Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Sarah Walker | 2091 | 98.82% | 6 | 85.71% |
Donald Robson | 25 | 1.18% | 1 | 14.29% |
Total | 2116 | 7 |
// SPDX-License-Identifier: GPL-2.0-only OR MIT /* Copyright (c) 2023 Imagination Technologies Ltd. */ #include "pvr_ccb.h" #include "pvr_device.h" #include "pvr_drv.h" #include "pvr_free_list.h" #include "pvr_fw.h" #include "pvr_gem.h" #include "pvr_power.h" #include <drm/drm_managed.h> #include <linux/compiler.h> #include <linux/delay.h> #include <linux/jiffies.h> #include <linux/kernel.h> #include <linux/mutex.h> #include <linux/types.h> #include <linux/workqueue.h> #define RESERVE_SLOT_TIMEOUT (1 * HZ) /* 1s */ #define RESERVE_SLOT_MIN_RETRIES 10 static void ccb_ctrl_init(void *cpu_ptr, void *priv) { struct rogue_fwif_ccb_ctl *ctrl = cpu_ptr; struct pvr_ccb *pvr_ccb = priv; ctrl->write_offset = 0; ctrl->read_offset = 0; ctrl->wrap_mask = pvr_ccb->num_cmds - 1; ctrl->cmd_size = pvr_ccb->cmd_size; } /** * pvr_ccb_init() - Initialise a CCB * @pvr_dev: Device pointer. * @pvr_ccb: Pointer to CCB structure to initialise. * @num_cmds_log2: Log2 of number of commands in this CCB. * @cmd_size: Command size for this CCB. * * Return: * * Zero on success, or * * Any error code returned by pvr_fw_object_create_and_map(). */ static int pvr_ccb_init(struct pvr_device *pvr_dev, struct pvr_ccb *pvr_ccb, u32 num_cmds_log2, size_t cmd_size) { u32 num_cmds = 1 << num_cmds_log2; u32 ccb_size = num_cmds * cmd_size; int err; pvr_ccb->num_cmds = num_cmds; pvr_ccb->cmd_size = cmd_size; err = drmm_mutex_init(from_pvr_device(pvr_dev), &pvr_ccb->lock); if (err) return err; /* * Map CCB and control structure as uncached, so we don't have to flush * CPU cache repeatedly when polling for space. */ pvr_ccb->ctrl = pvr_fw_object_create_and_map(pvr_dev, sizeof(*pvr_ccb->ctrl), PVR_BO_FW_FLAGS_DEVICE_UNCACHED, ccb_ctrl_init, pvr_ccb, &pvr_ccb->ctrl_obj); if (IS_ERR(pvr_ccb->ctrl)) return PTR_ERR(pvr_ccb->ctrl); pvr_ccb->ccb = pvr_fw_object_create_and_map(pvr_dev, ccb_size, PVR_BO_FW_FLAGS_DEVICE_UNCACHED, NULL, NULL, &pvr_ccb->ccb_obj); if (IS_ERR(pvr_ccb->ccb)) { err = PTR_ERR(pvr_ccb->ccb); goto err_free_ctrl; } pvr_fw_object_get_fw_addr(pvr_ccb->ctrl_obj, &pvr_ccb->ctrl_fw_addr); pvr_fw_object_get_fw_addr(pvr_ccb->ccb_obj, &pvr_ccb->ccb_fw_addr); WRITE_ONCE(pvr_ccb->ctrl->write_offset, 0); WRITE_ONCE(pvr_ccb->ctrl->read_offset, 0); WRITE_ONCE(pvr_ccb->ctrl->wrap_mask, num_cmds - 1); WRITE_ONCE(pvr_ccb->ctrl->cmd_size, cmd_size); return 0; err_free_ctrl: pvr_fw_object_unmap_and_destroy(pvr_ccb->ctrl_obj); return err; } /** * pvr_ccb_fini() - Release CCB structure * @pvr_ccb: CCB to release. */ void pvr_ccb_fini(struct pvr_ccb *pvr_ccb) { pvr_fw_object_unmap_and_destroy(pvr_ccb->ccb_obj); pvr_fw_object_unmap_and_destroy(pvr_ccb->ctrl_obj); } /** * pvr_ccb_slot_available_locked() - Test whether any slots are available in CCB * @pvr_ccb: CCB to test. * @write_offset: Address to store number of next available slot. May be %NULL. * * Caller must hold @pvr_ccb->lock. * * Return: * * %true if a slot is available, or * * %false if no slot is available. */ static __always_inline bool pvr_ccb_slot_available_locked(struct pvr_ccb *pvr_ccb, u32 *write_offset) { struct rogue_fwif_ccb_ctl *ctrl = pvr_ccb->ctrl; u32 next_write_offset = (READ_ONCE(ctrl->write_offset) + 1) & READ_ONCE(ctrl->wrap_mask); lockdep_assert_held(&pvr_ccb->lock); if (READ_ONCE(ctrl->read_offset) != next_write_offset) { if (write_offset) *write_offset = next_write_offset; return true; } return false; } static void process_fwccb_command(struct pvr_device *pvr_dev, struct rogue_fwif_fwccb_cmd *cmd) { switch (cmd->cmd_type) { case ROGUE_FWIF_FWCCB_CMD_REQUEST_GPU_RESTART: pvr_power_reset(pvr_dev, false); break; case ROGUE_FWIF_FWCCB_CMD_FREELISTS_RECONSTRUCTION: pvr_free_list_process_reconstruct_req(pvr_dev, &cmd->cmd_data.cmd_freelists_reconstruction); break; case ROGUE_FWIF_FWCCB_CMD_FREELIST_GROW: pvr_free_list_process_grow_req(pvr_dev, &cmd->cmd_data.cmd_free_list_gs); break; default: drm_info(from_pvr_device(pvr_dev), "Received unknown FWCCB command %x\n", cmd->cmd_type); break; } } /** * pvr_fwccb_process() - Process any pending FWCCB commands * @pvr_dev: Target PowerVR device */ void pvr_fwccb_process(struct pvr_device *pvr_dev) { struct rogue_fwif_fwccb_cmd *fwccb = pvr_dev->fwccb.ccb; struct rogue_fwif_ccb_ctl *ctrl = pvr_dev->fwccb.ctrl; u32 read_offset; mutex_lock(&pvr_dev->fwccb.lock); while ((read_offset = READ_ONCE(ctrl->read_offset)) != READ_ONCE(ctrl->write_offset)) { struct rogue_fwif_fwccb_cmd cmd = fwccb[read_offset]; WRITE_ONCE(ctrl->read_offset, (read_offset + 1) & READ_ONCE(ctrl->wrap_mask)); /* Drop FWCCB lock while we process command. */ mutex_unlock(&pvr_dev->fwccb.lock); process_fwccb_command(pvr_dev, &cmd); mutex_lock(&pvr_dev->fwccb.lock); } mutex_unlock(&pvr_dev->fwccb.lock); } /** * pvr_kccb_capacity() - Returns the maximum number of usable KCCB slots. * @pvr_dev: Target PowerVR device * * Return: * * The maximum number of active slots. */ static u32 pvr_kccb_capacity(struct pvr_device *pvr_dev) { /* Capacity is the number of slot minus one to cope with the wrapping * mechanisms. If we were to use all slots, we might end up with * read_offset == write_offset, which the FW considers as a KCCB-is-empty * condition. */ return pvr_dev->kccb.slot_count - 1; } /** * pvr_kccb_used_slot_count_locked() - Get the number of used slots * @pvr_dev: Device pointer. * * KCCB lock must be held. * * Return: * * The number of slots currently used. */ static u32 pvr_kccb_used_slot_count_locked(struct pvr_device *pvr_dev) { struct pvr_ccb *pvr_ccb = &pvr_dev->kccb.ccb; struct rogue_fwif_ccb_ctl *ctrl = pvr_ccb->ctrl; u32 wr_offset = READ_ONCE(ctrl->write_offset); u32 rd_offset = READ_ONCE(ctrl->read_offset); u32 used_count; lockdep_assert_held(&pvr_ccb->lock); if (wr_offset >= rd_offset) used_count = wr_offset - rd_offset; else used_count = wr_offset + pvr_dev->kccb.slot_count - rd_offset; return used_count; } /** * pvr_kccb_send_cmd_reserved_powered() - Send command to the KCCB, with the PM ref * held and a slot pre-reserved * @pvr_dev: Device pointer. * @cmd: Command to sent. * @kccb_slot: Address to store the KCCB slot for this command. May be %NULL. */ void pvr_kccb_send_cmd_reserved_powered(struct pvr_device *pvr_dev, struct rogue_fwif_kccb_cmd *cmd, u32 *kccb_slot) { struct pvr_ccb *pvr_ccb = &pvr_dev->kccb.ccb; struct rogue_fwif_kccb_cmd *kccb = pvr_ccb->ccb; struct rogue_fwif_ccb_ctl *ctrl = pvr_ccb->ctrl; u32 old_write_offset; u32 new_write_offset; WARN_ON(pvr_dev->lost); mutex_lock(&pvr_ccb->lock); if (WARN_ON(!pvr_dev->kccb.reserved_count)) goto out_unlock; old_write_offset = READ_ONCE(ctrl->write_offset); /* We reserved the slot, we should have one available. */ if (WARN_ON(!pvr_ccb_slot_available_locked(pvr_ccb, &new_write_offset))) goto out_unlock; memcpy(&kccb[old_write_offset], cmd, sizeof(struct rogue_fwif_kccb_cmd)); if (kccb_slot) { *kccb_slot = old_write_offset; /* Clear return status for this slot. */ WRITE_ONCE(pvr_dev->kccb.rtn[old_write_offset], ROGUE_FWIF_KCCB_RTN_SLOT_NO_RESPONSE); } mb(); /* memory barrier */ WRITE_ONCE(ctrl->write_offset, new_write_offset); pvr_dev->kccb.reserved_count--; /* Kick MTS */ pvr_fw_mts_schedule(pvr_dev, PVR_FWIF_DM_GP & ~ROGUE_CR_MTS_SCHEDULE_DM_CLRMSK); out_unlock: mutex_unlock(&pvr_ccb->lock); } /** * pvr_kccb_try_reserve_slot() - Try to reserve a KCCB slot * @pvr_dev: Device pointer. * * Return: * * true if a KCCB slot was reserved, or * * false otherwise. */ static bool pvr_kccb_try_reserve_slot(struct pvr_device *pvr_dev) { bool reserved = false; u32 used_count; mutex_lock(&pvr_dev->kccb.ccb.lock); used_count = pvr_kccb_used_slot_count_locked(pvr_dev); if (pvr_dev->kccb.reserved_count < pvr_kccb_capacity(pvr_dev) - used_count) { pvr_dev->kccb.reserved_count++; reserved = true; } mutex_unlock(&pvr_dev->kccb.ccb.lock); return reserved; } /** * pvr_kccb_reserve_slot_sync() - Try to reserve a slot synchronously * @pvr_dev: Device pointer. * * Return: * * 0 on success, or * * -EBUSY if no slots were reserved after %RESERVE_SLOT_TIMEOUT, with a minimum of * %RESERVE_SLOT_MIN_RETRIES retries. */ static int pvr_kccb_reserve_slot_sync(struct pvr_device *pvr_dev) { unsigned long start_timestamp = jiffies; bool reserved = false; u32 retries = 0; while ((jiffies - start_timestamp) < (u32)RESERVE_SLOT_TIMEOUT || retries < RESERVE_SLOT_MIN_RETRIES) { reserved = pvr_kccb_try_reserve_slot(pvr_dev); if (reserved) break; usleep_range(1, 50); if (retries < U32_MAX) retries++; } return reserved ? 0 : -EBUSY; } /** * pvr_kccb_send_cmd_powered() - Send command to the KCCB, with a PM ref held * @pvr_dev: Device pointer. * @cmd: Command to sent. * @kccb_slot: Address to store the KCCB slot for this command. May be %NULL. * * Returns: * * Zero on success, or * * -EBUSY if timeout while waiting for a free KCCB slot. */ int pvr_kccb_send_cmd_powered(struct pvr_device *pvr_dev, struct rogue_fwif_kccb_cmd *cmd, u32 *kccb_slot) { int err; err = pvr_kccb_reserve_slot_sync(pvr_dev); if (err) return err; pvr_kccb_send_cmd_reserved_powered(pvr_dev, cmd, kccb_slot); return 0; } /** * pvr_kccb_send_cmd() - Send command to the KCCB * @pvr_dev: Device pointer. * @cmd: Command to sent. * @kccb_slot: Address to store the KCCB slot for this command. May be %NULL. * * Returns: * * Zero on success, or * * -EBUSY if timeout while waiting for a free KCCB slot. */ int pvr_kccb_send_cmd(struct pvr_device *pvr_dev, struct rogue_fwif_kccb_cmd *cmd, u32 *kccb_slot) { int err; err = pvr_power_get(pvr_dev); if (err) return err; err = pvr_kccb_send_cmd_powered(pvr_dev, cmd, kccb_slot); pvr_power_put(pvr_dev); return err; } /** * pvr_kccb_wait_for_completion() - Wait for a KCCB command to complete * @pvr_dev: Device pointer. * @slot_nr: KCCB slot to wait on. * @timeout: Timeout length (in jiffies). * @rtn_out: Location to store KCCB command result. May be %NULL. * * Returns: * * Zero on success, or * * -ETIMEDOUT on timeout. */ int pvr_kccb_wait_for_completion(struct pvr_device *pvr_dev, u32 slot_nr, u32 timeout, u32 *rtn_out) { int ret = wait_event_timeout(pvr_dev->kccb.rtn_q, READ_ONCE(pvr_dev->kccb.rtn[slot_nr]) & ROGUE_FWIF_KCCB_RTN_SLOT_CMD_EXECUTED, timeout); if (ret && rtn_out) *rtn_out = READ_ONCE(pvr_dev->kccb.rtn[slot_nr]); return ret ? 0 : -ETIMEDOUT; } /** * pvr_kccb_is_idle() - Returns whether the device's KCCB is idle * @pvr_dev: Device pointer * * Returns: * * %true if the KCCB is idle (contains no commands), or * * %false if the KCCB contains pending commands. */ bool pvr_kccb_is_idle(struct pvr_device *pvr_dev) { struct rogue_fwif_ccb_ctl *ctrl = pvr_dev->kccb.ccb.ctrl; bool idle; mutex_lock(&pvr_dev->kccb.ccb.lock); idle = (READ_ONCE(ctrl->write_offset) == READ_ONCE(ctrl->read_offset)); mutex_unlock(&pvr_dev->kccb.ccb.lock); return idle; } static const char * pvr_kccb_fence_get_driver_name(struct dma_fence *f) { return PVR_DRIVER_NAME; } static const char * pvr_kccb_fence_get_timeline_name(struct dma_fence *f) { return "kccb"; } static const struct dma_fence_ops pvr_kccb_fence_ops = { .get_driver_name = pvr_kccb_fence_get_driver_name, .get_timeline_name = pvr_kccb_fence_get_timeline_name, }; /** * struct pvr_kccb_fence - Fence object used to wait for a KCCB slot */ struct pvr_kccb_fence { /** @base: Base dma_fence object. */ struct dma_fence base; /** @node: Node used to insert the fence in the pvr_device::kccb::waiters list. */ struct list_head node; }; /** * pvr_kccb_wake_up_waiters() - Check the KCCB waiters * @pvr_dev: Target PowerVR device * * Signal as many KCCB fences as we have slots available. */ void pvr_kccb_wake_up_waiters(struct pvr_device *pvr_dev) { struct pvr_kccb_fence *fence, *tmp_fence; u32 used_count, available_count; /* Wake up those waiting for KCCB slot execution. */ wake_up_all(&pvr_dev->kccb.rtn_q); /* Then iterate over all KCCB fences and signal as many as we can. */ mutex_lock(&pvr_dev->kccb.ccb.lock); used_count = pvr_kccb_used_slot_count_locked(pvr_dev); if (WARN_ON(used_count + pvr_dev->kccb.reserved_count > pvr_kccb_capacity(pvr_dev))) goto out_unlock; available_count = pvr_kccb_capacity(pvr_dev) - used_count - pvr_dev->kccb.reserved_count; list_for_each_entry_safe(fence, tmp_fence, &pvr_dev->kccb.waiters, node) { if (!available_count) break; list_del(&fence->node); pvr_dev->kccb.reserved_count++; available_count--; dma_fence_signal(&fence->base); dma_fence_put(&fence->base); } out_unlock: mutex_unlock(&pvr_dev->kccb.ccb.lock); } /** * pvr_kccb_fini() - Cleanup device KCCB * @pvr_dev: Target PowerVR device */ void pvr_kccb_fini(struct pvr_device *pvr_dev) { pvr_ccb_fini(&pvr_dev->kccb.ccb); WARN_ON(!list_empty(&pvr_dev->kccb.waiters)); WARN_ON(pvr_dev->kccb.reserved_count); } /** * pvr_kccb_init() - Initialise device KCCB * @pvr_dev: Target PowerVR device * * Returns: * * 0 on success, or * * Any error returned by pvr_ccb_init(). */ int pvr_kccb_init(struct pvr_device *pvr_dev) { pvr_dev->kccb.slot_count = 1 << ROGUE_FWIF_KCCB_NUMCMDS_LOG2_DEFAULT; INIT_LIST_HEAD(&pvr_dev->kccb.waiters); pvr_dev->kccb.fence_ctx.id = dma_fence_context_alloc(1); spin_lock_init(&pvr_dev->kccb.fence_ctx.lock); return pvr_ccb_init(pvr_dev, &pvr_dev->kccb.ccb, ROGUE_FWIF_KCCB_NUMCMDS_LOG2_DEFAULT, sizeof(struct rogue_fwif_kccb_cmd)); } /** * pvr_kccb_fence_alloc() - Allocate a pvr_kccb_fence object * * Return: * * NULL if the allocation fails, or * * A valid dma_fence pointer otherwise. */ struct dma_fence *pvr_kccb_fence_alloc(void) { struct pvr_kccb_fence *kccb_fence; kccb_fence = kzalloc(sizeof(*kccb_fence), GFP_KERNEL); if (!kccb_fence) return NULL; return &kccb_fence->base; } /** * pvr_kccb_fence_put() - Drop a KCCB fence reference * @fence: The fence to drop the reference on. * * If the fence hasn't been initialized yet, dma_fence_free() is called. This * way we have a single function taking care of both cases. */ void pvr_kccb_fence_put(struct dma_fence *fence) { if (!fence) return; if (!fence->ops) { dma_fence_free(fence); } else { WARN_ON(fence->ops != &pvr_kccb_fence_ops); dma_fence_put(fence); } } /** * pvr_kccb_reserve_slot() - Reserve a KCCB slot for later use * @pvr_dev: Target PowerVR device * @f: KCCB fence object previously allocated with pvr_kccb_fence_alloc() * * Try to reserve a KCCB slot, and if there's no slot available, * initializes the fence object and queue it to the waiters list. * * If NULL is returned, that means the slot is reserved. In that case, * the @f is freed and shouldn't be accessed after that point. * * Return: * * NULL if a slot was available directly, or * * A valid dma_fence object to wait on if no slot was available. */ struct dma_fence * pvr_kccb_reserve_slot(struct pvr_device *pvr_dev, struct dma_fence *f) { struct pvr_kccb_fence *fence = container_of(f, struct pvr_kccb_fence, base); struct dma_fence *out_fence = NULL; u32 used_count; mutex_lock(&pvr_dev->kccb.ccb.lock); used_count = pvr_kccb_used_slot_count_locked(pvr_dev); if (pvr_dev->kccb.reserved_count >= pvr_kccb_capacity(pvr_dev) - used_count) { dma_fence_init(&fence->base, &pvr_kccb_fence_ops, &pvr_dev->kccb.fence_ctx.lock, pvr_dev->kccb.fence_ctx.id, atomic_inc_return(&pvr_dev->kccb.fence_ctx.seqno)); out_fence = dma_fence_get(&fence->base); list_add_tail(&fence->node, &pvr_dev->kccb.waiters); } else { pvr_kccb_fence_put(f); pvr_dev->kccb.reserved_count++; } mutex_unlock(&pvr_dev->kccb.ccb.lock); return out_fence; } /** * pvr_kccb_release_slot() - Release a KCCB slot reserved with * pvr_kccb_reserve_slot() * @pvr_dev: Target PowerVR device * * Should only be called if something failed after the * pvr_kccb_reserve_slot() call and you know you won't call * pvr_kccb_send_cmd_reserved(). */ void pvr_kccb_release_slot(struct pvr_device *pvr_dev) { mutex_lock(&pvr_dev->kccb.ccb.lock); if (!WARN_ON(!pvr_dev->kccb.reserved_count)) pvr_dev->kccb.reserved_count--; mutex_unlock(&pvr_dev->kccb.ccb.lock); } /** * pvr_fwccb_init() - Initialise device FWCCB * @pvr_dev: Target PowerVR device * * Returns: * * 0 on success, or * * Any error returned by pvr_ccb_init(). */ int pvr_fwccb_init(struct pvr_device *pvr_dev) { return pvr_ccb_init(pvr_dev, &pvr_dev->fwccb, ROGUE_FWIF_FWCCB_NUMCMDS_LOG2, sizeof(struct rogue_fwif_fwccb_cmd)); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1