yuan | 94 | 0.57% | 1 | 0.86% |
Xu Han | 72 | 0.44% | 1 | 0.86% |
Jani Nikula | 63 | 0.38% | 11 | 9.48% |
Colin Xu | 55 | 0.33% | 3 | 2.59% |
Weinan Li | 46 | 0.28% | 1 | 0.86% |
Zhipeng Gong | 14 | 0.08% | 1 | 0.86% |
Pankaj Bharadiya | 12 | 0.07% | 1 | 0.86% |
Tvrtko A. Ursulin | 9 | 0.05% | 2 | 1.72% |
Maarten Lankhorst | 9 | 0.05% | 2 | 1.72% |
Matt Roper | 7 | 0.04% | 3 | 2.59% |
Lucas De Marchi | 6 | 0.04% | 1 | 0.86% |
Ville Syrjälä | 4 | 0.02% | 2 | 1.72% |
Pei Zhang | 4 | 0.02% | 1 | 0.86% |
Dave Airlie | 3 | 0.02% | 1 | 0.86% |
Ping Gao | 2 | 0.01% | 2 | 1.72% |
Xinyun Liu | 2 | 0.01% | 1 | 0.86% |
Yulei Zhang | 2 | 0.01% | 1 | 0.86% |
Dan Carpenter | 2 | 0.01% | 1 | 0.86% |
Michal Wajdeczko | 2 | 0.01% | 1 | 0.86% |
Christoph Hellwig | 2 | 0.01% | 1 | 0.86% |
Min He | 1 | 0.01% | 1 | 0.86% |
Rikard Falkeborn | 1 | 0.01% | 1 | 0.86% |
Total | 16521 | 116 |
/* * Copyright(c) 2011-2016 Intel Corporation. All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * * Authors: * Ke Yu * Kevin Tian <kevin.tian@intel.com> * Zhiyuan Lv <zhiyuan.lv@intel.com> * * Contributors: * Min He <min.he@intel.com> * Ping Gao <ping.a.gao@intel.com> * Tina Zhang <tina.zhang@intel.com> * Yulei Zhang <yulei.zhang@intel.com> * Zhi Wang <zhi.a.wang@intel.com> * */ #include <linux/slab.h> #include "i915_drv.h" #include "i915_reg.h" #include "gt/intel_engine_regs.h" #include "gt/intel_gpu_commands.h" #include "gt/intel_gt_regs.h" #include "gt/intel_lrc.h" #include "gt/intel_ring.h" #include "gt/intel_gt_requests.h" #include "gt/shmem_utils.h" #include "gvt.h" #include "i915_pvinfo.h" #include "trace.h" #include "display/i9xx_plane_regs.h" #include "display/intel_display.h" #include "display/intel_sprite_regs.h" #include "gem/i915_gem_context.h" #include "gem/i915_gem_pm.h" #include "gt/intel_context.h" #define INVALID_OP (~0U) #define OP_LEN_MI 9 #define OP_LEN_2D 10 #define OP_LEN_3D_MEDIA 16 #define OP_LEN_MFX_VC 16 #define OP_LEN_VEBOX 16 #define CMD_TYPE(cmd) (((cmd) >> 29) & 7) struct sub_op_bits { int hi; int low; }; struct decode_info { const char *name; int op_len; int nr_sub_op; const struct sub_op_bits *sub_op; }; #define MAX_CMD_BUDGET 0x7fffffff #define MI_WAIT_FOR_PLANE_C_FLIP_PENDING (1<<15) #define MI_WAIT_FOR_PLANE_B_FLIP_PENDING (1<<9) #define MI_WAIT_FOR_PLANE_A_FLIP_PENDING (1<<1) #define MI_WAIT_FOR_SPRITE_C_FLIP_PENDING (1<<20) #define MI_WAIT_FOR_SPRITE_B_FLIP_PENDING (1<<10) #define MI_WAIT_FOR_SPRITE_A_FLIP_PENDING (1<<2) /* Render Command Map */ /* MI_* command Opcode (28:23) */ #define OP_MI_NOOP 0x0 #define OP_MI_SET_PREDICATE 0x1 /* HSW+ */ #define OP_MI_USER_INTERRUPT 0x2 #define OP_MI_WAIT_FOR_EVENT 0x3 #define OP_MI_FLUSH 0x4 #define OP_MI_ARB_CHECK 0x5 #define OP_MI_RS_CONTROL 0x6 /* HSW+ */ #define OP_MI_REPORT_HEAD 0x7 #define OP_MI_ARB_ON_OFF 0x8 #define OP_MI_URB_ATOMIC_ALLOC 0x9 /* HSW+ */ #define OP_MI_BATCH_BUFFER_END 0xA #define OP_MI_SUSPEND_FLUSH 0xB #define OP_MI_PREDICATE 0xC /* IVB+ */ #define OP_MI_TOPOLOGY_FILTER 0xD /* IVB+ */ #define OP_MI_SET_APPID 0xE /* IVB+ */ #define OP_MI_RS_CONTEXT 0xF /* HSW+ */ #define OP_MI_LOAD_SCAN_LINES_INCL 0x12 /* HSW+ */ #define OP_MI_DISPLAY_FLIP 0x14 #define OP_MI_SEMAPHORE_MBOX 0x16 #define OP_MI_SET_CONTEXT 0x18 #define OP_MI_MATH 0x1A #define OP_MI_URB_CLEAR 0x19 #define OP_MI_SEMAPHORE_SIGNAL 0x1B /* BDW+ */ #define OP_MI_SEMAPHORE_WAIT 0x1C /* BDW+ */ #define OP_MI_STORE_DATA_IMM 0x20 #define OP_MI_STORE_DATA_INDEX 0x21 #define OP_MI_LOAD_REGISTER_IMM 0x22 #define OP_MI_UPDATE_GTT 0x23 #define OP_MI_STORE_REGISTER_MEM 0x24 #define OP_MI_FLUSH_DW 0x26 #define OP_MI_CLFLUSH 0x27 #define OP_MI_REPORT_PERF_COUNT 0x28 #define OP_MI_LOAD_REGISTER_MEM 0x29 /* HSW+ */ #define OP_MI_LOAD_REGISTER_REG 0x2A /* HSW+ */ #define OP_MI_RS_STORE_DATA_IMM 0x2B /* HSW+ */ #define OP_MI_LOAD_URB_MEM 0x2C /* HSW+ */ #define OP_MI_STORE_URM_MEM 0x2D /* HSW+ */ #define OP_MI_2E 0x2E /* BDW+ */ #define OP_MI_2F 0x2F /* BDW+ */ #define OP_MI_BATCH_BUFFER_START 0x31 /* Bit definition for dword 0 */ #define _CMDBIT_BB_START_IN_PPGTT (1UL << 8) #define OP_MI_CONDITIONAL_BATCH_BUFFER_END 0x36 #define BATCH_BUFFER_ADDR_MASK ((1UL << 32) - (1U << 2)) #define BATCH_BUFFER_ADDR_HIGH_MASK ((1UL << 16) - (1U)) #define BATCH_BUFFER_ADR_SPACE_BIT(x) (((x) >> 8) & 1U) #define BATCH_BUFFER_2ND_LEVEL_BIT(x) ((x) >> 22 & 1U) /* 2D command: Opcode (28:22) */ #define OP_2D(x) ((2<<7) | x) #define OP_XY_SETUP_BLT OP_2D(0x1) #define OP_XY_SETUP_CLIP_BLT OP_2D(0x3) #define OP_XY_SETUP_MONO_PATTERN_SL_BLT OP_2D(0x11) #define OP_XY_PIXEL_BLT OP_2D(0x24) #define OP_XY_SCANLINES_BLT OP_2D(0x25) #define OP_XY_TEXT_BLT OP_2D(0x26) #define OP_XY_TEXT_IMMEDIATE_BLT OP_2D(0x31) #define OP_XY_COLOR_BLT OP_2D(0x50) #define OP_XY_PAT_BLT OP_2D(0x51) #define OP_XY_MONO_PAT_BLT OP_2D(0x52) #define OP_XY_SRC_COPY_BLT OP_2D(0x53) #define OP_XY_MONO_SRC_COPY_BLT OP_2D(0x54) #define OP_XY_FULL_BLT OP_2D(0x55) #define OP_XY_FULL_MONO_SRC_BLT OP_2D(0x56) #define OP_XY_FULL_MONO_PATTERN_BLT OP_2D(0x57) #define OP_XY_FULL_MONO_PATTERN_MONO_SRC_BLT OP_2D(0x58) #define OP_XY_MONO_PAT_FIXED_BLT OP_2D(0x59) #define OP_XY_MONO_SRC_COPY_IMMEDIATE_BLT OP_2D(0x71) #define OP_XY_PAT_BLT_IMMEDIATE OP_2D(0x72) #define OP_XY_SRC_COPY_CHROMA_BLT OP_2D(0x73) #define OP_XY_FULL_IMMEDIATE_PATTERN_BLT OP_2D(0x74) #define OP_XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT OP_2D(0x75) #define OP_XY_PAT_CHROMA_BLT OP_2D(0x76) #define OP_XY_PAT_CHROMA_BLT_IMMEDIATE OP_2D(0x77) /* 3D/Media Command: Pipeline Type(28:27) Opcode(26:24) Sub Opcode(23:16) */ #define OP_3D_MEDIA(sub_type, opcode, sub_opcode) \ ((3 << 13) | ((sub_type) << 11) | ((opcode) << 8) | (sub_opcode)) #define OP_STATE_PREFETCH OP_3D_MEDIA(0x0, 0x0, 0x03) #define OP_STATE_BASE_ADDRESS OP_3D_MEDIA(0x0, 0x1, 0x01) #define OP_STATE_SIP OP_3D_MEDIA(0x0, 0x1, 0x02) #define OP_3D_MEDIA_0_1_4 OP_3D_MEDIA(0x0, 0x1, 0x04) #define OP_SWTESS_BASE_ADDRESS OP_3D_MEDIA(0x0, 0x1, 0x03) #define OP_3DSTATE_VF_STATISTICS_GM45 OP_3D_MEDIA(0x1, 0x0, 0x0B) #define OP_PIPELINE_SELECT OP_3D_MEDIA(0x1, 0x1, 0x04) #define OP_MEDIA_VFE_STATE OP_3D_MEDIA(0x2, 0x0, 0x0) #define OP_MEDIA_CURBE_LOAD OP_3D_MEDIA(0x2, 0x0, 0x1) #define OP_MEDIA_INTERFACE_DESCRIPTOR_LOAD OP_3D_MEDIA(0x2, 0x0, 0x2) #define OP_MEDIA_GATEWAY_STATE OP_3D_MEDIA(0x2, 0x0, 0x3) #define OP_MEDIA_STATE_FLUSH OP_3D_MEDIA(0x2, 0x0, 0x4) #define OP_MEDIA_POOL_STATE OP_3D_MEDIA(0x2, 0x0, 0x5) #define OP_MEDIA_OBJECT OP_3D_MEDIA(0x2, 0x1, 0x0) #define OP_MEDIA_OBJECT_PRT OP_3D_MEDIA(0x2, 0x1, 0x2) #define OP_MEDIA_OBJECT_WALKER OP_3D_MEDIA(0x2, 0x1, 0x3) #define OP_GPGPU_WALKER OP_3D_MEDIA(0x2, 0x1, 0x5) #define OP_3DSTATE_CLEAR_PARAMS OP_3D_MEDIA(0x3, 0x0, 0x04) /* IVB+ */ #define OP_3DSTATE_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x05) /* IVB+ */ #define OP_3DSTATE_STENCIL_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x06) /* IVB+ */ #define OP_3DSTATE_HIER_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x07) /* IVB+ */ #define OP_3DSTATE_VERTEX_BUFFERS OP_3D_MEDIA(0x3, 0x0, 0x08) #define OP_3DSTATE_VERTEX_ELEMENTS OP_3D_MEDIA(0x3, 0x0, 0x09) #define OP_3DSTATE_INDEX_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x0A) #define OP_3DSTATE_VF_STATISTICS OP_3D_MEDIA(0x3, 0x0, 0x0B) #define OP_3DSTATE_VF OP_3D_MEDIA(0x3, 0x0, 0x0C) /* HSW+ */ #define OP_3DSTATE_CC_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x0E) #define OP_3DSTATE_SCISSOR_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x0F) #define OP_3DSTATE_VS OP_3D_MEDIA(0x3, 0x0, 0x10) #define OP_3DSTATE_GS OP_3D_MEDIA(0x3, 0x0, 0x11) #define OP_3DSTATE_CLIP OP_3D_MEDIA(0x3, 0x0, 0x12) #define OP_3DSTATE_SF OP_3D_MEDIA(0x3, 0x0, 0x13) #define OP_3DSTATE_WM OP_3D_MEDIA(0x3, 0x0, 0x14) #define OP_3DSTATE_CONSTANT_VS OP_3D_MEDIA(0x3, 0x0, 0x15) #define OP_3DSTATE_CONSTANT_GS OP_3D_MEDIA(0x3, 0x0, 0x16) #define OP_3DSTATE_CONSTANT_PS OP_3D_MEDIA(0x3, 0x0, 0x17) #define OP_3DSTATE_SAMPLE_MASK OP_3D_MEDIA(0x3, 0x0, 0x18) #define OP_3DSTATE_CONSTANT_HS OP_3D_MEDIA(0x3, 0x0, 0x19) /* IVB+ */ #define OP_3DSTATE_CONSTANT_DS OP_3D_MEDIA(0x3, 0x0, 0x1A) /* IVB+ */ #define OP_3DSTATE_HS OP_3D_MEDIA(0x3, 0x0, 0x1B) /* IVB+ */ #define OP_3DSTATE_TE OP_3D_MEDIA(0x3, 0x0, 0x1C) /* IVB+ */ #define OP_3DSTATE_DS OP_3D_MEDIA(0x3, 0x0, 0x1D) /* IVB+ */ #define OP_3DSTATE_STREAMOUT OP_3D_MEDIA(0x3, 0x0, 0x1E) /* IVB+ */ #define OP_3DSTATE_SBE OP_3D_MEDIA(0x3, 0x0, 0x1F) /* IVB+ */ #define OP_3DSTATE_PS OP_3D_MEDIA(0x3, 0x0, 0x20) /* IVB+ */ #define OP_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP OP_3D_MEDIA(0x3, 0x0, 0x21) /* IVB+ */ #define OP_3DSTATE_VIEWPORT_STATE_POINTERS_CC OP_3D_MEDIA(0x3, 0x0, 0x23) /* IVB+ */ #define OP_3DSTATE_BLEND_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x24) /* IVB+ */ #define OP_3DSTATE_DEPTH_STENCIL_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x25) /* IVB+ */ #define OP_3DSTATE_BINDING_TABLE_POINTERS_VS OP_3D_MEDIA(0x3, 0x0, 0x26) /* IVB+ */ #define OP_3DSTATE_BINDING_TABLE_POINTERS_HS OP_3D_MEDIA(0x3, 0x0, 0x27) /* IVB+ */ #define OP_3DSTATE_BINDING_TABLE_POINTERS_DS OP_3D_MEDIA(0x3, 0x0, 0x28) /* IVB+ */ #define OP_3DSTATE_BINDING_TABLE_POINTERS_GS OP_3D_MEDIA(0x3, 0x0, 0x29) /* IVB+ */ #define OP_3DSTATE_BINDING_TABLE_POINTERS_PS OP_3D_MEDIA(0x3, 0x0, 0x2A) /* IVB+ */ #define OP_3DSTATE_SAMPLER_STATE_POINTERS_VS OP_3D_MEDIA(0x3, 0x0, 0x2B) /* IVB+ */ #define OP_3DSTATE_SAMPLER_STATE_POINTERS_HS OP_3D_MEDIA(0x3, 0x0, 0x2C) /* IVB+ */ #define OP_3DSTATE_SAMPLER_STATE_POINTERS_DS OP_3D_MEDIA(0x3, 0x0, 0x2D) /* IVB+ */ #define OP_3DSTATE_SAMPLER_STATE_POINTERS_GS OP_3D_MEDIA(0x3, 0x0, 0x2E) /* IVB+ */ #define OP_3DSTATE_SAMPLER_STATE_POINTERS_PS OP_3D_MEDIA(0x3, 0x0, 0x2F) /* IVB+ */ #define OP_3DSTATE_URB_VS OP_3D_MEDIA(0x3, 0x0, 0x30) /* IVB+ */ #define OP_3DSTATE_URB_HS OP_3D_MEDIA(0x3, 0x0, 0x31) /* IVB+ */ #define OP_3DSTATE_URB_DS OP_3D_MEDIA(0x3, 0x0, 0x32) /* IVB+ */ #define OP_3DSTATE_URB_GS OP_3D_MEDIA(0x3, 0x0, 0x33) /* IVB+ */ #define OP_3DSTATE_GATHER_CONSTANT_VS OP_3D_MEDIA(0x3, 0x0, 0x34) /* HSW+ */ #define OP_3DSTATE_GATHER_CONSTANT_GS OP_3D_MEDIA(0x3, 0x0, 0x35) /* HSW+ */ #define OP_3DSTATE_GATHER_CONSTANT_HS OP_3D_MEDIA(0x3, 0x0, 0x36) /* HSW+ */ #define OP_3DSTATE_GATHER_CONSTANT_DS OP_3D_MEDIA(0x3, 0x0, 0x37) /* HSW+ */ #define OP_3DSTATE_GATHER_CONSTANT_PS OP_3D_MEDIA(0x3, 0x0, 0x38) /* HSW+ */ #define OP_3DSTATE_DX9_CONSTANTF_VS OP_3D_MEDIA(0x3, 0x0, 0x39) /* HSW+ */ #define OP_3DSTATE_DX9_CONSTANTF_PS OP_3D_MEDIA(0x3, 0x0, 0x3A) /* HSW+ */ #define OP_3DSTATE_DX9_CONSTANTI_VS OP_3D_MEDIA(0x3, 0x0, 0x3B) /* HSW+ */ #define OP_3DSTATE_DX9_CONSTANTI_PS OP_3D_MEDIA(0x3, 0x0, 0x3C) /* HSW+ */ #define OP_3DSTATE_DX9_CONSTANTB_VS OP_3D_MEDIA(0x3, 0x0, 0x3D) /* HSW+ */ #define OP_3DSTATE_DX9_CONSTANTB_PS OP_3D_MEDIA(0x3, 0x0, 0x3E) /* HSW+ */ #define OP_3DSTATE_DX9_LOCAL_VALID_VS OP_3D_MEDIA(0x3, 0x0, 0x3F) /* HSW+ */ #define OP_3DSTATE_DX9_LOCAL_VALID_PS OP_3D_MEDIA(0x3, 0x0, 0x40) /* HSW+ */ #define OP_3DSTATE_DX9_GENERATE_ACTIVE_VS OP_3D_MEDIA(0x3, 0x0, 0x41) /* HSW+ */ #define OP_3DSTATE_DX9_GENERATE_ACTIVE_PS OP_3D_MEDIA(0x3, 0x0, 0x42) /* HSW+ */ #define OP_3DSTATE_BINDING_TABLE_EDIT_VS OP_3D_MEDIA(0x3, 0x0, 0x43) /* HSW+ */ #define OP_3DSTATE_BINDING_TABLE_EDIT_GS OP_3D_MEDIA(0x3, 0x0, 0x44) /* HSW+ */ #define OP_3DSTATE_BINDING_TABLE_EDIT_HS OP_3D_MEDIA(0x3, 0x0, 0x45) /* HSW+ */ #define OP_3DSTATE_BINDING_TABLE_EDIT_DS OP_3D_MEDIA(0x3, 0x0, 0x46) /* HSW+ */ #define OP_3DSTATE_BINDING_TABLE_EDIT_PS OP_3D_MEDIA(0x3, 0x0, 0x47) /* HSW+ */ #define OP_3DSTATE_VF_INSTANCING OP_3D_MEDIA(0x3, 0x0, 0x49) /* BDW+ */ #define OP_3DSTATE_VF_SGVS OP_3D_MEDIA(0x3, 0x0, 0x4A) /* BDW+ */ #define OP_3DSTATE_VF_TOPOLOGY OP_3D_MEDIA(0x3, 0x0, 0x4B) /* BDW+ */ #define OP_3DSTATE_WM_CHROMAKEY OP_3D_MEDIA(0x3, 0x0, 0x4C) /* BDW+ */ #define OP_3DSTATE_PS_BLEND OP_3D_MEDIA(0x3, 0x0, 0x4D) /* BDW+ */ #define OP_3DSTATE_WM_DEPTH_STENCIL OP_3D_MEDIA(0x3, 0x0, 0x4E) /* BDW+ */ #define OP_3DSTATE_PS_EXTRA OP_3D_MEDIA(0x3, 0x0, 0x4F) /* BDW+ */ #define OP_3DSTATE_RASTER OP_3D_MEDIA(0x3, 0x0, 0x50) /* BDW+ */ #define OP_3DSTATE_SBE_SWIZ OP_3D_MEDIA(0x3, 0x0, 0x51) /* BDW+ */ #define OP_3DSTATE_WM_HZ_OP OP_3D_MEDIA(0x3, 0x0, 0x52) /* BDW+ */ #define OP_3DSTATE_COMPONENT_PACKING OP_3D_MEDIA(0x3, 0x0, 0x55) /* SKL+ */ #define OP_3DSTATE_DRAWING_RECTANGLE OP_3D_MEDIA(0x3, 0x1, 0x00) #define OP_3DSTATE_SAMPLER_PALETTE_LOAD0 OP_3D_MEDIA(0x3, 0x1, 0x02) #define OP_3DSTATE_CHROMA_KEY OP_3D_MEDIA(0x3, 0x1, 0x04) #define OP_SNB_3DSTATE_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x05) #define OP_3DSTATE_POLY_STIPPLE_OFFSET OP_3D_MEDIA(0x3, 0x1, 0x06) #define OP_3DSTATE_POLY_STIPPLE_PATTERN OP_3D_MEDIA(0x3, 0x1, 0x07) #define OP_3DSTATE_LINE_STIPPLE OP_3D_MEDIA(0x3, 0x1, 0x08) #define OP_3DSTATE_AA_LINE_PARAMS OP_3D_MEDIA(0x3, 0x1, 0x0A) #define OP_3DSTATE_GS_SVB_INDEX OP_3D_MEDIA(0x3, 0x1, 0x0B) #define OP_3DSTATE_SAMPLER_PALETTE_LOAD1 OP_3D_MEDIA(0x3, 0x1, 0x0C) #define OP_3DSTATE_MULTISAMPLE_BDW OP_3D_MEDIA(0x3, 0x0, 0x0D) #define OP_SNB_3DSTATE_STENCIL_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x0E) #define OP_SNB_3DSTATE_HIER_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x0F) #define OP_SNB_3DSTATE_CLEAR_PARAMS OP_3D_MEDIA(0x3, 0x1, 0x10) #define OP_3DSTATE_MONOFILTER_SIZE OP_3D_MEDIA(0x3, 0x1, 0x11) #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_VS OP_3D_MEDIA(0x3, 0x1, 0x12) /* IVB+ */ #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_HS OP_3D_MEDIA(0x3, 0x1, 0x13) /* IVB+ */ #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_DS OP_3D_MEDIA(0x3, 0x1, 0x14) /* IVB+ */ #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_GS OP_3D_MEDIA(0x3, 0x1, 0x15) /* IVB+ */ #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_PS OP_3D_MEDIA(0x3, 0x1, 0x16) /* IVB+ */ #define OP_3DSTATE_SO_DECL_LIST OP_3D_MEDIA(0x3, 0x1, 0x17) #define OP_3DSTATE_SO_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x18) #define OP_3DSTATE_BINDING_TABLE_POOL_ALLOC OP_3D_MEDIA(0x3, 0x1, 0x19) /* HSW+ */ #define OP_3DSTATE_GATHER_POOL_ALLOC OP_3D_MEDIA(0x3, 0x1, 0x1A) /* HSW+ */ #define OP_3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC OP_3D_MEDIA(0x3, 0x1, 0x1B) /* HSW+ */ #define OP_3DSTATE_SAMPLE_PATTERN OP_3D_MEDIA(0x3, 0x1, 0x1C) #define OP_PIPE_CONTROL OP_3D_MEDIA(0x3, 0x2, 0x00) #define OP_3DPRIMITIVE OP_3D_MEDIA(0x3, 0x3, 0x00) /* VCCP Command Parser */ /* * Below MFX and VBE cmd definition is from vaapi intel driver project (BSD License) * git://anongit.freedesktop.org/vaapi/intel-driver * src/i965_defines.h * */ #define OP_MFX(pipeline, op, sub_opa, sub_opb) \ (3 << 13 | \ (pipeline) << 11 | \ (op) << 8 | \ (sub_opa) << 5 | \ (sub_opb)) #define OP_MFX_PIPE_MODE_SELECT OP_MFX(2, 0, 0, 0) /* ALL */ #define OP_MFX_SURFACE_STATE OP_MFX(2, 0, 0, 1) /* ALL */ #define OP_MFX_PIPE_BUF_ADDR_STATE OP_MFX(2, 0, 0, 2) /* ALL */ #define OP_MFX_IND_OBJ_BASE_ADDR_STATE OP_MFX(2, 0, 0, 3) /* ALL */ #define OP_MFX_BSP_BUF_BASE_ADDR_STATE OP_MFX(2, 0, 0, 4) /* ALL */ #define OP_2_0_0_5 OP_MFX(2, 0, 0, 5) /* ALL */ #define OP_MFX_STATE_POINTER OP_MFX(2, 0, 0, 6) /* ALL */ #define OP_MFX_QM_STATE OP_MFX(2, 0, 0, 7) /* IVB+ */ #define OP_MFX_FQM_STATE OP_MFX(2, 0, 0, 8) /* IVB+ */ #define OP_MFX_PAK_INSERT_OBJECT OP_MFX(2, 0, 2, 8) /* IVB+ */ #define OP_MFX_STITCH_OBJECT OP_MFX(2, 0, 2, 0xA) /* IVB+ */ #define OP_MFD_IT_OBJECT OP_MFX(2, 0, 1, 9) /* ALL */ #define OP_MFX_WAIT OP_MFX(1, 0, 0, 0) /* IVB+ */ #define OP_MFX_AVC_IMG_STATE OP_MFX(2, 1, 0, 0) /* ALL */ #define OP_MFX_AVC_QM_STATE OP_MFX(2, 1, 0, 1) /* ALL */ #define OP_MFX_AVC_DIRECTMODE_STATE OP_MFX(2, 1, 0, 2) /* ALL */ #define OP_MFX_AVC_SLICE_STATE OP_MFX(2, 1, 0, 3) /* ALL */ #define OP_MFX_AVC_REF_IDX_STATE OP_MFX(2, 1, 0, 4) /* ALL */ #define OP_MFX_AVC_WEIGHTOFFSET_STATE OP_MFX(2, 1, 0, 5) /* ALL */ #define OP_MFD_AVC_PICID_STATE OP_MFX(2, 1, 1, 5) /* HSW+ */ #define OP_MFD_AVC_DPB_STATE OP_MFX(2, 1, 1, 6) /* IVB+ */ #define OP_MFD_AVC_SLICEADDR OP_MFX(2, 1, 1, 7) /* IVB+ */ #define OP_MFD_AVC_BSD_OBJECT OP_MFX(2, 1, 1, 8) /* ALL */ #define OP_MFC_AVC_PAK_OBJECT OP_MFX(2, 1, 2, 9) /* ALL */ #define OP_MFX_VC1_PRED_PIPE_STATE OP_MFX(2, 2, 0, 1) /* ALL */ #define OP_MFX_VC1_DIRECTMODE_STATE OP_MFX(2, 2, 0, 2) /* ALL */ #define OP_MFD_VC1_SHORT_PIC_STATE OP_MFX(2, 2, 1, 0) /* IVB+ */ #define OP_MFD_VC1_LONG_PIC_STATE OP_MFX(2, 2, 1, 1) /* IVB+ */ #define OP_MFD_VC1_BSD_OBJECT OP_MFX(2, 2, 1, 8) /* ALL */ #define OP_MFX_MPEG2_PIC_STATE OP_MFX(2, 3, 0, 0) /* ALL */ #define OP_MFX_MPEG2_QM_STATE OP_MFX(2, 3, 0, 1) /* ALL */ #define OP_MFD_MPEG2_BSD_OBJECT OP_MFX(2, 3, 1, 8) /* ALL */ #define OP_MFC_MPEG2_SLICEGROUP_STATE OP_MFX(2, 3, 2, 3) /* ALL */ #define OP_MFC_MPEG2_PAK_OBJECT OP_MFX(2, 3, 2, 9) /* ALL */ #define OP_MFX_2_6_0_0 OP_MFX(2, 6, 0, 0) /* IVB+ */ #define OP_MFX_2_6_0_8 OP_MFX(2, 6, 0, 8) /* IVB+ */ #define OP_MFX_2_6_0_9 OP_MFX(2, 6, 0, 9) /* IVB+ */ #define OP_MFX_JPEG_PIC_STATE OP_MFX(2, 7, 0, 0) #define OP_MFX_JPEG_HUFF_TABLE_STATE OP_MFX(2, 7, 0, 2) #define OP_MFD_JPEG_BSD_OBJECT OP_MFX(2, 7, 1, 8) #define OP_VEB(pipeline, op, sub_opa, sub_opb) \ (3 << 13 | \ (pipeline) << 11 | \ (op) << 8 | \ (sub_opa) << 5 | \ (sub_opb)) #define OP_VEB_SURFACE_STATE OP_VEB(2, 4, 0, 0) #define OP_VEB_STATE OP_VEB(2, 4, 0, 2) #define OP_VEB_DNDI_IECP_STATE OP_VEB(2, 4, 0, 3) struct parser_exec_state; typedef int (*parser_cmd_handler)(struct parser_exec_state *s); #define GVT_CMD_HASH_BITS 7 /* which DWords need address fix */ #define ADDR_FIX_1(x1) (1 << (x1)) #define ADDR_FIX_2(x1, x2) (ADDR_FIX_1(x1) | ADDR_FIX_1(x2)) #define ADDR_FIX_3(x1, x2, x3) (ADDR_FIX_1(x1) | ADDR_FIX_2(x2, x3)) #define ADDR_FIX_4(x1, x2, x3, x4) (ADDR_FIX_1(x1) | ADDR_FIX_3(x2, x3, x4)) #define ADDR_FIX_5(x1, x2, x3, x4, x5) (ADDR_FIX_1(x1) | ADDR_FIX_4(x2, x3, x4, x5)) #define DWORD_FIELD(dword, end, start) \ FIELD_GET(GENMASK(end, start), cmd_val(s, dword)) #define OP_LENGTH_BIAS 2 #define CMD_LEN(value) (value + OP_LENGTH_BIAS) static int gvt_check_valid_cmd_length(int len, int valid_len) { if (valid_len != len) { gvt_err("len is not valid: len=%u valid_len=%u\n", len, valid_len); return -EFAULT; } return 0; } struct cmd_info { const char *name; u32 opcode; #define F_LEN_MASK 3U #define F_LEN_CONST 1U #define F_LEN_VAR 0U /* value is const although LEN maybe variable */ #define F_LEN_VAR_FIXED (1<<1) /* * command has its own ip advance logic * e.g. MI_BATCH_START, MI_BATCH_END */ #define F_IP_ADVANCE_CUSTOM (1<<2) u32 flag; #define R_RCS BIT(RCS0) #define R_VCS1 BIT(VCS0) #define R_VCS2 BIT(VCS1) #define R_VCS (R_VCS1 | R_VCS2) #define R_BCS BIT(BCS0) #define R_VECS BIT(VECS0) #define R_ALL (R_RCS | R_VCS | R_BCS | R_VECS) /* rings that support this cmd: BLT/RCS/VCS/VECS */ intel_engine_mask_t rings; /* devices that support this cmd: SNB/IVB/HSW/... */ u16 devices; /* which DWords are address that need fix up. * bit 0 means a 32-bit non address operand in command * bit 1 means address operand, which could be 32-bit * or 64-bit depending on different architectures.( * defined by "gmadr_bytes_in_cmd" in intel_gvt. * No matter the address length, each address only takes * one bit in the bitmap. */ u16 addr_bitmap; /* flag == F_LEN_CONST : command length * flag == F_LEN_VAR : length bias bits * Note: length is in DWord */ u32 len; parser_cmd_handler handler; /* valid length in DWord */ u32 valid_len; }; struct cmd_entry { struct hlist_node hlist; const struct cmd_info *info; }; enum { RING_BUFFER_INSTRUCTION, BATCH_BUFFER_INSTRUCTION, BATCH_BUFFER_2ND_LEVEL, RING_BUFFER_CTX, }; enum { GTT_BUFFER, PPGTT_BUFFER }; struct parser_exec_state { struct intel_vgpu *vgpu; const struct intel_engine_cs *engine; int buf_type; /* batch buffer address type */ int buf_addr_type; /* graphics memory address of ring buffer start */ unsigned long ring_start; unsigned long ring_size; unsigned long ring_head; unsigned long ring_tail; /* instruction graphics memory address */ unsigned long ip_gma; /* mapped va of the instr_gma */ void *ip_va; void *rb_va; void *ret_bb_va; /* next instruction when return from batch buffer to ring buffer */ unsigned long ret_ip_gma_ring; /* next instruction when return from 2nd batch buffer to batch buffer */ unsigned long ret_ip_gma_bb; /* batch buffer address type (GTT or PPGTT) * used when ret from 2nd level batch buffer */ int saved_buf_addr_type; bool is_ctx_wa; bool is_init_ctx; const struct cmd_info *info; struct intel_vgpu_workload *workload; }; #define gmadr_dw_number(s) \ (s->vgpu->gvt->device_info.gmadr_bytes_in_cmd >> 2) static unsigned long bypass_scan_mask = 0; /* ring ALL, type = 0 */ static const struct sub_op_bits sub_op_mi[] = { {31, 29}, {28, 23}, }; static const struct decode_info decode_info_mi = { "MI", OP_LEN_MI, ARRAY_SIZE(sub_op_mi), sub_op_mi, }; /* ring RCS, command type 2 */ static const struct sub_op_bits sub_op_2d[] = { {31, 29}, {28, 22}, }; static const struct decode_info decode_info_2d = { "2D", OP_LEN_2D, ARRAY_SIZE(sub_op_2d), sub_op_2d, }; /* ring RCS, command type 3 */ static const struct sub_op_bits sub_op_3d_media[] = { {31, 29}, {28, 27}, {26, 24}, {23, 16}, }; static const struct decode_info decode_info_3d_media = { "3D_Media", OP_LEN_3D_MEDIA, ARRAY_SIZE(sub_op_3d_media), sub_op_3d_media, }; /* ring VCS, command type 3 */ static const struct sub_op_bits sub_op_mfx_vc[] = { {31, 29}, {28, 27}, {26, 24}, {23, 21}, {20, 16}, }; static const struct decode_info decode_info_mfx_vc = { "MFX_VC", OP_LEN_MFX_VC, ARRAY_SIZE(sub_op_mfx_vc), sub_op_mfx_vc, }; /* ring VECS, command type 3 */ static const struct sub_op_bits sub_op_vebox[] = { {31, 29}, {28, 27}, {26, 24}, {23, 21}, {20, 16}, }; static const struct decode_info decode_info_vebox = { "VEBOX", OP_LEN_VEBOX, ARRAY_SIZE(sub_op_vebox), sub_op_vebox, }; static const struct decode_info *ring_decode_info[I915_NUM_ENGINES][8] = { [RCS0] = { &decode_info_mi, NULL, NULL, &decode_info_3d_media, NULL, NULL, NULL, NULL, }, [VCS0] = { &decode_info_mi, NULL, NULL, &decode_info_mfx_vc, NULL, NULL, NULL, NULL, }, [BCS0] = { &decode_info_mi, NULL, &decode_info_2d, NULL, NULL, NULL, NULL, NULL, }, [VECS0] = { &decode_info_mi, NULL, NULL, &decode_info_vebox, NULL, NULL, NULL, NULL, }, [VCS1] = { &decode_info_mi, NULL, NULL, &decode_info_mfx_vc, NULL, NULL, NULL, NULL, }, }; static inline u32 get_opcode(u32 cmd, const struct intel_engine_cs *engine) { const struct decode_info *d_info; d_info = ring_decode_info[engine->id][CMD_TYPE(cmd)]; if (d_info == NULL) return INVALID_OP; return cmd >> (32 - d_info->op_len); } static inline const struct cmd_info * find_cmd_entry(struct intel_gvt *gvt, unsigned int opcode, const struct intel_engine_cs *engine) { struct cmd_entry *e; hash_for_each_possible(gvt->cmd_table, e, hlist, opcode) { if (opcode == e->info->opcode && e->info->rings & engine->mask) return e->info; } return NULL; } static inline const struct cmd_info * get_cmd_info(struct intel_gvt *gvt, u32 cmd, const struct intel_engine_cs *engine) { u32 opcode; opcode = get_opcode(cmd, engine); if (opcode == INVALID_OP) return NULL; return find_cmd_entry(gvt, opcode, engine); } static inline u32 sub_op_val(u32 cmd, u32 hi, u32 low) { return (cmd >> low) & ((1U << (hi - low + 1)) - 1); } static inline void print_opcode(u32 cmd, const struct intel_engine_cs *engine) { const struct decode_info *d_info; int i; d_info = ring_decode_info[engine->id][CMD_TYPE(cmd)]; if (d_info == NULL) return; gvt_dbg_cmd("opcode=0x%x %s sub_ops:", cmd >> (32 - d_info->op_len), d_info->name); for (i = 0; i < d_info->nr_sub_op; i++) pr_err("0x%x ", sub_op_val(cmd, d_info->sub_op[i].hi, d_info->sub_op[i].low)); pr_err("\n"); } static inline u32 *cmd_ptr(struct parser_exec_state *s, int index) { return s->ip_va + (index << 2); } static inline u32 cmd_val(struct parser_exec_state *s, int index) { return *cmd_ptr(s, index); } static inline bool is_init_ctx(struct parser_exec_state *s) { return (s->buf_type == RING_BUFFER_CTX && s->is_init_ctx); } static void parser_exec_state_dump(struct parser_exec_state *s) { int cnt = 0; int i; gvt_dbg_cmd(" vgpu%d RING%s: ring_start(%08lx) ring_end(%08lx)" " ring_head(%08lx) ring_tail(%08lx)\n", s->vgpu->id, s->engine->name, s->ring_start, s->ring_start + s->ring_size, s->ring_head, s->ring_tail); gvt_dbg_cmd(" %s %s ip_gma(%08lx) ", s->buf_type == RING_BUFFER_INSTRUCTION ? "RING_BUFFER" : ((s->buf_type == RING_BUFFER_CTX) ? "CTX_BUFFER" : "BATCH_BUFFER"), s->buf_addr_type == GTT_BUFFER ? "GTT" : "PPGTT", s->ip_gma); if (s->ip_va == NULL) { gvt_dbg_cmd(" ip_va(NULL)"); return; } gvt_dbg_cmd(" ip_va=%p: %08x %08x %08x %08x\n", s->ip_va, cmd_val(s, 0), cmd_val(s, 1), cmd_val(s, 2), cmd_val(s, 3)); print_opcode(cmd_val(s, 0), s->engine); s->ip_va = (u32 *)((((u64)s->ip_va) >> 12) << 12); while (cnt < 1024) { gvt_dbg_cmd("ip_va=%p: ", s->ip_va); for (i = 0; i < 8; i++) gvt_dbg_cmd("%08x ", cmd_val(s, i)); gvt_dbg_cmd("\n"); s->ip_va += 8 * sizeof(u32); cnt += 8; } } static inline void update_ip_va(struct parser_exec_state *s) { unsigned long len = 0; if (WARN_ON(s->ring_head == s->ring_tail)) return; if (s->buf_type == RING_BUFFER_INSTRUCTION || s->buf_type == RING_BUFFER_CTX) { unsigned long ring_top = s->ring_start + s->ring_size; if (s->ring_head > s->ring_tail) { if (s->ip_gma >= s->ring_head && s->ip_gma < ring_top) len = (s->ip_gma - s->ring_head); else if (s->ip_gma >= s->ring_start && s->ip_gma <= s->ring_tail) len = (ring_top - s->ring_head) + (s->ip_gma - s->ring_start); } else len = (s->ip_gma - s->ring_head); s->ip_va = s->rb_va + len; } else {/* shadow batch buffer */ s->ip_va = s->ret_bb_va; } } static inline int ip_gma_set(struct parser_exec_state *s, unsigned long ip_gma) { WARN_ON(!IS_ALIGNED(ip_gma, 4)); s->ip_gma = ip_gma; update_ip_va(s); return 0; } static inline int ip_gma_advance(struct parser_exec_state *s, unsigned int dw_len) { s->ip_gma += (dw_len << 2); if (s->buf_type == RING_BUFFER_INSTRUCTION) { if (s->ip_gma >= s->ring_start + s->ring_size) s->ip_gma -= s->ring_size; update_ip_va(s); } else { s->ip_va += (dw_len << 2); } return 0; } static inline int get_cmd_length(const struct cmd_info *info, u32 cmd) { if ((info->flag & F_LEN_MASK) == F_LEN_CONST) return info->len; else return (cmd & ((1U << info->len) - 1)) + 2; return 0; } static inline int cmd_length(struct parser_exec_state *s) { return get_cmd_length(s->info, cmd_val(s, 0)); } /* do not remove this, some platform may need clflush here */ #define patch_value(s, addr, val) do { \ *addr = val; \ } while (0) static inline bool is_mocs_mmio(unsigned int offset) { return ((offset >= 0xc800) && (offset <= 0xcff8)) || ((offset >= 0xb020) && (offset <= 0xb0a0)); } static int is_cmd_update_pdps(unsigned int offset, struct parser_exec_state *s) { u32 base = s->workload->engine->mmio_base; return i915_mmio_reg_equal(_MMIO(offset), GEN8_RING_PDP_UDW(base, 0)); } static int cmd_pdp_mmio_update_handler(struct parser_exec_state *s, unsigned int offset, unsigned int index) { struct intel_vgpu *vgpu = s->vgpu; struct intel_vgpu_mm *shadow_mm = s->workload->shadow_mm; struct intel_vgpu_mm *mm; u64 pdps[GEN8_3LVL_PDPES]; if (shadow_mm->ppgtt_mm.root_entry_type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY) { pdps[0] = (u64)cmd_val(s, 2) << 32; pdps[0] |= cmd_val(s, 4); mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps); if (!mm) { gvt_vgpu_err("failed to get the 4-level shadow vm\n"); return -EINVAL; } intel_vgpu_mm_get(mm); list_add_tail(&mm->ppgtt_mm.link, &s->workload->lri_shadow_mm); *cmd_ptr(s, 2) = upper_32_bits(mm->ppgtt_mm.shadow_pdps[0]); *cmd_ptr(s, 4) = lower_32_bits(mm->ppgtt_mm.shadow_pdps[0]); } else { /* Currently all guests use PML4 table and now can't * have a guest with 3-level table but uses LRI for * PPGTT update. So this is simply un-testable. */ GEM_BUG_ON(1); gvt_vgpu_err("invalid shared shadow vm type\n"); return -EINVAL; } return 0; } static int cmd_reg_handler(struct parser_exec_state *s, unsigned int offset, unsigned int index, char *cmd) { struct intel_vgpu *vgpu = s->vgpu; struct intel_gvt *gvt = vgpu->gvt; u32 ctx_sr_ctl; u32 *vreg, vreg_old; if (offset + 4 > gvt->device_info.mmio_size) { gvt_vgpu_err("%s access to (%x) outside of MMIO range\n", cmd, offset); return -EFAULT; } if (is_init_ctx(s)) { struct intel_gvt_mmio_info *mmio_info; intel_gvt_mmio_set_cmd_accessible(gvt, offset); mmio_info = intel_gvt_find_mmio_info(gvt, offset); if (mmio_info && mmio_info->write) intel_gvt_mmio_set_cmd_write_patch(gvt, offset); return 0; } if (!intel_gvt_mmio_is_cmd_accessible(gvt, offset)) { gvt_vgpu_err("%s access to non-render register (%x)\n", cmd, offset); return -EBADRQC; } if (!strncmp(cmd, "srm", 3) || !strncmp(cmd, "lrm", 3)) { if (offset == i915_mmio_reg_offset(GEN8_L3SQCREG4) || offset == 0x21f0 || (IS_BROADWELL(gvt->gt->i915) && offset == i915_mmio_reg_offset(INSTPM))) return 0; else { gvt_vgpu_err("%s access to register (%x)\n", cmd, offset); return -EPERM; } } if (!strncmp(cmd, "lrr-src", 7) || !strncmp(cmd, "lrr-dst", 7)) { if (IS_BROADWELL(gvt->gt->i915) && offset == 0x215c) return 0; else { gvt_vgpu_err("not allowed cmd %s reg (%x)\n", cmd, offset); return -EPERM; } } if (!strncmp(cmd, "pipe_ctrl", 9)) { /* TODO: add LRI POST logic here */ return 0; } if (strncmp(cmd, "lri", 3)) return -EPERM; /* below are all lri handlers */ vreg = &vgpu_vreg(s->vgpu, offset); if (is_cmd_update_pdps(offset, s) && cmd_pdp_mmio_update_handler(s, offset, index)) return -EINVAL; if (offset == i915_mmio_reg_offset(DERRMR) || offset == i915_mmio_reg_offset(FORCEWAKE_MT)) { /* Writing to HW VGT_PVINFO_PAGE offset will be discarded */ patch_value(s, cmd_ptr(s, index), VGT_PVINFO_PAGE); } if (is_mocs_mmio(offset)) *vreg = cmd_val(s, index + 1); vreg_old = *vreg; if (intel_gvt_mmio_is_cmd_write_patch(gvt, offset)) { u32 cmdval_new, cmdval; struct intel_gvt_mmio_info *mmio_info; cmdval = cmd_val(s, index + 1); mmio_info = intel_gvt_find_mmio_info(gvt, offset); if (!mmio_info) { cmdval_new = cmdval; } else { u64 ro_mask = mmio_info->ro_mask; int ret; if (likely(!ro_mask)) ret = mmio_info->write(s->vgpu, offset, &cmdval, 4); else { gvt_vgpu_err("try to write RO reg %x\n", offset); ret = -EBADRQC; } if (ret) return ret; cmdval_new = *vreg; } if (cmdval_new != cmdval) patch_value(s, cmd_ptr(s, index+1), cmdval_new); } /* only patch cmd. restore vreg value if changed in mmio write handler*/ *vreg = vreg_old; /* TODO * In order to let workload with inhibit context to generate * correct image data into memory, vregs values will be loaded to * hw via LRIs in the workload with inhibit context. But as * indirect context is loaded prior to LRIs in workload, we don't * want reg values specified in indirect context overwritten by * LRIs in workloads. So, when scanning an indirect context, we * update reg values in it into vregs, so LRIs in workload with * inhibit context will restore with correct values */ if (GRAPHICS_VER(s->engine->i915) == 9 && intel_gvt_mmio_is_sr_in_ctx(gvt, offset) && !strncmp(cmd, "lri", 3)) { intel_gvt_read_gpa(s->vgpu, s->workload->ring_context_gpa + 12, &ctx_sr_ctl, 4); /* check inhibit context */ if (ctx_sr_ctl & 1) { u32 data = cmd_val(s, index + 1); if (intel_gvt_mmio_has_mode_mask(s->vgpu->gvt, offset)) intel_vgpu_mask_mmio_write(vgpu, offset, &data, 4); else vgpu_vreg(vgpu, offset) = data; } } return 0; } #define cmd_reg(s, i) \ (cmd_val(s, i) & GENMASK(22, 2)) #define cmd_reg_inhibit(s, i) \ (cmd_val(s, i) & GENMASK(22, 18)) #define cmd_gma(s, i) \ (cmd_val(s, i) & GENMASK(31, 2)) #define cmd_gma_hi(s, i) \ (cmd_val(s, i) & GENMASK(15, 0)) static int cmd_handler_lri(struct parser_exec_state *s) { int i, ret = 0; int cmd_len = cmd_length(s); for (i = 1; i < cmd_len; i += 2) { if (IS_BROADWELL(s->engine->i915) && s->engine->id != RCS0) { if (s->engine->id == BCS0 && cmd_reg(s, i) == i915_mmio_reg_offset(DERRMR)) ret |= 0; else ret |= cmd_reg_inhibit(s, i) ? -EBADRQC : 0; } if (ret) break; ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lri"); if (ret) break; } return ret; } static int cmd_handler_lrr(struct parser_exec_state *s) { int i, ret = 0; int cmd_len = cmd_length(s); for (i = 1; i < cmd_len; i += 2) { if (IS_BROADWELL(s->engine->i915)) ret |= ((cmd_reg_inhibit(s, i) || (cmd_reg_inhibit(s, i + 1)))) ? -EBADRQC : 0; if (ret) break; ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lrr-src"); if (ret) break; ret |= cmd_reg_handler(s, cmd_reg(s, i + 1), i, "lrr-dst"); if (ret) break; } return ret; } static inline int cmd_address_audit(struct parser_exec_state *s, unsigned long guest_gma, int op_size, bool index_mode); static int cmd_handler_lrm(struct parser_exec_state *s) { struct intel_gvt *gvt = s->vgpu->gvt; int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd; unsigned long gma; int i, ret = 0; int cmd_len = cmd_length(s); for (i = 1; i < cmd_len;) { if (IS_BROADWELL(s->engine->i915)) ret |= (cmd_reg_inhibit(s, i)) ? -EBADRQC : 0; if (ret) break; ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lrm"); if (ret) break; if (cmd_val(s, 0) & (1 << 22)) { gma = cmd_gma(s, i + 1); if (gmadr_bytes == 8) gma |= (cmd_gma_hi(s, i + 2)) << 32; ret |= cmd_address_audit(s, gma, sizeof(u32), false); if (ret) break; } i += gmadr_dw_number(s) + 1; } return ret; } static int cmd_handler_srm(struct parser_exec_state *s) { int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd; unsigned long gma; int i, ret = 0; int cmd_len = cmd_length(s); for (i = 1; i < cmd_len;) { ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "srm"); if (ret) break; if (cmd_val(s, 0) & (1 << 22)) { gma = cmd_gma(s, i + 1); if (gmadr_bytes == 8) gma |= (cmd_gma_hi(s, i + 2)) << 32; ret |= cmd_address_audit(s, gma, sizeof(u32), false); if (ret) break; } i += gmadr_dw_number(s) + 1; } return ret; } struct cmd_interrupt_event { int pipe_control_notify; int mi_flush_dw; int mi_user_interrupt; }; static const struct cmd_interrupt_event cmd_interrupt_events[] = { [RCS0] = { .pipe_control_notify = RCS_PIPE_CONTROL, .mi_flush_dw = INTEL_GVT_EVENT_RESERVED, .mi_user_interrupt = RCS_MI_USER_INTERRUPT, }, [BCS0] = { .pipe_control_notify = INTEL_GVT_EVENT_RESERVED, .mi_flush_dw = BCS_MI_FLUSH_DW, .mi_user_interrupt = BCS_MI_USER_INTERRUPT, }, [VCS0] = { .pipe_control_notify = INTEL_GVT_EVENT_RESERVED, .mi_flush_dw = VCS_MI_FLUSH_DW, .mi_user_interrupt = VCS_MI_USER_INTERRUPT, }, [VCS1] = { .pipe_control_notify = INTEL_GVT_EVENT_RESERVED, .mi_flush_dw = VCS2_MI_FLUSH_DW, .mi_user_interrupt = VCS2_MI_USER_INTERRUPT, }, [VECS0] = { .pipe_control_notify = INTEL_GVT_EVENT_RESERVED, .mi_flush_dw = VECS_MI_FLUSH_DW, .mi_user_interrupt = VECS_MI_USER_INTERRUPT, }, }; static int cmd_handler_pipe_control(struct parser_exec_state *s) { int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd; unsigned long gma; bool index_mode = false; unsigned int post_sync; int ret = 0; u32 hws_pga, val; post_sync = (cmd_val(s, 1) & PIPE_CONTROL_POST_SYNC_OP_MASK) >> 14; /* LRI post sync */ if (cmd_val(s, 1) & PIPE_CONTROL_MMIO_WRITE) ret = cmd_reg_handler(s, cmd_reg(s, 2), 1, "pipe_ctrl"); /* post sync */ else if (post_sync) { if (post_sync == 2) ret = cmd_reg_handler(s, 0x2350, 1, "pipe_ctrl"); else if (post_sync == 3) ret = cmd_reg_handler(s, 0x2358, 1, "pipe_ctrl"); else if (post_sync == 1) { /* check ggtt*/ if ((cmd_val(s, 1) & PIPE_CONTROL_GLOBAL_GTT_IVB)) { gma = cmd_val(s, 2) & GENMASK(31, 3); if (gmadr_bytes == 8) gma |= (cmd_gma_hi(s, 3)) << 32; /* Store Data Index */ if (cmd_val(s, 1) & (1 << 21)) index_mode = true; ret |= cmd_address_audit(s, gma, sizeof(u64), index_mode); if (ret) return ret; if (index_mode) { hws_pga = s->vgpu->hws_pga[s->engine->id]; gma = hws_pga + gma; patch_value(s, cmd_ptr(s, 2), gma); val = cmd_val(s, 1) & (~(1 << 21)); patch_value(s, cmd_ptr(s, 1), val); } } } } if (ret) return ret; if (cmd_val(s, 1) & PIPE_CONTROL_NOTIFY) set_bit(cmd_interrupt_events[s->engine->id].pipe_control_notify, s->workload->pending_events); return 0; } static int cmd_handler_mi_user_interrupt(struct parser_exec_state *s) { set_bit(cmd_interrupt_events[s->engine->id].mi_user_interrupt, s->workload->pending_events); patch_value(s, cmd_ptr(s, 0), MI_NOOP); return 0; } static int cmd_advance_default(struct parser_exec_state *s) { return ip_gma_advance(s, cmd_length(s)); } static int cmd_handler_mi_batch_buffer_end(struct parser_exec_state *s) { int ret; if (s->buf_type == BATCH_BUFFER_2ND_LEVEL) { s->buf_type = BATCH_BUFFER_INSTRUCTION; ret = ip_gma_set(s, s->ret_ip_gma_bb); s->buf_addr_type = s->saved_buf_addr_type; } else if (s->buf_type == RING_BUFFER_CTX) { ret = ip_gma_set(s, s->ring_tail); } else { s->buf_type = RING_BUFFER_INSTRUCTION; s->buf_addr_type = GTT_BUFFER; if (s->ret_ip_gma_ring >= s->ring_start + s->ring_size) s->ret_ip_gma_ring -= s->ring_size; ret = ip_gma_set(s, s->ret_ip_gma_ring); } return ret; } struct mi_display_flip_command_info { int pipe; int plane; int event; i915_reg_t stride_reg; i915_reg_t ctrl_reg; i915_reg_t surf_reg; u64 stride_val; u64 tile_val; u64 surf_val; bool async_flip; }; struct plane_code_mapping { int pipe; int plane; int event; }; static int gen8_decode_mi_display_flip(struct parser_exec_state *s, struct mi_display_flip_command_info *info) { struct drm_i915_private *dev_priv = s->engine->i915; struct plane_code_mapping gen8_plane_code[] = { [0] = {PIPE_A, PLANE_A, PRIMARY_A_FLIP_DONE}, [1] = {PIPE_B, PLANE_A, PRIMARY_B_FLIP_DONE}, [2] = {PIPE_A, PLANE_B, SPRITE_A_FLIP_DONE}, [3] = {PIPE_B, PLANE_B, SPRITE_B_FLIP_DONE}, [4] = {PIPE_C, PLANE_A, PRIMARY_C_FLIP_DONE}, [5] = {PIPE_C, PLANE_B, SPRITE_C_FLIP_DONE}, }; u32 dword0, dword1, dword2; u32 v; dword0 = cmd_val(s, 0); dword1 = cmd_val(s, 1); dword2 = cmd_val(s, 2); v = (dword0 & GENMASK(21, 19)) >> 19; if (drm_WARN_ON(&dev_priv->drm, v >= ARRAY_SIZE(gen8_plane_code))) return -EBADRQC; info->pipe = gen8_plane_code[v].pipe; info->plane = gen8_plane_code[v].plane; info->event = gen8_plane_code[v].event; info->stride_val = (dword1 & GENMASK(15, 6)) >> 6; info->tile_val = (dword1 & 0x1); info->surf_val = (dword2 & GENMASK(31, 12)) >> 12; info->async_flip = ((dword2 & GENMASK(1, 0)) == 0x1); if (info->plane == PLANE_A) { info->ctrl_reg = DSPCNTR(dev_priv, info->pipe); info->stride_reg = DSPSTRIDE(dev_priv, info->pipe); info->surf_reg = DSPSURF(dev_priv, info->pipe); } else if (info->plane == PLANE_B) { info->ctrl_reg = SPRCTL(info->pipe); info->stride_reg = SPRSTRIDE(info->pipe); info->surf_reg = SPRSURF(info->pipe); } else { drm_WARN_ON(&dev_priv->drm, 1); return -EBADRQC; } return 0; } static int skl_decode_mi_display_flip(struct parser_exec_state *s, struct mi_display_flip_command_info *info) { struct drm_i915_private *dev_priv = s->engine->i915; struct intel_vgpu *vgpu = s->vgpu; u32 dword0 = cmd_val(s, 0); u32 dword1 = cmd_val(s, 1); u32 dword2 = cmd_val(s, 2); u32 plane = (dword0 & GENMASK(12, 8)) >> 8; info->plane = PRIMARY_PLANE; switch (plane) { case MI_DISPLAY_FLIP_SKL_PLANE_1_A: info->pipe = PIPE_A; info->event = PRIMARY_A_FLIP_DONE; break; case MI_DISPLAY_FLIP_SKL_PLANE_1_B: info->pipe = PIPE_B; info->event = PRIMARY_B_FLIP_DONE; break; case MI_DISPLAY_FLIP_SKL_PLANE_1_C: info->pipe = PIPE_C; info->event = PRIMARY_C_FLIP_DONE; break; case MI_DISPLAY_FLIP_SKL_PLANE_2_A: info->pipe = PIPE_A; info->event = SPRITE_A_FLIP_DONE; info->plane = SPRITE_PLANE; break; case MI_DISPLAY_FLIP_SKL_PLANE_2_B: info->pipe = PIPE_B; info->event = SPRITE_B_FLIP_DONE; info->plane = SPRITE_PLANE; break; case MI_DISPLAY_FLIP_SKL_PLANE_2_C: info->pipe = PIPE_C; info->event = SPRITE_C_FLIP_DONE; info->plane = SPRITE_PLANE; break; default: gvt_vgpu_err("unknown plane code %d\n", plane); return -EBADRQC; } info->stride_val = (dword1 & GENMASK(15, 6)) >> 6; info->tile_val = (dword1 & GENMASK(2, 0)); info->surf_val = (dword2 & GENMASK(31, 12)) >> 12; info->async_flip = ((dword2 & GENMASK(1, 0)) == 0x1); info->ctrl_reg = DSPCNTR(dev_priv, info->pipe); info->stride_reg = DSPSTRIDE(dev_priv, info->pipe); info->surf_reg = DSPSURF(dev_priv, info->pipe); return 0; } static int gen8_check_mi_display_flip(struct parser_exec_state *s, struct mi_display_flip_command_info *info) { u32 stride, tile; if (!info->async_flip) return 0; if (GRAPHICS_VER(s->engine->i915) >= 9) { stride = vgpu_vreg_t(s->vgpu, info->stride_reg) & GENMASK(9, 0); tile = (vgpu_vreg_t(s->vgpu, info->ctrl_reg) & GENMASK(12, 10)) >> 10; } else { stride = (vgpu_vreg_t(s->vgpu, info->stride_reg) & GENMASK(15, 6)) >> 6; tile = (vgpu_vreg_t(s->vgpu, info->ctrl_reg) & (1 << 10)) >> 10; } if (stride != info->stride_val) gvt_dbg_cmd("cannot change stride during async flip\n"); if (tile != info->tile_val) gvt_dbg_cmd("cannot change tile during async flip\n"); return 0; } static int gen8_update_plane_mmio_from_mi_display_flip( struct parser_exec_state *s, struct mi_display_flip_command_info *info) { struct drm_i915_private *dev_priv = s->engine->i915; struct intel_vgpu *vgpu = s->vgpu; set_mask_bits(&vgpu_vreg_t(vgpu, info->surf_reg), GENMASK(31, 12), info->surf_val << 12); if (GRAPHICS_VER(dev_priv) >= 9) { set_mask_bits(&vgpu_vreg_t(vgpu, info->stride_reg), GENMASK(9, 0), info->stride_val); set_mask_bits(&vgpu_vreg_t(vgpu, info->ctrl_reg), GENMASK(12, 10), info->tile_val << 10); } else { set_mask_bits(&vgpu_vreg_t(vgpu, info->stride_reg), GENMASK(15, 6), info->stride_val << 6); set_mask_bits(&vgpu_vreg_t(vgpu, info->ctrl_reg), GENMASK(10, 10), info->tile_val << 10); } if (info->plane == PLANE_PRIMARY) vgpu_vreg_t(vgpu, PIPE_FLIPCOUNT_G4X(dev_priv, info->pipe))++; if (info->async_flip) intel_vgpu_trigger_virtual_event(vgpu, info->event); else set_bit(info->event, vgpu->irq.flip_done_event[info->pipe]); return 0; } static int decode_mi_display_flip(struct parser_exec_state *s, struct mi_display_flip_command_info *info) { if (IS_BROADWELL(s->engine->i915)) return gen8_decode_mi_display_flip(s, info); if (GRAPHICS_VER(s->engine->i915) >= 9) return skl_decode_mi_display_flip(s, info); return -ENODEV; } static int check_mi_display_flip(struct parser_exec_state *s, struct mi_display_flip_command_info *info) { return gen8_check_mi_display_flip(s, info); } static int update_plane_mmio_from_mi_display_flip( struct parser_exec_state *s, struct mi_display_flip_command_info *info) { return gen8_update_plane_mmio_from_mi_display_flip(s, info); } static int cmd_handler_mi_display_flip(struct parser_exec_state *s) { struct mi_display_flip_command_info info; struct intel_vgpu *vgpu = s->vgpu; int ret; int i; int len = cmd_length(s); u32 valid_len = CMD_LEN(1); /* Flip Type == Stereo 3D Flip */ if (DWORD_FIELD(2, 1, 0) == 2) valid_len++; ret = gvt_check_valid_cmd_length(cmd_length(s), valid_len); if (ret) return ret; ret = decode_mi_display_flip(s, &info); if (ret) { gvt_vgpu_err("fail to decode MI display flip command\n"); return ret; } ret = check_mi_display_flip(s, &info); if (ret) { gvt_vgpu_err("invalid MI display flip command\n"); return ret; } ret = update_plane_mmio_from_mi_display_flip(s, &info); if (ret) { gvt_vgpu_err("fail to update plane mmio\n"); return ret; } for (i = 0; i < len; i++) patch_value(s, cmd_ptr(s, i), MI_NOOP); return 0; } static bool is_wait_for_flip_pending(u32 cmd) { return cmd & (MI_WAIT_FOR_PLANE_A_FLIP_PENDING | MI_WAIT_FOR_PLANE_B_FLIP_PENDING | MI_WAIT_FOR_PLANE_C_FLIP_PENDING | MI_WAIT_FOR_SPRITE_A_FLIP_PENDING | MI_WAIT_FOR_SPRITE_B_FLIP_PENDING | MI_WAIT_FOR_SPRITE_C_FLIP_PENDING); } static int cmd_handler_mi_wait_for_event(struct parser_exec_state *s) { u32 cmd = cmd_val(s, 0); if (!is_wait_for_flip_pending(cmd)) return 0; patch_value(s, cmd_ptr(s, 0), MI_NOOP); return 0; } static unsigned long get_gma_bb_from_cmd(struct parser_exec_state *s, int index) { unsigned long addr; unsigned long gma_high, gma_low; struct intel_vgpu *vgpu = s->vgpu; int gmadr_bytes = vgpu->gvt->device_info.gmadr_bytes_in_cmd; if (WARN_ON(gmadr_bytes != 4 && gmadr_bytes != 8)) { gvt_vgpu_err("invalid gma bytes %d\n", gmadr_bytes); return INTEL_GVT_INVALID_ADDR; } gma_low = cmd_val(s, index) & BATCH_BUFFER_ADDR_MASK; if (gmadr_bytes == 4) { addr = gma_low; } else { gma_high = cmd_val(s, index + 1) & BATCH_BUFFER_ADDR_HIGH_MASK; addr = (((unsigned long)gma_high) << 32) | gma_low; } return addr; } static inline int cmd_address_audit(struct parser_exec_state *s, unsigned long guest_gma, int op_size, bool index_mode) { struct intel_vgpu *vgpu = s->vgpu; u32 max_surface_size = vgpu->gvt->device_info.max_surface_size; int i; int ret; if (op_size > max_surface_size) { gvt_vgpu_err("command address audit fail name %s\n", s->info->name); return -EFAULT; } if (index_mode) { if (guest_gma >= I915_GTT_PAGE_SIZE) { ret = -EFAULT; goto err; } } else if (!intel_gvt_ggtt_validate_range(vgpu, guest_gma, op_size)) { ret = -EFAULT; goto err; } return 0; err: gvt_vgpu_err("cmd_parser: Malicious %s detected, addr=0x%lx, len=%d!\n", s->info->name, guest_gma, op_size); pr_err("cmd dump: "); for (i = 0; i < cmd_length(s); i++) { if (!(i % 4)) pr_err("\n%08x ", cmd_val(s, i)); else pr_err("%08x ", cmd_val(s, i)); } pr_err("\nvgpu%d: aperture 0x%llx - 0x%llx, hidden 0x%llx - 0x%llx\n", vgpu->id, vgpu_aperture_gmadr_base(vgpu), vgpu_aperture_gmadr_end(vgpu), vgpu_hidden_gmadr_base(vgpu), vgpu_hidden_gmadr_end(vgpu)); return ret; } static int cmd_handler_mi_store_data_imm(struct parser_exec_state *s) { int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd; int op_size = (cmd_length(s) - 3) * sizeof(u32); int core_id = (cmd_val(s, 2) & (1 << 0)) ? 1 : 0; unsigned long gma, gma_low, gma_high; u32 valid_len = CMD_LEN(2); int ret = 0; /* check ppggt */ if (!(cmd_val(s, 0) & (1 << 22))) return 0; /* check if QWORD */ if (DWORD_FIELD(0, 21, 21)) valid_len++; ret = gvt_check_valid_cmd_length(cmd_length(s), valid_len); if (ret) return ret; gma = cmd_val(s, 2) & GENMASK(31, 2); if (gmadr_bytes == 8) { gma_low = cmd_val(s, 1) & GENMASK(31, 2); gma_high = cmd_val(s, 2) & GENMASK(15, 0); gma = (gma_high << 32) | gma_low; core_id = (cmd_val(s, 1) & (1 << 0)) ? 1 : 0; } ret = cmd_address_audit(s, gma + op_size * core_id, op_size, false); return ret; } static inline int unexpected_cmd(struct parser_exec_state *s) { struct intel_vgpu *vgpu = s->vgpu; gvt_vgpu_err("Unexpected %s in command buffer!\n", s->info->name); return -EBADRQC; } static int cmd_handler_mi_semaphore_wait(struct parser_exec_state *s) { return unexpected_cmd(s); } static int cmd_handler_mi_report_perf_count(struct parser_exec_state *s) { return unexpected_cmd(s); } static int cmd_handler_mi_op_2e(struct parser_exec_state *s) { return unexpected_cmd(s); } static int cmd_handler_mi_op_2f(struct parser_exec_state *s) { int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd; int op_size = (1 << ((cmd_val(s, 0) & GENMASK(20, 19)) >> 19)) * sizeof(u32); unsigned long gma, gma_high; u32 valid_len = CMD_LEN(1); int ret = 0; if (!(cmd_val(s, 0) & (1 << 22))) return ret; /* check inline data */ if (cmd_val(s, 0) & BIT(18)) valid_len = CMD_LEN(9); ret = gvt_check_valid_cmd_length(cmd_length(s), valid_len); if (ret) return ret; gma = cmd_val(s, 1) & GENMASK(31, 2); if (gmadr_bytes == 8) { gma_high = cmd_val(s, 2) & GENMASK(15, 0); gma = (gma_high << 32) | gma; } ret = cmd_address_audit(s, gma, op_size, false); return ret; } static int cmd_handler_mi_store_data_index(struct parser_exec_state *s) { return unexpected_cmd(s); } static int cmd_handler_mi_clflush(struct parser_exec_state *s) { return unexpected_cmd(s); } static int cmd_handler_mi_conditional_batch_buffer_end( struct parser_exec_state *s) { return unexpected_cmd(s); } static int cmd_handler_mi_update_gtt(struct parser_exec_state *s) { return unexpected_cmd(s); } static int cmd_handler_mi_flush_dw(struct parser_exec_state *s) { int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd; unsigned long gma; bool index_mode = false; int ret = 0; u32 hws_pga, val; u32 valid_len = CMD_LEN(2); ret = gvt_check_valid_cmd_length(cmd_length(s), valid_len); if (ret) { /* Check again for Qword */ ret = gvt_check_valid_cmd_length(cmd_length(s), ++valid_len); return ret; } /* Check post-sync and ppgtt bit */ if (((cmd_val(s, 0) >> 14) & 0x3) && (cmd_val(s, 1) & (1 << 2))) { gma = cmd_val(s, 1) & GENMASK(31, 3); if (gmadr_bytes == 8) gma |= (cmd_val(s, 2) & GENMASK(15, 0)) << 32; /* Store Data Index */ if (cmd_val(s, 0) & (1 << 21)) index_mode = true; ret = cmd_address_audit(s, gma, sizeof(u64), index_mode); if (ret) return ret; if (index_mode) { hws_pga = s->vgpu->hws_pga[s->engine->id]; gma = hws_pga + gma; patch_value(s, cmd_ptr(s, 1), gma); val = cmd_val(s, 0) & (~(1 << 21)); patch_value(s, cmd_ptr(s, 0), val); } } /* Check notify bit */ if ((cmd_val(s, 0) & (1 << 8))) set_bit(cmd_interrupt_events[s->engine->id].mi_flush_dw, s->workload->pending_events); return ret; } static void addr_type_update_snb(struct parser_exec_state *s) { if ((s->buf_type == RING_BUFFER_INSTRUCTION) && (BATCH_BUFFER_ADR_SPACE_BIT(cmd_val(s, 0)) == 1)) { s->buf_addr_type = PPGTT_BUFFER; } } static int copy_gma_to_hva(struct intel_vgpu *vgpu, struct intel_vgpu_mm *mm, unsigned long gma, unsigned long end_gma, void *va) { unsigned long copy_len, offset; unsigned long len = 0; unsigned long gpa; while (gma != end_gma) { gpa = intel_vgpu_gma_to_gpa(mm, gma); if (gpa == INTEL_GVT_INVALID_ADDR) { gvt_vgpu_err("invalid gma address: %lx\n", gma); return -EFAULT; } offset = gma & (I915_GTT_PAGE_SIZE - 1); copy_len = (end_gma - gma) >= (I915_GTT_PAGE_SIZE - offset) ? I915_GTT_PAGE_SIZE - offset : end_gma - gma; intel_gvt_read_gpa(vgpu, gpa, va + len, copy_len); len += copy_len; gma += copy_len; } return len; } /* * Check whether a batch buffer needs to be scanned. Currently * the only criteria is based on privilege. */ static int batch_buffer_needs_scan(struct parser_exec_state *s) { /* Decide privilege based on address space */ if (cmd_val(s, 0) & BIT(8) && !(s->vgpu->scan_nonprivbb & s->engine->mask)) return 0; return 1; } static const char *repr_addr_type(unsigned int type) { return type == PPGTT_BUFFER ? "ppgtt" : "ggtt"; } static int find_bb_size(struct parser_exec_state *s, unsigned long *bb_size, unsigned long *bb_end_cmd_offset) { unsigned long gma = 0; const struct cmd_info *info; u32 cmd_len = 0; bool bb_end = false; struct intel_vgpu *vgpu = s->vgpu; u32 cmd; struct intel_vgpu_mm *mm = (s->buf_addr_type == GTT_BUFFER) ? s->vgpu->gtt.ggtt_mm : s->workload->shadow_mm; *bb_size = 0; *bb_end_cmd_offset = 0; /* get the start gm address of the batch buffer */ gma = get_gma_bb_from_cmd(s, 1); if (gma == INTEL_GVT_INVALID_ADDR) return -EFAULT; cmd = cmd_val(s, 0); info = get_cmd_info(s->vgpu->gvt, cmd, s->engine); if (info == NULL) { gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n", cmd, get_opcode(cmd, s->engine), repr_addr_type(s->buf_addr_type), s->engine->name, s->workload); return -EBADRQC; } do { if (copy_gma_to_hva(s->vgpu, mm, gma, gma + 4, &cmd) < 0) return -EFAULT; info = get_cmd_info(s->vgpu->gvt, cmd, s->engine); if (info == NULL) { gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n", cmd, get_opcode(cmd, s->engine), repr_addr_type(s->buf_addr_type), s->engine->name, s->workload); return -EBADRQC; } if (info->opcode == OP_MI_BATCH_BUFFER_END) { bb_end = true; } else if (info->opcode == OP_MI_BATCH_BUFFER_START) { if (BATCH_BUFFER_2ND_LEVEL_BIT(cmd) == 0) /* chained batch buffer */ bb_end = true; } if (bb_end) *bb_end_cmd_offset = *bb_size; cmd_len = get_cmd_length(info, cmd) << 2; *bb_size += cmd_len; gma += cmd_len; } while (!bb_end); return 0; } static int audit_bb_end(struct parser_exec_state *s, void *va) { struct intel_vgpu *vgpu = s->vgpu; u32 cmd = *(u32 *)va; const struct cmd_info *info; info = get_cmd_info(s->vgpu->gvt, cmd, s->engine); if (info == NULL) { gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n", cmd, get_opcode(cmd, s->engine), repr_addr_type(s->buf_addr_type), s->engine->name, s->workload); return -EBADRQC; } if ((info->opcode == OP_MI_BATCH_BUFFER_END) || ((info->opcode == OP_MI_BATCH_BUFFER_START) && (BATCH_BUFFER_2ND_LEVEL_BIT(cmd) == 0))) return 0; return -EBADRQC; } static int perform_bb_shadow(struct parser_exec_state *s) { struct intel_vgpu *vgpu = s->vgpu; struct intel_vgpu_shadow_bb *bb; unsigned long gma = 0; unsigned long bb_size; unsigned long bb_end_cmd_offset; int ret = 0; struct intel_vgpu_mm *mm = (s->buf_addr_type == GTT_BUFFER) ? s->vgpu->gtt.ggtt_mm : s->workload->shadow_mm; unsigned long start_offset = 0; /* get the start gm address of the batch buffer */ gma = get_gma_bb_from_cmd(s, 1); if (gma == INTEL_GVT_INVALID_ADDR) return -EFAULT; ret = find_bb_size(s, &bb_size, &bb_end_cmd_offset); if (ret) return ret; bb = kzalloc(sizeof(*bb), GFP_KERNEL); if (!bb) return -ENOMEM; bb->ppgtt = (s->buf_addr_type == GTT_BUFFER) ? false : true; /* the start_offset stores the batch buffer's start gma's * offset relative to page boundary. so for non-privileged batch * buffer, the shadowed gem object holds exactly the same page * layout as original gem object. This is for the convience of * replacing the whole non-privilged batch buffer page to this * shadowed one in PPGTT at the same gma address. (this replacing * action is not implemented yet now, but may be necessary in * future). * for prileged batch buffer, we just change start gma address to * that of shadowed page. */ if (bb->ppgtt) start_offset = gma & ~I915_GTT_PAGE_MASK; bb->obj = i915_gem_object_create_shmem(s->engine->i915, round_up(bb_size + start_offset, PAGE_SIZE)); if (IS_ERR(bb->obj)) { ret = PTR_ERR(bb->obj); goto err_free_bb; } bb->va = i915_gem_object_pin_map(bb->obj, I915_MAP_WB); if (IS_ERR(bb->va)) { ret = PTR_ERR(bb->va); goto err_free_obj; } ret = copy_gma_to_hva(s->vgpu, mm, gma, gma + bb_size, bb->va + start_offset); if (ret < 0) { gvt_vgpu_err("fail to copy guest ring buffer\n"); ret = -EFAULT; goto err_unmap; } ret = audit_bb_end(s, bb->va + start_offset + bb_end_cmd_offset); if (ret) goto err_unmap; i915_gem_object_unlock(bb->obj); INIT_LIST_HEAD(&bb->list); list_add(&bb->list, &s->workload->shadow_bb); bb->bb_start_cmd_va = s->ip_va; if ((s->buf_type == BATCH_BUFFER_INSTRUCTION) && (!s->is_ctx_wa)) bb->bb_offset = s->ip_va - s->rb_va; else bb->bb_offset = 0; /* * ip_va saves the virtual address of the shadow batch buffer, while * ip_gma saves the graphics address of the original batch buffer. * As the shadow batch buffer is just a copy from the originial one, * it should be right to use shadow batch buffer'va and original batch * buffer's gma in pair. After all, we don't want to pin the shadow * buffer here (too early). */ s->ip_va = bb->va + start_offset; s->ip_gma = gma; return 0; err_unmap: i915_gem_object_unpin_map(bb->obj); err_free_obj: i915_gem_object_put(bb->obj); err_free_bb: kfree(bb); return ret; } static int cmd_handler_mi_batch_buffer_start(struct parser_exec_state *s) { bool second_level; int ret = 0; struct intel_vgpu *vgpu = s->vgpu; if (s->buf_type == BATCH_BUFFER_2ND_LEVEL) { gvt_vgpu_err("Found MI_BATCH_BUFFER_START in 2nd level BB\n"); return -EFAULT; } second_level = BATCH_BUFFER_2ND_LEVEL_BIT(cmd_val(s, 0)) == 1; if (second_level && (s->buf_type != BATCH_BUFFER_INSTRUCTION)) { gvt_vgpu_err("Jumping to 2nd level BB from RB is not allowed\n"); return -EFAULT; } s->saved_buf_addr_type = s->buf_addr_type; addr_type_update_snb(s); if (s->buf_type == RING_BUFFER_INSTRUCTION) { s->ret_ip_gma_ring = s->ip_gma + cmd_length(s) * sizeof(u32); s->buf_type = BATCH_BUFFER_INSTRUCTION; } else if (second_level) { s->buf_type = BATCH_BUFFER_2ND_LEVEL; s->ret_ip_gma_bb = s->ip_gma + cmd_length(s) * sizeof(u32); s->ret_bb_va = s->ip_va + cmd_length(s) * sizeof(u32); } if (batch_buffer_needs_scan(s)) { ret = perform_bb_shadow(s); if (ret < 0) gvt_vgpu_err("invalid shadow batch buffer\n"); } else { /* emulate a batch buffer end to do return right */ ret = cmd_handler_mi_batch_buffer_end(s); if (ret < 0) return ret; } return ret; } static int mi_noop_index; static const struct cmd_info cmd_info[] = { {"MI_NOOP", OP_MI_NOOP, F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL}, {"MI_SET_PREDICATE", OP_MI_SET_PREDICATE, F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL}, {"MI_USER_INTERRUPT", OP_MI_USER_INTERRUPT, F_LEN_CONST, R_ALL, D_ALL, 0, 1, cmd_handler_mi_user_interrupt}, {"MI_WAIT_FOR_EVENT", OP_MI_WAIT_FOR_EVENT, F_LEN_CONST, R_RCS | R_BCS, D_ALL, 0, 1, cmd_handler_mi_wait_for_event}, {"MI_FLUSH", OP_MI_FLUSH, F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL}, {"MI_ARB_CHECK", OP_MI_ARB_CHECK, F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL}, {"MI_RS_CONTROL", OP_MI_RS_CONTROL, F_LEN_CONST, R_RCS, D_ALL, 0, 1, NULL}, {"MI_REPORT_HEAD", OP_MI_REPORT_HEAD, F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL}, {"MI_ARB_ON_OFF", OP_MI_ARB_ON_OFF, F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL}, {"MI_URB_ATOMIC_ALLOC", OP_MI_URB_ATOMIC_ALLOC, F_LEN_CONST, R_RCS, D_ALL, 0, 1, NULL}, {"MI_BATCH_BUFFER_END", OP_MI_BATCH_BUFFER_END, F_IP_ADVANCE_CUSTOM | F_LEN_CONST, R_ALL, D_ALL, 0, 1, cmd_handler_mi_batch_buffer_end}, {"MI_SUSPEND_FLUSH", OP_MI_SUSPEND_FLUSH, F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL}, {"MI_PREDICATE", OP_MI_PREDICATE, F_LEN_CONST, R_RCS, D_ALL, 0, 1, NULL}, {"MI_TOPOLOGY_FILTER", OP_MI_TOPOLOGY_FILTER, F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL}, {"MI_SET_APPID", OP_MI_SET_APPID, F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL}, {"MI_RS_CONTEXT", OP_MI_RS_CONTEXT, F_LEN_CONST, R_RCS, D_ALL, 0, 1, NULL}, {"MI_DISPLAY_FLIP", OP_MI_DISPLAY_FLIP, F_LEN_VAR, R_RCS | R_BCS, D_ALL, 0, 8, cmd_handler_mi_display_flip}, {"MI_SEMAPHORE_MBOX", OP_MI_SEMAPHORE_MBOX, F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, 0, 8, NULL, CMD_LEN(1)}, {"MI_MATH", OP_MI_MATH, F_LEN_VAR, R_ALL, D_ALL, 0, 8, NULL}, {"MI_URB_CLEAR", OP_MI_URB_CLEAR, F_LEN_VAR | F_LEN_VAR_FIXED, R_RCS, D_ALL, 0, 8, NULL, CMD_LEN(0)}, {"MI_SEMAPHORE_SIGNAL", OP_MI_SEMAPHORE_SIGNAL, F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_BDW_PLUS, 0, 8, NULL, CMD_LEN(0)}, {"MI_SEMAPHORE_WAIT", OP_MI_SEMAPHORE_WAIT, F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_BDW_PLUS, ADDR_FIX_1(2), 8, cmd_handler_mi_semaphore_wait, CMD_LEN(2)}, {"MI_STORE_DATA_IMM", OP_MI_STORE_DATA_IMM, F_LEN_VAR, R_ALL, D_BDW_PLUS, ADDR_FIX_1(1), 10, cmd_handler_mi_store_data_imm}, {"MI_STORE_DATA_INDEX", OP_MI_STORE_DATA_INDEX, F_LEN_VAR, R_ALL, D_ALL, 0, 8, cmd_handler_mi_store_data_index}, {"MI_LOAD_REGISTER_IMM", OP_MI_LOAD_REGISTER_IMM, F_LEN_VAR, R_ALL, D_ALL, 0, 8, cmd_handler_lri}, {"MI_UPDATE_GTT", OP_MI_UPDATE_GTT, F_LEN_VAR, R_ALL, D_BDW_PLUS, 0, 10, cmd_handler_mi_update_gtt}, {"MI_STORE_REGISTER_MEM", OP_MI_STORE_REGISTER_MEM, F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(2), 8, cmd_handler_srm, CMD_LEN(2)}, {"MI_FLUSH_DW", OP_MI_FLUSH_DW, F_LEN_VAR, R_ALL, D_ALL, 0, 6, cmd_handler_mi_flush_dw}, {"MI_CLFLUSH", OP_MI_CLFLUSH, F_LEN_VAR, R_ALL, D_ALL, ADDR_FIX_1(1), 10, cmd_handler_mi_clflush}, {"MI_REPORT_PERF_COUNT", OP_MI_REPORT_PERF_COUNT, F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(1), 6, cmd_handler_mi_report_perf_count, CMD_LEN(2)}, {"MI_LOAD_REGISTER_MEM", OP_MI_LOAD_REGISTER_MEM, F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(2), 8, cmd_handler_lrm, CMD_LEN(2)}, {"MI_LOAD_REGISTER_REG", OP_MI_LOAD_REGISTER_REG, F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, 0, 8, cmd_handler_lrr, CMD_LEN(1)}, {"MI_RS_STORE_DATA_IMM", OP_MI_RS_STORE_DATA_IMM, F_LEN_VAR | F_LEN_VAR_FIXED, R_RCS, D_ALL, 0, 8, NULL, CMD_LEN(2)}, {"MI_LOAD_URB_MEM", OP_MI_LOAD_URB_MEM, F_LEN_VAR | F_LEN_VAR_FIXED, R_RCS, D_ALL, ADDR_FIX_1(2), 8, NULL, CMD_LEN(2)}, {"MI_STORE_URM_MEM", OP_MI_STORE_URM_MEM, F_LEN_VAR, R_RCS, D_ALL, ADDR_FIX_1(2), 8, NULL}, {"MI_OP_2E", OP_MI_2E, F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_BDW_PLUS, ADDR_FIX_2(1, 2), 8, cmd_handler_mi_op_2e, CMD_LEN(3)}, {"MI_OP_2F", OP_MI_2F, F_LEN_VAR, R_ALL, D_BDW_PLUS, ADDR_FIX_1(1), 8, cmd_handler_mi_op_2f}, {"MI_BATCH_BUFFER_START", OP_MI_BATCH_BUFFER_START, F_IP_ADVANCE_CUSTOM, R_ALL, D_ALL, 0, 8, cmd_handler_mi_batch_buffer_start}, {"MI_CONDITIONAL_BATCH_BUFFER_END", OP_MI_CONDITIONAL_BATCH_BUFFER_END, F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(2), 8, cmd_handler_mi_conditional_batch_buffer_end, CMD_LEN(2)}, {"MI_LOAD_SCAN_LINES_INCL", OP_MI_LOAD_SCAN_LINES_INCL, F_LEN_CONST, R_RCS | R_BCS, D_ALL, 0, 2, NULL}, {"XY_SETUP_BLT", OP_XY_SETUP_BLT, F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 7), 8, NULL}, {"XY_SETUP_CLIP_BLT", OP_XY_SETUP_CLIP_BLT, F_LEN_VAR, R_BCS, D_ALL, 0, 8, NULL}, {"XY_SETUP_MONO_PATTERN_SL_BLT", OP_XY_SETUP_MONO_PATTERN_SL_BLT, F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL}, {"XY_PIXEL_BLT", OP_XY_PIXEL_BLT, F_LEN_VAR, R_BCS, D_ALL, 0, 8, NULL}, {"XY_SCANLINES_BLT", OP_XY_SCANLINES_BLT, F_LEN_VAR, R_BCS, D_ALL, 0, 8, NULL}, {"XY_TEXT_BLT", OP_XY_TEXT_BLT, F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(3), 8, NULL}, {"XY_TEXT_IMMEDIATE_BLT", OP_XY_TEXT_IMMEDIATE_BLT, F_LEN_VAR, R_BCS, D_ALL, 0, 8, NULL}, {"XY_COLOR_BLT", OP_XY_COLOR_BLT, F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL}, {"XY_PAT_BLT", OP_XY_PAT_BLT, F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 5), 8, NULL}, {"XY_MONO_PAT_BLT", OP_XY_MONO_PAT_BLT, F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL}, {"XY_SRC_COPY_BLT", OP_XY_SRC_COPY_BLT, F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 7), 8, NULL}, {"XY_MONO_SRC_COPY_BLT", OP_XY_MONO_SRC_COPY_BLT, F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 5), 8, NULL}, {"XY_FULL_BLT", OP_XY_FULL_BLT, F_LEN_VAR, R_BCS, D_ALL, 0, 8, NULL}, {"XY_FULL_MONO_SRC_BLT", OP_XY_FULL_MONO_SRC_BLT, F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_3(4, 5, 8), 8, NULL}, {"XY_FULL_MONO_PATTERN_BLT", OP_XY_FULL_MONO_PATTERN_BLT, F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 7), 8, NULL}, {"XY_FULL_MONO_PATTERN_MONO_SRC_BLT", OP_XY_FULL_MONO_PATTERN_MONO_SRC_BLT, F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 5), 8, NULL}, {"XY_MONO_PAT_FIXED_BLT", OP_XY_MONO_PAT_FIXED_BLT, F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL}, {"XY_MONO_SRC_COPY_IMMEDIATE_BLT", OP_XY_MONO_SRC_COPY_IMMEDIATE_BLT, F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL}, {"XY_PAT_BLT_IMMEDIATE", OP_XY_PAT_BLT_IMMEDIATE, F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL}, {"XY_SRC_COPY_CHROMA_BLT", OP_XY_SRC_COPY_CHROMA_BLT, F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 7), 8, NULL}, {"XY_FULL_IMMEDIATE_PATTERN_BLT", OP_XY_FULL_IMMEDIATE_PATTERN_BLT, F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 7), 8, NULL}, {"XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT", OP_XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT, F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 5), 8, NULL}, {"XY_PAT_CHROMA_BLT", OP_XY_PAT_CHROMA_BLT, F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 5), 8, NULL}, {"XY_PAT_CHROMA_BLT_IMMEDIATE", OP_XY_PAT_CHROMA_BLT_IMMEDIATE, F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL}, {"3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP", OP_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, {"3DSTATE_VIEWPORT_STATE_POINTERS_CC", OP_3DSTATE_VIEWPORT_STATE_POINTERS_CC, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, {"3DSTATE_BLEND_STATE_POINTERS", OP_3DSTATE_BLEND_STATE_POINTERS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, {"3DSTATE_DEPTH_STENCIL_STATE_POINTERS", OP_3DSTATE_DEPTH_STENCIL_STATE_POINTERS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, {"3DSTATE_BINDING_TABLE_POINTERS_VS", OP_3DSTATE_BINDING_TABLE_POINTERS_VS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, {"3DSTATE_BINDING_TABLE_POINTERS_HS", OP_3DSTATE_BINDING_TABLE_POINTERS_HS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, {"3DSTATE_BINDING_TABLE_POINTERS_DS", OP_3DSTATE_BINDING_TABLE_POINTERS_DS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, {"3DSTATE_BINDING_TABLE_POINTERS_GS", OP_3DSTATE_BINDING_TABLE_POINTERS_GS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, {"3DSTATE_BINDING_TABLE_POINTERS_PS", OP_3DSTATE_BINDING_TABLE_POINTERS_PS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, {"3DSTATE_SAMPLER_STATE_POINTERS_VS", OP_3DSTATE_SAMPLER_STATE_POINTERS_VS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, {"3DSTATE_SAMPLER_STATE_POINTERS_HS", OP_3DSTATE_SAMPLER_STATE_POINTERS_HS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, {"3DSTATE_SAMPLER_STATE_POINTERS_DS", OP_3DSTATE_SAMPLER_STATE_POINTERS_DS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, {"3DSTATE_SAMPLER_STATE_POINTERS_GS", OP_3DSTATE_SAMPLER_STATE_POINTERS_GS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, {"3DSTATE_SAMPLER_STATE_POINTERS_PS", OP_3DSTATE_SAMPLER_STATE_POINTERS_PS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, {"3DSTATE_URB_VS", OP_3DSTATE_URB_VS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, {"3DSTATE_URB_HS", OP_3DSTATE_URB_HS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, {"3DSTATE_URB_DS", OP_3DSTATE_URB_DS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, {"3DSTATE_URB_GS", OP_3DSTATE_URB_GS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, {"3DSTATE_GATHER_CONSTANT_VS", OP_3DSTATE_GATHER_CONSTANT_VS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, {"3DSTATE_GATHER_CONSTANT_GS", OP_3DSTATE_GATHER_CONSTANT_GS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, {"3DSTATE_GATHER_CONSTANT_HS", OP_3DSTATE_GATHER_CONSTANT_HS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, {"3DSTATE_GATHER_CONSTANT_DS", OP_3DSTATE_GATHER_CONSTANT_DS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, {"3DSTATE_GATHER_CONSTANT_PS", OP_3DSTATE_GATHER_CONSTANT_PS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, {"3DSTATE_DX9_CONSTANTF_VS", OP_3DSTATE_DX9_CONSTANTF_VS, F_LEN_VAR, R_RCS, D_ALL, 0, 11, NULL}, {"3DSTATE_DX9_CONSTANTF_PS", OP_3DSTATE_DX9_CONSTANTF_PS, F_LEN_VAR, R_RCS, D_ALL, 0, 11, NULL}, {"3DSTATE_DX9_CONSTANTI_VS", OP_3DSTATE_DX9_CONSTANTI_VS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, {"3DSTATE_DX9_CONSTANTI_PS", OP_3DSTATE_DX9_CONSTANTI_PS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, {"3DSTATE_DX9_CONSTANTB_VS", OP_3DSTATE_DX9_CONSTANTB_VS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, {"3DSTATE_DX9_CONSTANTB_PS", OP_3DSTATE_DX9_CONSTANTB_PS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, {"3DSTATE_DX9_LOCAL_VALID_VS", OP_3DSTATE_DX9_LOCAL_VALID_VS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, {"3DSTATE_DX9_LOCAL_VALID_PS", OP_3DSTATE_DX9_LOCAL_VALID_PS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, {"3DSTATE_DX9_GENERATE_ACTIVE_VS", OP_3DSTATE_DX9_GENERATE_ACTIVE_VS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, {"3DSTATE_DX9_GENERATE_ACTIVE_PS", OP_3DSTATE_DX9_GENERATE_ACTIVE_PS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, {"3DSTATE_BINDING_TABLE_EDIT_VS", OP_3DSTATE_BINDING_TABLE_EDIT_VS, F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL}, {"3DSTATE_BINDING_TABLE_EDIT_GS", OP_3DSTATE_BINDING_TABLE_EDIT_GS, F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL}, {"3DSTATE_BINDING_TABLE_EDIT_HS", OP_3DSTATE_BINDING_TABLE_EDIT_HS, F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL}, {"3DSTATE_BINDING_TABLE_EDIT_DS", OP_3DSTATE_BINDING_TABLE_EDIT_DS, F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL}, {"3DSTATE_BINDING_TABLE_EDIT_PS", OP_3DSTATE_BINDING_TABLE_EDIT_PS, F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL}, {"3DSTATE_VF_INSTANCING", OP_3DSTATE_VF_INSTANCING, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8, NULL}, {"3DSTATE_VF_SGVS", OP_3DSTATE_VF_SGVS, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8, NULL}, {"3DSTATE_VF_TOPOLOGY", OP_3DSTATE_VF_TOPOLOGY, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8, NULL}, {"3DSTATE_WM_CHROMAKEY", OP_3DSTATE_WM_CHROMAKEY, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8, NULL}, {"3DSTATE_PS_BLEND", OP_3DSTATE_PS_BLEND, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8, NULL}, {"3DSTATE_WM_DEPTH_STENCIL", OP_3DSTATE_WM_DEPTH_STENCIL, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8, NULL}, {"3DSTATE_PS_EXTRA", OP_3DSTATE_PS_EXTRA, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8, NULL}, {"3DSTATE_RASTER", OP_3DSTATE_RASTER, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8, NULL}, {"3DSTATE_SBE_SWIZ", OP_3DSTATE_SBE_SWIZ, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8, NULL}, {"3DSTATE_WM_HZ_OP", OP_3DSTATE_WM_HZ_OP, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8, NULL}, {"3DSTATE_VERTEX_BUFFERS", OP_3DSTATE_VERTEX_BUFFERS, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8, NULL}, {"3DSTATE_VERTEX_ELEMENTS", OP_3DSTATE_VERTEX_ELEMENTS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, {"3DSTATE_INDEX_BUFFER", OP_3DSTATE_INDEX_BUFFER, F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(2), 8, NULL}, {"3DSTATE_VF_STATISTICS", OP_3DSTATE_VF_STATISTICS, F_LEN_CONST, R_RCS, D_ALL, 0, 1, NULL}, {"3DSTATE_VF", OP_3DSTATE_VF, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, {"3DSTATE_CC_STATE_POINTERS", OP_3DSTATE_CC_STATE_POINTERS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, {"3DSTATE_SCISSOR_STATE_POINTERS", OP_3DSTATE_SCISSOR_STATE_POINTERS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, {"3DSTATE_GS", OP_3DSTATE_GS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, {"3DSTATE_CLIP", OP_3DSTATE_CLIP, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, {"3DSTATE_WM", OP_3DSTATE_WM, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, {"3DSTATE_CONSTANT_GS", OP_3DSTATE_CONSTANT_GS, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8, NULL}, {"3DSTATE_CONSTANT_PS", OP_3DSTATE_CONSTANT_PS, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8, NULL}, {"3DSTATE_SAMPLE_MASK", OP_3DSTATE_SAMPLE_MASK, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, {"3DSTATE_CONSTANT_HS", OP_3DSTATE_CONSTANT_HS, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8, NULL}, {"3DSTATE_CONSTANT_DS", OP_3DSTATE_CONSTANT_DS, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8, NULL}, {"3DSTATE_HS", OP_3DSTATE_HS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, {"3DSTATE_TE", OP_3DSTATE_TE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, {"3DSTATE_DS", OP_3DSTATE_DS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, {"3DSTATE_STREAMOUT", OP_3DSTATE_STREAMOUT, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, {"3DSTATE_SBE", OP_3DSTATE_SBE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, {"3DSTATE_PS", OP_3DSTATE_PS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, {"3DSTATE_DRAWING_RECTANGLE", OP_3DSTATE_DRAWING_RECTANGLE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, {"3DSTATE_SAMPLER_PALETTE_LOAD0", OP_3DSTATE_SAMPLER_PALETTE_LOAD0, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, {"3DSTATE_CHROMA_KEY", OP_3DSTATE_CHROMA_KEY, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, {"3DSTATE_DEPTH_BUFFER", OP_3DSTATE_DEPTH_BUFFER, F_LEN_VAR, R_RCS, D_ALL, ADDR_FIX_1(2), 8, NULL}, {"3DSTATE_POLY_STIPPLE_OFFSET", OP_3DSTATE_POLY_STIPPLE_OFFSET, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, {"3DSTATE_POLY_STIPPLE_PATTERN", OP_3DSTATE_POLY_STIPPLE_PATTERN, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, {"3DSTATE_LINE_STIPPLE", OP_3DSTATE_LINE_STIPPLE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, {"3DSTATE_AA_LINE_PARAMS", OP_3DSTATE_AA_LINE_PARAMS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, {"3DSTATE_GS_SVB_INDEX", OP_3DSTATE_GS_SVB_INDEX, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, {"3DSTATE_SAMPLER_PALETTE_LOAD1", OP_3DSTATE_SAMPLER_PALETTE_LOAD1, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, {"3DSTATE_MULTISAMPLE", OP_3DSTATE_MULTISAMPLE_BDW, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8, NULL}, {"3DSTATE_STENCIL_BUFFER", OP_3DSTATE_STENCIL_BUFFER, F_LEN_VAR, R_RCS, D_ALL, ADDR_FIX_1(2), 8, NULL}, {"3DSTATE_HIER_DEPTH_BUFFER", OP_3DSTATE_HIER_DEPTH_BUFFER, F_LEN_VAR, R_RCS, D_ALL, ADDR_FIX_1(2), 8, NULL}, {"3DSTATE_CLEAR_PARAMS", OP_3DSTATE_CLEAR_PARAMS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, {"3DSTATE_PUSH_CONSTANT_ALLOC_VS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_VS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, {"3DSTATE_PUSH_CONSTANT_ALLOC_HS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_HS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, {"3DSTATE_PUSH_CONSTANT_ALLOC_DS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_DS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, {"3DSTATE_PUSH_CONSTANT_ALLOC_GS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_GS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, {"3DSTATE_PUSH_CONSTANT_ALLOC_PS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_PS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, {"3DSTATE_MONOFILTER_SIZE", OP_3DSTATE_MONOFILTER_SIZE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, {"3DSTATE_SO_DECL_LIST", OP_3DSTATE_SO_DECL_LIST, F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL}, {"3DSTATE_SO_BUFFER", OP_3DSTATE_SO_BUFFER, F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_2(2, 4), 8, NULL}, {"3DSTATE_BINDING_TABLE_POOL_ALLOC", OP_3DSTATE_BINDING_TABLE_POOL_ALLOC, F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL}, {"3DSTATE_GATHER_POOL_ALLOC", OP_3DSTATE_GATHER_POOL_ALLOC, F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL}, {"3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC", OP_3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC, F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL}, {"3DSTATE_SAMPLE_PATTERN", OP_3DSTATE_SAMPLE_PATTERN, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8, NULL}, {"PIPE_CONTROL", OP_PIPE_CONTROL, F_LEN_VAR, R_RCS, D_ALL, ADDR_FIX_1(2), 8, cmd_handler_pipe_control}, {"3DPRIMITIVE", OP_3DPRIMITIVE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, {"PIPELINE_SELECT", OP_PIPELINE_SELECT, F_LEN_CONST, R_RCS, D_ALL, 0, 1, NULL}, {"STATE_PREFETCH", OP_STATE_PREFETCH, F_LEN_VAR, R_RCS, D_ALL, ADDR_FIX_1(1), 8, NULL}, {"STATE_SIP", OP_STATE_SIP, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, {"STATE_BASE_ADDRESS", OP_STATE_BASE_ADDRESS, F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_5(1, 3, 4, 5, 6), 8, NULL}, {"OP_3D_MEDIA_0_1_4", OP_3D_MEDIA_0_1_4, F_LEN_VAR, R_RCS, D_ALL, ADDR_FIX_1(1), 8, NULL}, {"OP_SWTESS_BASE_ADDRESS", OP_SWTESS_BASE_ADDRESS, F_LEN_VAR, R_RCS, D_ALL, ADDR_FIX_2(1, 2), 3, NULL}, {"3DSTATE_VS", OP_3DSTATE_VS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, {"3DSTATE_SF", OP_3DSTATE_SF, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, {"3DSTATE_CONSTANT_VS", OP_3DSTATE_CONSTANT_VS, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8, NULL}, {"3DSTATE_COMPONENT_PACKING", OP_3DSTATE_COMPONENT_PACKING, F_LEN_VAR, R_RCS, D_SKL_PLUS, 0, 8, NULL}, {"MEDIA_INTERFACE_DESCRIPTOR_LOAD", OP_MEDIA_INTERFACE_DESCRIPTOR_LOAD, F_LEN_VAR, R_RCS, D_ALL, 0, 16, NULL}, {"MEDIA_GATEWAY_STATE", OP_MEDIA_GATEWAY_STATE, F_LEN_VAR, R_RCS, D_ALL, 0, 16, NULL}, {"MEDIA_STATE_FLUSH", OP_MEDIA_STATE_FLUSH, F_LEN_VAR, R_RCS, D_ALL, 0, 16, NULL}, {"MEDIA_POOL_STATE", OP_MEDIA_POOL_STATE, F_LEN_VAR, R_RCS, D_ALL, 0, 16, NULL}, {"MEDIA_OBJECT", OP_MEDIA_OBJECT, F_LEN_VAR, R_RCS, D_ALL, 0, 16, NULL}, {"MEDIA_CURBE_LOAD", OP_MEDIA_CURBE_LOAD, F_LEN_VAR, R_RCS, D_ALL, 0, 16, NULL}, {"MEDIA_OBJECT_PRT", OP_MEDIA_OBJECT_PRT, F_LEN_VAR, R_RCS, D_ALL, 0, 16, NULL}, {"MEDIA_OBJECT_WALKER", OP_MEDIA_OBJECT_WALKER, F_LEN_VAR, R_RCS, D_ALL, 0, 16, NULL}, {"GPGPU_WALKER", OP_GPGPU_WALKER, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, {"MEDIA_VFE_STATE", OP_MEDIA_VFE_STATE, F_LEN_VAR, R_RCS, D_ALL, 0, 16, NULL}, {"3DSTATE_VF_STATISTICS_GM45", OP_3DSTATE_VF_STATISTICS_GM45, F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL}, {"MFX_PIPE_MODE_SELECT", OP_MFX_PIPE_MODE_SELECT, F_LEN_VAR, R_VCS, D_ALL, 0, 12, NULL}, {"MFX_SURFACE_STATE", OP_MFX_SURFACE_STATE, F_LEN_VAR, R_VCS, D_ALL, 0, 12, NULL}, {"MFX_PIPE_BUF_ADDR_STATE", OP_MFX_PIPE_BUF_ADDR_STATE, F_LEN_VAR, R_VCS, D_BDW_PLUS, 0, 12, NULL}, {"MFX_IND_OBJ_BASE_ADDR_STATE", OP_MFX_IND_OBJ_BASE_ADDR_STATE, F_LEN_VAR, R_VCS, D_BDW_PLUS, 0, 12, NULL}, {"MFX_BSP_BUF_BASE_ADDR_STATE", OP_MFX_BSP_BUF_BASE_ADDR_STATE, F_LEN_VAR, R_VCS, D_BDW_PLUS, ADDR_FIX_3(1, 3, 5), 12, NULL}, {"OP_2_0_0_5", OP_2_0_0_5, F_LEN_VAR, R_VCS, D_BDW_PLUS, 0, 12, NULL}, {"MFX_STATE_POINTER", OP_MFX_STATE_POINTER, F_LEN_VAR, R_VCS, D_ALL, 0, 12, NULL}, {"MFX_QM_STATE", OP_MFX_QM_STATE, F_LEN_VAR, R_VCS, D_ALL, 0, 12, NULL}, {"MFX_FQM_STATE", OP_MFX_FQM_STATE, F_LEN_VAR, R_VCS, D_ALL, 0, 12, NULL}, {"MFX_PAK_INSERT_OBJECT", OP_MFX_PAK_INSERT_OBJECT, F_LEN_VAR, R_VCS, D_ALL, 0, 12, NULL}, {"MFX_STITCH_OBJECT", OP_MFX_STITCH_OBJECT, F_LEN_VAR, R_VCS, D_ALL, 0, 12, NULL}, {"MFD_IT_OBJECT", OP_MFD_IT_OBJECT, F_LEN_VAR, R_VCS, D_ALL, 0, 12, NULL}, {"MFX_WAIT", OP_MFX_WAIT, F_LEN_VAR, R_VCS, D_ALL, 0, 6, NULL}, {"MFX_AVC_IMG_STATE", OP_MFX_AVC_IMG_STATE, F_LEN_VAR, R_VCS, D_ALL, 0, 12, NULL}, {"MFX_AVC_QM_STATE", OP_MFX_AVC_QM_STATE, F_LEN_VAR, R_VCS, D_ALL, 0, 12, NULL}, {"MFX_AVC_DIRECTMODE_STATE", OP_MFX_AVC_DIRECTMODE_STATE, F_LEN_VAR, R_VCS, D_ALL, 0, 12, NULL}, {"MFX_AVC_SLICE_STATE", OP_MFX_AVC_SLICE_STATE, F_LEN_VAR, R_VCS, D_ALL, 0, 12, NULL}, {"MFX_AVC_REF_IDX_STATE", OP_MFX_AVC_REF_IDX_STATE, F_LEN_VAR, R_VCS, D_ALL, 0, 12, NULL}, {"MFX_AVC_WEIGHTOFFSET_STATE", OP_MFX_AVC_WEIGHTOFFSET_STATE, F_LEN_VAR, R_VCS, D_ALL, 0, 12, NULL}, {"MFD_AVC_PICID_STATE", OP_MFD_AVC_PICID_STATE, F_LEN_VAR, R_VCS, D_ALL, 0, 12, NULL}, {"MFD_AVC_DPB_STATE", OP_MFD_AVC_DPB_STATE, F_LEN_VAR, R_VCS, D_ALL, 0, 12, NULL}, {"MFD_AVC_BSD_OBJECT", OP_MFD_AVC_BSD_OBJECT, F_LEN_VAR, R_VCS, D_ALL, 0, 12, NULL}, {"MFD_AVC_SLICEADDR", OP_MFD_AVC_SLICEADDR, F_LEN_VAR, R_VCS, D_ALL, ADDR_FIX_1(2), 12, NULL}, {"MFC_AVC_PAK_OBJECT", OP_MFC_AVC_PAK_OBJECT, F_LEN_VAR, R_VCS, D_ALL, 0, 12, NULL}, {"MFX_VC1_PRED_PIPE_STATE", OP_MFX_VC1_PRED_PIPE_STATE, F_LEN_VAR, R_VCS, D_ALL, 0, 12, NULL}, {"MFX_VC1_DIRECTMODE_STATE", OP_MFX_VC1_DIRECTMODE_STATE, F_LEN_VAR, R_VCS, D_ALL, 0, 12, NULL}, {"MFD_VC1_SHORT_PIC_STATE", OP_MFD_VC1_SHORT_PIC_STATE, F_LEN_VAR, R_VCS, D_ALL, 0, 12, NULL}, {"MFD_VC1_LONG_PIC_STATE", OP_MFD_VC1_LONG_PIC_STATE, F_LEN_VAR, R_VCS, D_ALL, 0, 12, NULL}, {"MFD_VC1_BSD_OBJECT", OP_MFD_VC1_BSD_OBJECT, F_LEN_VAR, R_VCS, D_ALL, 0, 12, NULL}, {"MFC_MPEG2_SLICEGROUP_STATE", OP_MFC_MPEG2_SLICEGROUP_STATE, F_LEN_VAR, R_VCS, D_ALL, 0, 12, NULL}, {"MFC_MPEG2_PAK_OBJECT", OP_MFC_MPEG2_PAK_OBJECT, F_LEN_VAR, R_VCS, D_ALL, 0, 12, NULL}, {"MFX_MPEG2_PIC_STATE", OP_MFX_MPEG2_PIC_STATE, F_LEN_VAR, R_VCS, D_ALL, 0, 12, NULL}, {"MFX_MPEG2_QM_STATE", OP_MFX_MPEG2_QM_STATE, F_LEN_VAR, R_VCS, D_ALL, 0, 12, NULL}, {"MFD_MPEG2_BSD_OBJECT", OP_MFD_MPEG2_BSD_OBJECT, F_LEN_VAR, R_VCS, D_ALL, 0, 12, NULL}, {"MFX_2_6_0_0", OP_MFX_2_6_0_0, F_LEN_VAR, R_VCS, D_ALL, 0, 16, NULL}, {"MFX_2_6_0_9", OP_MFX_2_6_0_9, F_LEN_VAR, R_VCS, D_ALL, 0, 16, NULL}, {"MFX_2_6_0_8", OP_MFX_2_6_0_8, F_LEN_VAR, R_VCS, D_ALL, 0, 16, NULL}, {"MFX_JPEG_PIC_STATE", OP_MFX_JPEG_PIC_STATE, F_LEN_VAR, R_VCS, D_ALL, 0, 12, NULL}, {"MFX_JPEG_HUFF_TABLE_STATE", OP_MFX_JPEG_HUFF_TABLE_STATE, F_LEN_VAR, R_VCS, D_ALL, 0, 12, NULL}, {"MFD_JPEG_BSD_OBJECT", OP_MFD_JPEG_BSD_OBJECT, F_LEN_VAR, R_VCS, D_ALL, 0, 12, NULL}, {"VEBOX_STATE", OP_VEB_STATE, F_LEN_VAR, R_VECS, D_ALL, 0, 12, NULL}, {"VEBOX_SURFACE_STATE", OP_VEB_SURFACE_STATE, F_LEN_VAR, R_VECS, D_ALL, 0, 12, NULL}, {"VEB_DI_IECP", OP_VEB_DNDI_IECP_STATE, F_LEN_VAR, R_VECS, D_BDW_PLUS, 0, 12, NULL}, }; static void add_cmd_entry(struct intel_gvt *gvt, struct cmd_entry *e) { hash_add(gvt->cmd_table, &e->hlist, e->info->opcode); } /* call the cmd handler, and advance ip */ static int cmd_parser_exec(struct parser_exec_state *s) { struct intel_vgpu *vgpu = s->vgpu; const struct cmd_info *info; u32 cmd; int ret = 0; cmd = cmd_val(s, 0); /* fastpath for MI_NOOP */ if (cmd == MI_NOOP) info = &cmd_info[mi_noop_index]; else info = get_cmd_info(s->vgpu->gvt, cmd, s->engine); if (info == NULL) { gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n", cmd, get_opcode(cmd, s->engine), repr_addr_type(s->buf_addr_type), s->engine->name, s->workload); return -EBADRQC; } s->info = info; trace_gvt_command(vgpu->id, s->engine->id, s->ip_gma, s->ip_va, cmd_length(s), s->buf_type, s->buf_addr_type, s->workload, info->name); if ((info->flag & F_LEN_MASK) == F_LEN_VAR_FIXED) { ret = gvt_check_valid_cmd_length(cmd_length(s), info->valid_len); if (ret) return ret; } if (info->handler) { ret = info->handler(s); if (ret < 0) { gvt_vgpu_err("%s handler error\n", info->name); return ret; } } if (!(info->flag & F_IP_ADVANCE_CUSTOM)) { ret = cmd_advance_default(s); if (ret) { gvt_vgpu_err("%s IP advance error\n", info->name); return ret; } } return 0; } static inline bool gma_out_of_range(unsigned long gma, unsigned long gma_head, unsigned int gma_tail) { if (gma_tail >= gma_head) return (gma < gma_head) || (gma > gma_tail); else return (gma > gma_tail) && (gma < gma_head); } /* Keep the consistent return type, e.g EBADRQC for unknown * cmd, EFAULT for invalid address, EPERM for nonpriv. later * works as the input of VM healthy status. */ static int command_scan(struct parser_exec_state *s, unsigned long rb_head, unsigned long rb_tail, unsigned long rb_start, unsigned long rb_len) { unsigned long gma_head, gma_tail, gma_bottom; int ret = 0; struct intel_vgpu *vgpu = s->vgpu; gma_head = rb_start + rb_head; gma_tail = rb_start + rb_tail; gma_bottom = rb_start + rb_len; while (s->ip_gma != gma_tail) { if (s->buf_type == RING_BUFFER_INSTRUCTION || s->buf_type == RING_BUFFER_CTX) { if (!(s->ip_gma >= rb_start) || !(s->ip_gma < gma_bottom)) { gvt_vgpu_err("ip_gma %lx out of ring scope." "(base:0x%lx, bottom: 0x%lx)\n", s->ip_gma, rb_start, gma_bottom); parser_exec_state_dump(s); return -EFAULT; } if (gma_out_of_range(s->ip_gma, gma_head, gma_tail)) { gvt_vgpu_err("ip_gma %lx out of range." "base 0x%lx head 0x%lx tail 0x%lx\n", s->ip_gma, rb_start, rb_head, rb_tail); parser_exec_state_dump(s); break; } } ret = cmd_parser_exec(s); if (ret) { gvt_vgpu_err("cmd parser error\n"); parser_exec_state_dump(s); break; } } return ret; } static int scan_workload(struct intel_vgpu_workload *workload) { unsigned long gma_head, gma_tail; struct parser_exec_state s; int ret = 0; /* ring base is page aligned */ if (WARN_ON(!IS_ALIGNED(workload->rb_start, I915_GTT_PAGE_SIZE))) return -EINVAL; gma_head = workload->rb_start + workload->rb_head; gma_tail = workload->rb_start + workload->rb_tail; s.buf_type = RING_BUFFER_INSTRUCTION; s.buf_addr_type = GTT_BUFFER; s.vgpu = workload->vgpu; s.engine = workload->engine; s.ring_start = workload->rb_start; s.ring_size = _RING_CTL_BUF_SIZE(workload->rb_ctl); s.ring_head = gma_head; s.ring_tail = gma_tail; s.rb_va = workload->shadow_ring_buffer_va; s.workload = workload; s.is_ctx_wa = false; if (bypass_scan_mask & workload->engine->mask || gma_head == gma_tail) return 0; ret = ip_gma_set(&s, gma_head); if (ret) goto out; ret = command_scan(&s, workload->rb_head, workload->rb_tail, workload->rb_start, _RING_CTL_BUF_SIZE(workload->rb_ctl)); out: return ret; } static int scan_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx) { unsigned long gma_head, gma_tail, ring_size, ring_tail; struct parser_exec_state s; int ret = 0; struct intel_vgpu_workload *workload = container_of(wa_ctx, struct intel_vgpu_workload, wa_ctx); /* ring base is page aligned */ if (WARN_ON(!IS_ALIGNED(wa_ctx->indirect_ctx.guest_gma, I915_GTT_PAGE_SIZE))) return -EINVAL; ring_tail = wa_ctx->indirect_ctx.size + 3 * sizeof(u32); ring_size = round_up(wa_ctx->indirect_ctx.size + CACHELINE_BYTES, PAGE_SIZE); gma_head = wa_ctx->indirect_ctx.guest_gma; gma_tail = wa_ctx->indirect_ctx.guest_gma + ring_tail; s.buf_type = RING_BUFFER_INSTRUCTION; s.buf_addr_type = GTT_BUFFER; s.vgpu = workload->vgpu; s.engine = workload->engine; s.ring_start = wa_ctx->indirect_ctx.guest_gma; s.ring_size = ring_size; s.ring_head = gma_head; s.ring_tail = gma_tail; s.rb_va = wa_ctx->indirect_ctx.shadow_va; s.workload = workload; s.is_ctx_wa = true; ret = ip_gma_set(&s, gma_head); if (ret) goto out; ret = command_scan(&s, 0, ring_tail, wa_ctx->indirect_ctx.guest_gma, ring_size); out: return ret; } static int shadow_workload_ring_buffer(struct intel_vgpu_workload *workload) { struct intel_vgpu *vgpu = workload->vgpu; struct intel_vgpu_submission *s = &vgpu->submission; unsigned long gma_head, gma_tail, gma_top, guest_rb_size; void *shadow_ring_buffer_va; int ret; guest_rb_size = _RING_CTL_BUF_SIZE(workload->rb_ctl); /* calculate workload ring buffer size */ workload->rb_len = (workload->rb_tail + guest_rb_size - workload->rb_head) % guest_rb_size; gma_head = workload->rb_start + workload->rb_head; gma_tail = workload->rb_start + workload->rb_tail; gma_top = workload->rb_start + guest_rb_size; if (workload->rb_len > s->ring_scan_buffer_size[workload->engine->id]) { void *p; /* realloc the new ring buffer if needed */ p = krealloc(s->ring_scan_buffer[workload->engine->id], workload->rb_len, GFP_KERNEL); if (!p) { gvt_vgpu_err("fail to re-alloc ring scan buffer\n"); return -ENOMEM; } s->ring_scan_buffer[workload->engine->id] = p; s->ring_scan_buffer_size[workload->engine->id] = workload->rb_len; } shadow_ring_buffer_va = s->ring_scan_buffer[workload->engine->id]; /* get shadow ring buffer va */ workload->shadow_ring_buffer_va = shadow_ring_buffer_va; /* head > tail --> copy head <-> top */ if (gma_head > gma_tail) { ret = copy_gma_to_hva(vgpu, vgpu->gtt.ggtt_mm, gma_head, gma_top, shadow_ring_buffer_va); if (ret < 0) { gvt_vgpu_err("fail to copy guest ring buffer\n"); return ret; } shadow_ring_buffer_va += ret; gma_head = workload->rb_start; } /* copy head or start <-> tail */ ret = copy_gma_to_hva(vgpu, vgpu->gtt.ggtt_mm, gma_head, gma_tail, shadow_ring_buffer_va); if (ret < 0) { gvt_vgpu_err("fail to copy guest ring buffer\n"); return ret; } return 0; } int intel_gvt_scan_and_shadow_ringbuffer(struct intel_vgpu_workload *workload) { int ret; struct intel_vgpu *vgpu = workload->vgpu; ret = shadow_workload_ring_buffer(workload); if (ret) { gvt_vgpu_err("fail to shadow workload ring_buffer\n"); return ret; } ret = scan_workload(workload); if (ret) { gvt_vgpu_err("scan workload error\n"); return ret; } return 0; } static int shadow_indirect_ctx(struct intel_shadow_wa_ctx *wa_ctx) { int ctx_size = wa_ctx->indirect_ctx.size; unsigned long guest_gma = wa_ctx->indirect_ctx.guest_gma; struct intel_vgpu_workload *workload = container_of(wa_ctx, struct intel_vgpu_workload, wa_ctx); struct intel_vgpu *vgpu = workload->vgpu; struct drm_i915_gem_object *obj; int ret = 0; void *map; obj = i915_gem_object_create_shmem(workload->engine->i915, roundup(ctx_size + CACHELINE_BYTES, PAGE_SIZE)); if (IS_ERR(obj)) return PTR_ERR(obj); /* get the va of the shadow batch buffer */ map = i915_gem_object_pin_map(obj, I915_MAP_WB); if (IS_ERR(map)) { gvt_vgpu_err("failed to vmap shadow indirect ctx\n"); ret = PTR_ERR(map); goto put_obj; } i915_gem_object_lock(obj, NULL); ret = i915_gem_object_set_to_cpu_domain(obj, false); i915_gem_object_unlock(obj); if (ret) { gvt_vgpu_err("failed to set shadow indirect ctx to CPU\n"); goto unmap_src; } ret = copy_gma_to_hva(workload->vgpu, workload->vgpu->gtt.ggtt_mm, guest_gma, guest_gma + ctx_size, map); if (ret < 0) { gvt_vgpu_err("fail to copy guest indirect ctx\n"); goto unmap_src; } wa_ctx->indirect_ctx.obj = obj; wa_ctx->indirect_ctx.shadow_va = map; return 0; unmap_src: i915_gem_object_unpin_map(obj); put_obj: i915_gem_object_put(obj); return ret; } static int combine_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx) { u32 per_ctx_start[CACHELINE_DWORDS] = {}; unsigned char *bb_start_sva; if (!wa_ctx->per_ctx.valid) return 0; per_ctx_start[0] = 0x18800001; per_ctx_start[1] = wa_ctx->per_ctx.guest_gma; bb_start_sva = (unsigned char *)wa_ctx->indirect_ctx.shadow_va + wa_ctx->indirect_ctx.size; memcpy(bb_start_sva, per_ctx_start, CACHELINE_BYTES); return 0; } int intel_gvt_scan_and_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx) { int ret; struct intel_vgpu_workload *workload = container_of(wa_ctx, struct intel_vgpu_workload, wa_ctx); struct intel_vgpu *vgpu = workload->vgpu; if (wa_ctx->indirect_ctx.size == 0) return 0; ret = shadow_indirect_ctx(wa_ctx); if (ret) { gvt_vgpu_err("fail to shadow indirect ctx\n"); return ret; } combine_wa_ctx(wa_ctx); ret = scan_wa_ctx(wa_ctx); if (ret) { gvt_vgpu_err("scan wa ctx error\n"); return ret; } return 0; } /* generate dummy contexts by sending empty requests to HW, and let * the HW to fill Engine Contexts. This dummy contexts are used for * initialization purpose (update reg whitelist), so referred to as * init context here */ void intel_gvt_update_reg_whitelist(struct intel_vgpu *vgpu) { const unsigned long start = LRC_STATE_PN * PAGE_SIZE; struct intel_gvt *gvt = vgpu->gvt; struct intel_engine_cs *engine; enum intel_engine_id id; if (gvt->is_reg_whitelist_updated) return; /* scan init ctx to update cmd accessible list */ for_each_engine(engine, gvt->gt, id) { struct parser_exec_state s; void *vaddr; int ret; if (!engine->default_state) continue; vaddr = shmem_pin_map(engine->default_state); if (!vaddr) { gvt_err("failed to map %s->default state\n", engine->name); return; } s.buf_type = RING_BUFFER_CTX; s.buf_addr_type = GTT_BUFFER; s.vgpu = vgpu; s.engine = engine; s.ring_start = 0; s.ring_size = engine->context_size - start; s.ring_head = 0; s.ring_tail = s.ring_size; s.rb_va = vaddr + start; s.workload = NULL; s.is_ctx_wa = false; s.is_init_ctx = true; /* skipping the first RING_CTX_SIZE(0x50) dwords */ ret = ip_gma_set(&s, RING_CTX_SIZE); if (ret == 0) { ret = command_scan(&s, 0, s.ring_size, 0, s.ring_size); if (ret) gvt_err("Scan init ctx error\n"); } shmem_unpin_map(engine->default_state, vaddr); if (ret) return; } gvt->is_reg_whitelist_updated = true; } int intel_gvt_scan_engine_context(struct intel_vgpu_workload *workload) { struct intel_vgpu *vgpu = workload->vgpu; unsigned long gma_head, gma_tail, gma_start, ctx_size; struct parser_exec_state s; int ring_id = workload->engine->id; struct intel_context *ce = vgpu->submission.shadow[ring_id]; int ret; GEM_BUG_ON(atomic_read(&ce->pin_count) < 0); ctx_size = workload->engine->context_size - PAGE_SIZE; /* Only ring contxt is loaded to HW for inhibit context, no need to * scan engine context */ if (is_inhibit_context(ce)) return 0; gma_start = i915_ggtt_offset(ce->state) + LRC_STATE_PN*PAGE_SIZE; gma_head = 0; gma_tail = ctx_size; s.buf_type = RING_BUFFER_CTX; s.buf_addr_type = GTT_BUFFER; s.vgpu = workload->vgpu; s.engine = workload->engine; s.ring_start = gma_start; s.ring_size = ctx_size; s.ring_head = gma_start + gma_head; s.ring_tail = gma_start + gma_tail; s.rb_va = ce->lrc_reg_state; s.workload = workload; s.is_ctx_wa = false; s.is_init_ctx = false; /* don't scan the first RING_CTX_SIZE(0x50) dwords, as it's ring * context */ ret = ip_gma_set(&s, gma_start + gma_head + RING_CTX_SIZE); if (ret) goto out; ret = command_scan(&s, gma_head, gma_tail, gma_start, ctx_size); out: if (ret) gvt_vgpu_err("scan shadow ctx error\n"); return ret; } static int init_cmd_table(struct intel_gvt *gvt) { unsigned int gen_type = intel_gvt_get_device_type(gvt); int i; for (i = 0; i < ARRAY_SIZE(cmd_info); i++) { struct cmd_entry *e; if (!(cmd_info[i].devices & gen_type)) continue; e = kzalloc(sizeof(*e), GFP_KERNEL); if (!e) return -ENOMEM; e->info = &cmd_info[i]; if (cmd_info[i].opcode == OP_MI_NOOP) mi_noop_index = i; INIT_HLIST_NODE(&e->hlist); add_cmd_entry(gvt, e); gvt_dbg_cmd("add %-30s op %04x flag %x devs %02x rings %02x\n", e->info->name, e->info->opcode, e->info->flag, e->info->devices, e->info->rings); } return 0; } static void clean_cmd_table(struct intel_gvt *gvt) { struct hlist_node *tmp; struct cmd_entry *e; int i; hash_for_each_safe(gvt->cmd_table, i, tmp, e, hlist) kfree(e); hash_init(gvt->cmd_table); } void intel_gvt_clean_cmd_parser(struct intel_gvt *gvt) { clean_cmd_table(gvt); } int intel_gvt_init_cmd_parser(struct intel_gvt *gvt) { int ret; ret = init_cmd_table(gvt); if (ret) { intel_gvt_clean_cmd_parser(gvt); return ret; } return 0; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1