Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Daniele Ceraolo Spurio | 705 | 38.86% | 26 | 24.53% |
Michal Wajdeczko | 390 | 21.50% | 5 | 4.72% |
Chris Wilson | 282 | 15.55% | 20 | 18.87% |
Matt Roper | 110 | 6.06% | 9 | 8.49% |
Umesh Nerlige Ramappa | 69 | 3.80% | 1 | 0.94% |
Ville Syrjälä | 55 | 3.03% | 2 | 1.89% |
Mika Kuoppala | 51 | 2.81% | 9 | 8.49% |
Tvrtko A. Ursulin | 35 | 1.93% | 10 | 9.43% |
Jani Nikula | 26 | 1.43% | 6 | 5.66% |
Yaodong Li | 16 | 0.88% | 1 | 0.94% |
Hans de Goede | 16 | 0.88% | 3 | 2.83% |
Sean Paul | 10 | 0.55% | 1 | 0.94% |
Dave Airlie | 9 | 0.50% | 1 | 0.94% |
Ander Conselvan de Oliveira | 8 | 0.44% | 2 | 1.89% |
Michał Winiarski | 7 | 0.39% | 1 | 0.94% |
Oscar Mateo | 6 | 0.33% | 1 | 0.94% |
Andrzej Hajda | 4 | 0.22% | 1 | 0.94% |
Imre Deak | 3 | 0.17% | 1 | 0.94% |
Fengguang Wu | 3 | 0.17% | 1 | 0.94% |
Paulo Zanoni | 3 | 0.17% | 1 | 0.94% |
Deepak S | 3 | 0.17% | 2 | 1.89% |
Daniel Vetter | 2 | 0.11% | 1 | 0.94% |
Zhe Wang | 1 | 0.06% | 1 | 0.94% |
Total | 1814 | 106 |
/* * Copyright © 2017 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * */ #ifndef __INTEL_UNCORE_H__ #define __INTEL_UNCORE_H__ #include <linux/spinlock.h> #include <linux/notifier.h> #include <linux/hrtimer.h> #include <linux/io-64-nonatomic-lo-hi.h> #include <linux/types.h> #include "i915_reg_defs.h" struct drm_device; struct drm_i915_private; struct intel_runtime_pm; struct intel_uncore; struct intel_gt; struct intel_uncore_mmio_debug { spinlock_t lock; /** lock is also taken in irq contexts. */ int unclaimed_mmio_check; int saved_mmio_check; u32 suspend_count; }; enum forcewake_domain_id { FW_DOMAIN_ID_RENDER = 0, FW_DOMAIN_ID_GT, /* also includes blitter engine */ FW_DOMAIN_ID_MEDIA, FW_DOMAIN_ID_MEDIA_VDBOX0, FW_DOMAIN_ID_MEDIA_VDBOX1, FW_DOMAIN_ID_MEDIA_VDBOX2, FW_DOMAIN_ID_MEDIA_VDBOX3, FW_DOMAIN_ID_MEDIA_VDBOX4, FW_DOMAIN_ID_MEDIA_VDBOX5, FW_DOMAIN_ID_MEDIA_VDBOX6, FW_DOMAIN_ID_MEDIA_VDBOX7, FW_DOMAIN_ID_MEDIA_VEBOX0, FW_DOMAIN_ID_MEDIA_VEBOX1, FW_DOMAIN_ID_MEDIA_VEBOX2, FW_DOMAIN_ID_MEDIA_VEBOX3, FW_DOMAIN_ID_GSC, FW_DOMAIN_ID_COUNT }; enum forcewake_domains { FORCEWAKE_RENDER = BIT(FW_DOMAIN_ID_RENDER), FORCEWAKE_GT = BIT(FW_DOMAIN_ID_GT), FORCEWAKE_MEDIA = BIT(FW_DOMAIN_ID_MEDIA), FORCEWAKE_MEDIA_VDBOX0 = BIT(FW_DOMAIN_ID_MEDIA_VDBOX0), FORCEWAKE_MEDIA_VDBOX1 = BIT(FW_DOMAIN_ID_MEDIA_VDBOX1), FORCEWAKE_MEDIA_VDBOX2 = BIT(FW_DOMAIN_ID_MEDIA_VDBOX2), FORCEWAKE_MEDIA_VDBOX3 = BIT(FW_DOMAIN_ID_MEDIA_VDBOX3), FORCEWAKE_MEDIA_VDBOX4 = BIT(FW_DOMAIN_ID_MEDIA_VDBOX4), FORCEWAKE_MEDIA_VDBOX5 = BIT(FW_DOMAIN_ID_MEDIA_VDBOX5), FORCEWAKE_MEDIA_VDBOX6 = BIT(FW_DOMAIN_ID_MEDIA_VDBOX6), FORCEWAKE_MEDIA_VDBOX7 = BIT(FW_DOMAIN_ID_MEDIA_VDBOX7), FORCEWAKE_MEDIA_VEBOX0 = BIT(FW_DOMAIN_ID_MEDIA_VEBOX0), FORCEWAKE_MEDIA_VEBOX1 = BIT(FW_DOMAIN_ID_MEDIA_VEBOX1), FORCEWAKE_MEDIA_VEBOX2 = BIT(FW_DOMAIN_ID_MEDIA_VEBOX2), FORCEWAKE_MEDIA_VEBOX3 = BIT(FW_DOMAIN_ID_MEDIA_VEBOX3), FORCEWAKE_GSC = BIT(FW_DOMAIN_ID_GSC), FORCEWAKE_ALL = BIT(FW_DOMAIN_ID_COUNT) - 1, }; struct intel_uncore_fw_get { void (*force_wake_get)(struct intel_uncore *uncore, enum forcewake_domains domains); }; struct intel_uncore_funcs { enum forcewake_domains (*read_fw_domains)(struct intel_uncore *uncore, i915_reg_t r); enum forcewake_domains (*write_fw_domains)(struct intel_uncore *uncore, i915_reg_t r); u8 (*mmio_readb)(struct intel_uncore *uncore, i915_reg_t r, bool trace); u16 (*mmio_readw)(struct intel_uncore *uncore, i915_reg_t r, bool trace); u32 (*mmio_readl)(struct intel_uncore *uncore, i915_reg_t r, bool trace); u64 (*mmio_readq)(struct intel_uncore *uncore, i915_reg_t r, bool trace); void (*mmio_writeb)(struct intel_uncore *uncore, i915_reg_t r, u8 val, bool trace); void (*mmio_writew)(struct intel_uncore *uncore, i915_reg_t r, u16 val, bool trace); void (*mmio_writel)(struct intel_uncore *uncore, i915_reg_t r, u32 val, bool trace); }; struct intel_forcewake_range { u32 start; u32 end; enum forcewake_domains domains; }; /* Other register ranges (e.g., shadow tables, MCR tables, etc.) */ struct i915_range { u32 start; u32 end; }; struct intel_uncore { void __iomem *regs; struct drm_i915_private *i915; struct intel_gt *gt; struct intel_runtime_pm *rpm; spinlock_t lock; /** lock is also taken in irq contexts. */ /* * Do we need to apply an additional offset to reach the beginning * of the basic non-engine GT registers (referred to as "GSI" on * newer platforms, or "GT block" on older platforms)? If so, we'll * track that here and apply it transparently to registers in the * appropriate range to maintain compatibility with our existing * register definitions and GT code. */ u32 gsi_offset; unsigned int flags; #define UNCORE_HAS_FORCEWAKE BIT(0) #define UNCORE_HAS_FPGA_DBG_UNCLAIMED BIT(1) #define UNCORE_HAS_DBG_UNCLAIMED BIT(2) #define UNCORE_HAS_FIFO BIT(3) #define UNCORE_NEEDS_FLR_ON_FINI BIT(4) const struct intel_forcewake_range *fw_domains_table; unsigned int fw_domains_table_entries; /* * Shadowed registers are special cases where we can safely write * to the register *without* grabbing forcewake. */ const struct i915_range *shadowed_reg_table; unsigned int shadowed_reg_table_entries; struct notifier_block pmic_bus_access_nb; const struct intel_uncore_fw_get *fw_get_funcs; struct intel_uncore_funcs funcs; unsigned int fifo_count; enum forcewake_domains fw_domains; enum forcewake_domains fw_domains_active; enum forcewake_domains fw_domains_timer; enum forcewake_domains fw_domains_saved; /* user domains saved for S3 */ struct intel_uncore_forcewake_domain { struct intel_uncore *uncore; enum forcewake_domain_id id; enum forcewake_domains mask; unsigned int wake_count; bool active; struct hrtimer timer; u32 __iomem *reg_set; u32 __iomem *reg_ack; } *fw_domain[FW_DOMAIN_ID_COUNT]; unsigned int user_forcewake_count; struct intel_uncore_mmio_debug *debug; }; /* Iterate over initialised fw domains */ #define for_each_fw_domain_masked(domain__, mask__, uncore__, tmp__) \ for (tmp__ = (mask__); tmp__ ;) \ for_each_if(domain__ = (uncore__)->fw_domain[__mask_next_bit(tmp__)]) #define for_each_fw_domain(domain__, uncore__, tmp__) \ for_each_fw_domain_masked(domain__, (uncore__)->fw_domains, uncore__, tmp__) static inline bool intel_uncore_has_forcewake(const struct intel_uncore *uncore) { return uncore->flags & UNCORE_HAS_FORCEWAKE; } static inline bool intel_uncore_has_fpga_dbg_unclaimed(const struct intel_uncore *uncore) { return uncore->flags & UNCORE_HAS_FPGA_DBG_UNCLAIMED; } static inline bool intel_uncore_has_dbg_unclaimed(const struct intel_uncore *uncore) { return uncore->flags & UNCORE_HAS_DBG_UNCLAIMED; } static inline bool intel_uncore_has_fifo(const struct intel_uncore *uncore) { return uncore->flags & UNCORE_HAS_FIFO; } static inline bool intel_uncore_needs_flr_on_fini(const struct intel_uncore *uncore) { return uncore->flags & UNCORE_NEEDS_FLR_ON_FINI; } static inline bool intel_uncore_set_flr_on_fini(struct intel_uncore *uncore) { return uncore->flags |= UNCORE_NEEDS_FLR_ON_FINI; } void intel_uncore_mmio_debug_init_early(struct drm_i915_private *i915); void intel_uncore_init_early(struct intel_uncore *uncore, struct intel_gt *gt); int intel_uncore_setup_mmio(struct intel_uncore *uncore, phys_addr_t phys_addr); int intel_uncore_init_mmio(struct intel_uncore *uncore); void intel_uncore_prune_engine_fw_domains(struct intel_uncore *uncore, struct intel_gt *gt); bool intel_uncore_unclaimed_mmio(struct intel_uncore *uncore); bool intel_uncore_arm_unclaimed_mmio_detection(struct intel_uncore *uncore); void intel_uncore_cleanup_mmio(struct intel_uncore *uncore); void intel_uncore_fini_mmio(struct drm_device *dev, void *data); void intel_uncore_suspend(struct intel_uncore *uncore); void intel_uncore_resume_early(struct intel_uncore *uncore); void intel_uncore_runtime_resume(struct intel_uncore *uncore); void assert_forcewakes_inactive(struct intel_uncore *uncore); void assert_forcewakes_active(struct intel_uncore *uncore, enum forcewake_domains fw_domains); const char *intel_uncore_forcewake_domain_to_str(const enum forcewake_domain_id id); enum forcewake_domains intel_uncore_forcewake_for_reg(struct intel_uncore *uncore, i915_reg_t reg, unsigned int op); #define FW_REG_READ (1) #define FW_REG_WRITE (2) void intel_uncore_forcewake_get(struct intel_uncore *uncore, enum forcewake_domains domains); void intel_uncore_forcewake_put(struct intel_uncore *uncore, enum forcewake_domains domains); void intel_uncore_forcewake_put_delayed(struct intel_uncore *uncore, enum forcewake_domains domains); void intel_uncore_forcewake_flush(struct intel_uncore *uncore, enum forcewake_domains fw_domains); /* * Like above but the caller must manage the uncore.lock itself. * Must be used with intel_uncore_read_fw() and friends. */ void intel_uncore_forcewake_get__locked(struct intel_uncore *uncore, enum forcewake_domains domains); void intel_uncore_forcewake_put__locked(struct intel_uncore *uncore, enum forcewake_domains domains); void intel_uncore_forcewake_user_get(struct intel_uncore *uncore); void intel_uncore_forcewake_user_put(struct intel_uncore *uncore); int __intel_wait_for_register(struct intel_uncore *uncore, i915_reg_t reg, u32 mask, u32 value, unsigned int fast_timeout_us, unsigned int slow_timeout_ms, u32 *out_value); static inline int intel_wait_for_register(struct intel_uncore *uncore, i915_reg_t reg, u32 mask, u32 value, unsigned int timeout_ms) { return __intel_wait_for_register(uncore, reg, mask, value, 2, timeout_ms, NULL); } int __intel_wait_for_register_fw(struct intel_uncore *uncore, i915_reg_t reg, u32 mask, u32 value, unsigned int fast_timeout_us, unsigned int slow_timeout_ms, u32 *out_value); static inline int intel_wait_for_register_fw(struct intel_uncore *uncore, i915_reg_t reg, u32 mask, u32 value, unsigned int timeout_ms) { return __intel_wait_for_register_fw(uncore, reg, mask, value, 2, timeout_ms, NULL); } #define IS_GSI_REG(reg) ((reg) < 0x40000) /* register access functions */ #define __raw_read(x__, s__) \ static inline u##x__ __raw_uncore_read##x__(const struct intel_uncore *uncore, \ i915_reg_t reg) \ { \ u32 offset = i915_mmio_reg_offset(reg); \ if (IS_GSI_REG(offset)) \ offset += uncore->gsi_offset; \ return read##s__(uncore->regs + offset); \ } #define __raw_write(x__, s__) \ static inline void __raw_uncore_write##x__(const struct intel_uncore *uncore, \ i915_reg_t reg, u##x__ val) \ { \ u32 offset = i915_mmio_reg_offset(reg); \ if (IS_GSI_REG(offset)) \ offset += uncore->gsi_offset; \ write##s__(val, uncore->regs + offset); \ } __raw_read(8, b) __raw_read(16, w) __raw_read(32, l) __raw_read(64, q) __raw_write(8, b) __raw_write(16, w) __raw_write(32, l) __raw_write(64, q) #undef __raw_read #undef __raw_write #define __uncore_read(name__, x__, s__, trace__) \ static inline u##x__ intel_uncore_##name__(struct intel_uncore *uncore, \ i915_reg_t reg) \ { \ return uncore->funcs.mmio_read##s__(uncore, reg, (trace__)); \ } #define __uncore_write(name__, x__, s__, trace__) \ static inline void intel_uncore_##name__(struct intel_uncore *uncore, \ i915_reg_t reg, u##x__ val) \ { \ uncore->funcs.mmio_write##s__(uncore, reg, val, (trace__)); \ } __uncore_read(read8, 8, b, true) __uncore_read(read16, 16, w, true) __uncore_read(read, 32, l, true) __uncore_read(read16_notrace, 16, w, false) __uncore_read(read_notrace, 32, l, false) __uncore_write(write8, 8, b, true) __uncore_write(write16, 16, w, true) __uncore_write(write, 32, l, true) __uncore_write(write_notrace, 32, l, false) /* Be very careful with read/write 64-bit values. On 32-bit machines, they * will be implemented using 2 32-bit writes in an arbitrary order with * an arbitrary delay between them. This can cause the hardware to * act upon the intermediate value, possibly leading to corruption and * machine death. For this reason we do not support intel_uncore_write64, * or uncore->funcs.mmio_writeq. * * When reading a 64-bit value as two 32-bit values, the delay may cause * the two reads to mismatch, e.g. a timestamp overflowing. Also note that * occasionally a 64-bit register does not actually support a full readq * and must be read using two 32-bit reads. * * You have been warned. */ __uncore_read(read64, 64, q, true) #define intel_uncore_posting_read(...) ((void)intel_uncore_read_notrace(__VA_ARGS__)) #define intel_uncore_posting_read16(...) ((void)intel_uncore_read16_notrace(__VA_ARGS__)) #undef __uncore_read #undef __uncore_write /* These are untraced mmio-accessors that are only valid to be used inside * critical sections, such as inside IRQ handlers, where forcewake is explicitly * controlled. * * Think twice, and think again, before using these. * * As an example, these accessors can possibly be used between: * * spin_lock_irq(&uncore->lock); * intel_uncore_forcewake_get__locked(); * * and * * intel_uncore_forcewake_put__locked(); * spin_unlock_irq(&uncore->lock); * * * Note: some registers may not need forcewake held, so * intel_uncore_forcewake_{get,put} can be omitted, see * intel_uncore_forcewake_for_reg(). * * Certain architectures will die if the same cacheline is concurrently accessed * by different clients (e.g. on Ivybridge). Access to registers should * therefore generally be serialised, by either the dev_priv->uncore.lock or * a more localised lock guarding all access to that bank of registers. */ #define intel_uncore_read_fw(...) __raw_uncore_read32(__VA_ARGS__) #define intel_uncore_write_fw(...) __raw_uncore_write32(__VA_ARGS__) #define intel_uncore_write64_fw(...) __raw_uncore_write64(__VA_ARGS__) #define intel_uncore_posting_read_fw(...) ((void)intel_uncore_read_fw(__VA_ARGS__)) static inline u32 intel_uncore_rmw(struct intel_uncore *uncore, i915_reg_t reg, u32 clear, u32 set) { u32 old, val; old = intel_uncore_read(uncore, reg); val = (old & ~clear) | set; intel_uncore_write(uncore, reg, val); return old; } static inline void intel_uncore_rmw_fw(struct intel_uncore *uncore, i915_reg_t reg, u32 clear, u32 set) { u32 old, val; old = intel_uncore_read_fw(uncore, reg); val = (old & ~clear) | set; if (val != old) intel_uncore_write_fw(uncore, reg, val); } static inline u64 intel_uncore_read64_2x32(struct intel_uncore *uncore, i915_reg_t lower_reg, i915_reg_t upper_reg) { u32 upper, lower, old_upper, loop = 0; enum forcewake_domains fw_domains; unsigned long flags; fw_domains = intel_uncore_forcewake_for_reg(uncore, lower_reg, FW_REG_READ); fw_domains |= intel_uncore_forcewake_for_reg(uncore, upper_reg, FW_REG_READ); spin_lock_irqsave(&uncore->lock, flags); intel_uncore_forcewake_get__locked(uncore, fw_domains); upper = intel_uncore_read_fw(uncore, upper_reg); do { old_upper = upper; lower = intel_uncore_read_fw(uncore, lower_reg); upper = intel_uncore_read_fw(uncore, upper_reg); } while (upper != old_upper && loop++ < 2); intel_uncore_forcewake_put__locked(uncore, fw_domains); spin_unlock_irqrestore(&uncore->lock, flags); return (u64)upper << 32 | lower; } static inline int intel_uncore_write_and_verify(struct intel_uncore *uncore, i915_reg_t reg, u32 val, u32 mask, u32 expected_val) { u32 reg_val; intel_uncore_write(uncore, reg, val); reg_val = intel_uncore_read(uncore, reg); return (reg_val & mask) != expected_val ? -EINVAL : 0; } static inline void __iomem *intel_uncore_regs(struct intel_uncore *uncore) { return uncore->regs; } /* * The raw_reg_{read,write} macros are intended as a micro-optimization for * interrupt handlers so that the pointer indirection on uncore->regs can * be computed once (and presumably cached in a register) instead of generating * extra load instructions for each MMIO access. * * Given that these macros are only intended for non-GSI interrupt registers * (and the goal is to avoid extra instructions generated by the compiler), * these macros do not account for uncore->gsi_offset. Any caller that needs * to use these macros on a GSI register is responsible for adding the * appropriate GSI offset to the 'base' parameter. */ #define raw_reg_read(base, reg) \ readl(base + i915_mmio_reg_offset(reg)) #define raw_reg_write(base, reg, value) \ writel(value, base + i915_mmio_reg_offset(reg)) #endif /* !__INTEL_UNCORE_H__ */
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1