Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Archit Taneja | 1673 | 58.07% | 5 | 13.16% |
Dmitry Eremin-Solenikov | 580 | 20.13% | 13 | 34.21% |
Hai Li | 248 | 8.61% | 9 | 23.68% |
Konrad Dybcio | 247 | 8.57% | 1 | 2.63% |
Jonathan Marek | 54 | 1.87% | 1 | 2.63% |
Marijn Suijten | 40 | 1.39% | 4 | 10.53% |
Doug Anderson | 30 | 1.04% | 1 | 2.63% |
Rob Clark | 3 | 0.10% | 1 | 2.63% |
Mamta Shukla | 3 | 0.10% | 1 | 2.63% |
Thomas Gleixner | 2 | 0.07% | 1 | 2.63% |
Sam Ravnborg | 1 | 0.03% | 1 | 2.63% |
Total | 2881 | 38 |
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2012-2015, The Linux Foundation. All rights reserved. */ #include <linux/clk-provider.h> #include <linux/delay.h> #include "dsi_phy.h" #include "dsi.xml.h" #include "dsi_phy_28nm_8960.xml.h" /* * DSI PLL 28nm (8960/A family) - clock diagram (eg: DSI1): * * * +------+ * dsi1vco_clk ----o-----| DIV1 |---dsi1pllbit (not exposed as clock) * F * byte_clk | +------+ * | bit clock divider (F / 8) * | * | +------+ * o-----| DIV2 |---dsi0pllbyte---o---> To byte RCG * | +------+ | (sets parent rate) * | byte clock divider (F) | * | | * | o---> To esc RCG * | (doesn't set parent rate) * | * | +------+ * o-----| DIV3 |----dsi0pll------o---> To dsi RCG * +------+ | (sets parent rate) * dsi clock divider (F * magic) | * | * o---> To pixel rcg * (doesn't set parent rate) */ #define POLL_MAX_READS 8000 #define POLL_TIMEOUT_US 1 #define VCO_REF_CLK_RATE 27000000 #define VCO_MIN_RATE 600000000 #define VCO_MAX_RATE 1200000000 #define VCO_PREF_DIV_RATIO 27 struct pll_28nm_cached_state { unsigned long vco_rate; u8 postdiv3; u8 postdiv2; u8 postdiv1; }; struct clk_bytediv { struct clk_hw hw; void __iomem *reg; }; struct dsi_pll_28nm { struct clk_hw clk_hw; struct msm_dsi_phy *phy; struct pll_28nm_cached_state cached_state; }; #define to_pll_28nm(x) container_of(x, struct dsi_pll_28nm, clk_hw) static bool pll_28nm_poll_for_ready(struct dsi_pll_28nm *pll_28nm, int nb_tries, int timeout_us) { bool pll_locked = false; u32 val; while (nb_tries--) { val = readl(pll_28nm->phy->pll_base + REG_DSI_28nm_8960_PHY_PLL_RDY); pll_locked = !!(val & DSI_28nm_8960_PHY_PLL_RDY_PLL_RDY); if (pll_locked) break; udelay(timeout_us); } DBG("DSI PLL is %slocked", pll_locked ? "" : "*not* "); return pll_locked; } /* * Clock Callbacks */ static int dsi_pll_28nm_clk_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { struct dsi_pll_28nm *pll_28nm = to_pll_28nm(hw); void __iomem *base = pll_28nm->phy->pll_base; u32 val, temp, fb_divider; DBG("rate=%lu, parent's=%lu", rate, parent_rate); temp = rate / 10; val = VCO_REF_CLK_RATE / 10; fb_divider = (temp * VCO_PREF_DIV_RATIO) / val; fb_divider = fb_divider / 2 - 1; writel(fb_divider & 0xff, base + REG_DSI_28nm_8960_PHY_PLL_CTRL_1); val = readl(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_2); val |= (fb_divider >> 8) & 0x07; writel(val, base + REG_DSI_28nm_8960_PHY_PLL_CTRL_2); val = readl(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_3); val |= (VCO_PREF_DIV_RATIO - 1) & 0x3f; writel(val, base + REG_DSI_28nm_8960_PHY_PLL_CTRL_3); writel(0xf, base + REG_DSI_28nm_8960_PHY_PLL_CTRL_6); val = readl(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_8); val |= 0x7 << 4; writel(val, base + REG_DSI_28nm_8960_PHY_PLL_CTRL_8); return 0; } static int dsi_pll_28nm_clk_is_enabled(struct clk_hw *hw) { struct dsi_pll_28nm *pll_28nm = to_pll_28nm(hw); return pll_28nm_poll_for_ready(pll_28nm, POLL_MAX_READS, POLL_TIMEOUT_US); } static unsigned long dsi_pll_28nm_clk_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct dsi_pll_28nm *pll_28nm = to_pll_28nm(hw); void __iomem *base = pll_28nm->phy->pll_base; unsigned long vco_rate; u32 status, fb_divider, temp, ref_divider; VERB("parent_rate=%lu", parent_rate); status = readl(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_0); if (status & DSI_28nm_8960_PHY_PLL_CTRL_0_ENABLE) { fb_divider = readl(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_1); fb_divider &= 0xff; temp = readl(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_2) & 0x07; fb_divider = (temp << 8) | fb_divider; fb_divider += 1; ref_divider = readl(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_3); ref_divider &= 0x3f; ref_divider += 1; /* multiply by 2 */ vco_rate = (parent_rate / ref_divider) * fb_divider * 2; } else { vco_rate = 0; } DBG("returning vco rate = %lu", vco_rate); return vco_rate; } static int dsi_pll_28nm_vco_prepare(struct clk_hw *hw) { struct dsi_pll_28nm *pll_28nm = to_pll_28nm(hw); struct device *dev = &pll_28nm->phy->pdev->dev; void __iomem *base = pll_28nm->phy->pll_base; bool locked; unsigned int bit_div, byte_div; int max_reads = 1000, timeout_us = 100; u32 val; DBG("id=%d", pll_28nm->phy->id); if (unlikely(pll_28nm->phy->pll_on)) return 0; /* * before enabling the PLL, configure the bit clock divider since we * don't expose it as a clock to the outside world * 1: read back the byte clock divider that should already be set * 2: divide by 8 to get bit clock divider * 3: write it to POSTDIV1 */ val = readl(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_9); byte_div = val + 1; bit_div = byte_div / 8; val = readl(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_8); val &= ~0xf; val |= (bit_div - 1); writel(val, base + REG_DSI_28nm_8960_PHY_PLL_CTRL_8); /* enable the PLL */ writel(DSI_28nm_8960_PHY_PLL_CTRL_0_ENABLE, base + REG_DSI_28nm_8960_PHY_PLL_CTRL_0); locked = pll_28nm_poll_for_ready(pll_28nm, max_reads, timeout_us); if (unlikely(!locked)) { DRM_DEV_ERROR(dev, "DSI PLL lock failed\n"); return -EINVAL; } DBG("DSI PLL lock success"); pll_28nm->phy->pll_on = true; return 0; } static void dsi_pll_28nm_vco_unprepare(struct clk_hw *hw) { struct dsi_pll_28nm *pll_28nm = to_pll_28nm(hw); DBG("id=%d", pll_28nm->phy->id); if (unlikely(!pll_28nm->phy->pll_on)) return; writel(0x00, pll_28nm->phy->pll_base + REG_DSI_28nm_8960_PHY_PLL_CTRL_0); pll_28nm->phy->pll_on = false; } static long dsi_pll_28nm_clk_round_rate(struct clk_hw *hw, unsigned long rate, unsigned long *parent_rate) { struct dsi_pll_28nm *pll_28nm = to_pll_28nm(hw); if (rate < pll_28nm->phy->cfg->min_pll_rate) return pll_28nm->phy->cfg->min_pll_rate; else if (rate > pll_28nm->phy->cfg->max_pll_rate) return pll_28nm->phy->cfg->max_pll_rate; else return rate; } static const struct clk_ops clk_ops_dsi_pll_28nm_vco = { .round_rate = dsi_pll_28nm_clk_round_rate, .set_rate = dsi_pll_28nm_clk_set_rate, .recalc_rate = dsi_pll_28nm_clk_recalc_rate, .prepare = dsi_pll_28nm_vco_prepare, .unprepare = dsi_pll_28nm_vco_unprepare, .is_enabled = dsi_pll_28nm_clk_is_enabled, }; /* * Custom byte clock divier clk_ops * * This clock is the entry point to configuring the PLL. The user (dsi host) * will set this clock's rate to the desired byte clock rate. The VCO lock * frequency is a multiple of the byte clock rate. The multiplication factor * (shown as F in the diagram above) is a function of the byte clock rate. * * This custom divider clock ensures that its parent (VCO) is set to the * desired rate, and that the byte clock postdivider (POSTDIV2) is configured * accordingly */ #define to_clk_bytediv(_hw) container_of(_hw, struct clk_bytediv, hw) static unsigned long clk_bytediv_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct clk_bytediv *bytediv = to_clk_bytediv(hw); unsigned int div; div = readl(bytediv->reg) & 0xff; return parent_rate / (div + 1); } /* find multiplication factor(wrt byte clock) at which the VCO should be set */ static unsigned int get_vco_mul_factor(unsigned long byte_clk_rate) { unsigned long bit_mhz; /* convert to bit clock in Mhz */ bit_mhz = (byte_clk_rate * 8) / 1000000; if (bit_mhz < 125) return 64; else if (bit_mhz < 250) return 32; else if (bit_mhz < 600) return 16; else return 8; } static long clk_bytediv_round_rate(struct clk_hw *hw, unsigned long rate, unsigned long *prate) { unsigned long best_parent; unsigned int factor; factor = get_vco_mul_factor(rate); best_parent = rate * factor; *prate = clk_hw_round_rate(clk_hw_get_parent(hw), best_parent); return *prate / factor; } static int clk_bytediv_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { struct clk_bytediv *bytediv = to_clk_bytediv(hw); u32 val; unsigned int factor; factor = get_vco_mul_factor(rate); val = readl(bytediv->reg); val |= (factor - 1) & 0xff; writel(val, bytediv->reg); return 0; } /* Our special byte clock divider ops */ static const struct clk_ops clk_bytediv_ops = { .round_rate = clk_bytediv_round_rate, .set_rate = clk_bytediv_set_rate, .recalc_rate = clk_bytediv_recalc_rate, }; /* * PLL Callbacks */ static void dsi_28nm_pll_save_state(struct msm_dsi_phy *phy) { struct dsi_pll_28nm *pll_28nm = to_pll_28nm(phy->vco_hw); struct pll_28nm_cached_state *cached_state = &pll_28nm->cached_state; void __iomem *base = pll_28nm->phy->pll_base; cached_state->postdiv3 = readl(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_10); cached_state->postdiv2 = readl(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_9); cached_state->postdiv1 = readl(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_8); cached_state->vco_rate = clk_hw_get_rate(phy->vco_hw); } static int dsi_28nm_pll_restore_state(struct msm_dsi_phy *phy) { struct dsi_pll_28nm *pll_28nm = to_pll_28nm(phy->vco_hw); struct pll_28nm_cached_state *cached_state = &pll_28nm->cached_state; void __iomem *base = pll_28nm->phy->pll_base; int ret; ret = dsi_pll_28nm_clk_set_rate(phy->vco_hw, cached_state->vco_rate, 0); if (ret) { DRM_DEV_ERROR(&pll_28nm->phy->pdev->dev, "restore vco rate failed. ret=%d\n", ret); return ret; } writel(cached_state->postdiv3, base + REG_DSI_28nm_8960_PHY_PLL_CTRL_10); writel(cached_state->postdiv2, base + REG_DSI_28nm_8960_PHY_PLL_CTRL_9); writel(cached_state->postdiv1, base + REG_DSI_28nm_8960_PHY_PLL_CTRL_8); return 0; } static int pll_28nm_register(struct dsi_pll_28nm *pll_28nm, struct clk_hw **provided_clocks) { char clk_name[32]; struct clk_init_data vco_init = { .parent_data = &(const struct clk_parent_data) { .fw_name = "ref", }, .num_parents = 1, .flags = CLK_IGNORE_UNUSED, .ops = &clk_ops_dsi_pll_28nm_vco, }; struct device *dev = &pll_28nm->phy->pdev->dev; struct clk_hw *hw; struct clk_bytediv *bytediv; struct clk_init_data bytediv_init = { }; int ret; DBG("%d", pll_28nm->phy->id); bytediv = devm_kzalloc(dev, sizeof(*bytediv), GFP_KERNEL); if (!bytediv) return -ENOMEM; snprintf(clk_name, sizeof(clk_name), "dsi%dvco_clk", pll_28nm->phy->id); vco_init.name = clk_name; pll_28nm->clk_hw.init = &vco_init; ret = devm_clk_hw_register(dev, &pll_28nm->clk_hw); if (ret) return ret; /* prepare and register bytediv */ bytediv->hw.init = &bytediv_init; bytediv->reg = pll_28nm->phy->pll_base + REG_DSI_28nm_8960_PHY_PLL_CTRL_9; snprintf(clk_name, sizeof(clk_name), "dsi%dpllbyte", pll_28nm->phy->id + 1); bytediv_init.name = clk_name; bytediv_init.ops = &clk_bytediv_ops; bytediv_init.flags = CLK_SET_RATE_PARENT; bytediv_init.parent_hws = (const struct clk_hw*[]){ &pll_28nm->clk_hw, }; bytediv_init.num_parents = 1; /* DIV2 */ ret = devm_clk_hw_register(dev, &bytediv->hw); if (ret) return ret; provided_clocks[DSI_BYTE_PLL_CLK] = &bytediv->hw; snprintf(clk_name, sizeof(clk_name), "dsi%dpll", pll_28nm->phy->id + 1); /* DIV3 */ hw = devm_clk_hw_register_divider_parent_hw(dev, clk_name, &pll_28nm->clk_hw, 0, pll_28nm->phy->pll_base + REG_DSI_28nm_8960_PHY_PLL_CTRL_10, 0, 8, 0, NULL); if (IS_ERR(hw)) return PTR_ERR(hw); provided_clocks[DSI_PIXEL_PLL_CLK] = hw; return 0; } static int dsi_pll_28nm_8960_init(struct msm_dsi_phy *phy) { struct platform_device *pdev = phy->pdev; struct dsi_pll_28nm *pll_28nm; int ret; if (!pdev) return -ENODEV; pll_28nm = devm_kzalloc(&pdev->dev, sizeof(*pll_28nm), GFP_KERNEL); if (!pll_28nm) return -ENOMEM; pll_28nm->phy = phy; ret = pll_28nm_register(pll_28nm, phy->provided_clocks->hws); if (ret) { DRM_DEV_ERROR(&pdev->dev, "failed to register PLL: %d\n", ret); return ret; } phy->vco_hw = &pll_28nm->clk_hw; return 0; } static void dsi_28nm_dphy_set_timing(struct msm_dsi_phy *phy, struct msm_dsi_dphy_timing *timing) { void __iomem *base = phy->base; writel(DSI_28nm_8960_PHY_TIMING_CTRL_0_CLK_ZERO(timing->clk_zero), base + REG_DSI_28nm_8960_PHY_TIMING_CTRL_0); writel(DSI_28nm_8960_PHY_TIMING_CTRL_1_CLK_TRAIL(timing->clk_trail), base + REG_DSI_28nm_8960_PHY_TIMING_CTRL_1); writel(DSI_28nm_8960_PHY_TIMING_CTRL_2_CLK_PREPARE(timing->clk_prepare), base + REG_DSI_28nm_8960_PHY_TIMING_CTRL_2); writel(0, base + REG_DSI_28nm_8960_PHY_TIMING_CTRL_3); writel(DSI_28nm_8960_PHY_TIMING_CTRL_4_HS_EXIT(timing->hs_exit), base + REG_DSI_28nm_8960_PHY_TIMING_CTRL_4); writel(DSI_28nm_8960_PHY_TIMING_CTRL_5_HS_ZERO(timing->hs_zero), base + REG_DSI_28nm_8960_PHY_TIMING_CTRL_5); writel(DSI_28nm_8960_PHY_TIMING_CTRL_6_HS_PREPARE(timing->hs_prepare), base + REG_DSI_28nm_8960_PHY_TIMING_CTRL_6); writel(DSI_28nm_8960_PHY_TIMING_CTRL_7_HS_TRAIL(timing->hs_trail), base + REG_DSI_28nm_8960_PHY_TIMING_CTRL_7); writel(DSI_28nm_8960_PHY_TIMING_CTRL_8_HS_RQST(timing->hs_rqst), base + REG_DSI_28nm_8960_PHY_TIMING_CTRL_8); writel(DSI_28nm_8960_PHY_TIMING_CTRL_9_TA_GO(timing->ta_go) | DSI_28nm_8960_PHY_TIMING_CTRL_9_TA_SURE(timing->ta_sure), base + REG_DSI_28nm_8960_PHY_TIMING_CTRL_9); writel(DSI_28nm_8960_PHY_TIMING_CTRL_10_TA_GET(timing->ta_get), base + REG_DSI_28nm_8960_PHY_TIMING_CTRL_10); writel(DSI_28nm_8960_PHY_TIMING_CTRL_11_TRIG3_CMD(0), base + REG_DSI_28nm_8960_PHY_TIMING_CTRL_11); } static void dsi_28nm_phy_regulator_init(struct msm_dsi_phy *phy) { void __iomem *base = phy->reg_base; writel(0x3, base + REG_DSI_28nm_8960_PHY_MISC_REGULATOR_CTRL_0); writel(1, base + REG_DSI_28nm_8960_PHY_MISC_REGULATOR_CTRL_1); writel(1, base + REG_DSI_28nm_8960_PHY_MISC_REGULATOR_CTRL_2); writel(0, base + REG_DSI_28nm_8960_PHY_MISC_REGULATOR_CTRL_3); writel(0x100, base + REG_DSI_28nm_8960_PHY_MISC_REGULATOR_CTRL_4); } static void dsi_28nm_phy_regulator_ctrl(struct msm_dsi_phy *phy) { void __iomem *base = phy->reg_base; writel(0x3, base + REG_DSI_28nm_8960_PHY_MISC_REGULATOR_CTRL_0); writel(0xa, base + REG_DSI_28nm_8960_PHY_MISC_REGULATOR_CTRL_1); writel(0x4, base + REG_DSI_28nm_8960_PHY_MISC_REGULATOR_CTRL_2); writel(0x0, base + REG_DSI_28nm_8960_PHY_MISC_REGULATOR_CTRL_3); writel(0x20, base + REG_DSI_28nm_8960_PHY_MISC_REGULATOR_CTRL_4); } static void dsi_28nm_phy_calibration(struct msm_dsi_phy *phy) { void __iomem *base = phy->reg_base; u32 status; int i = 5000; writel(0x3, base + REG_DSI_28nm_8960_PHY_MISC_REGULATOR_CAL_PWR_CFG); writel(0x0, base + REG_DSI_28nm_8960_PHY_MISC_CAL_SW_CFG_2); writel(0x5a, base + REG_DSI_28nm_8960_PHY_MISC_CAL_HW_CFG_1); writel(0x10, base + REG_DSI_28nm_8960_PHY_MISC_CAL_HW_CFG_3); writel(0x1, base + REG_DSI_28nm_8960_PHY_MISC_CAL_HW_CFG_4); writel(0x1, base + REG_DSI_28nm_8960_PHY_MISC_CAL_HW_CFG_0); writel(0x1, base + REG_DSI_28nm_8960_PHY_MISC_CAL_HW_TRIGGER); usleep_range(5000, 6000); writel(0x0, base + REG_DSI_28nm_8960_PHY_MISC_CAL_HW_TRIGGER); do { status = readl(base + REG_DSI_28nm_8960_PHY_MISC_CAL_STATUS); if (!(status & DSI_28nm_8960_PHY_MISC_CAL_STATUS_CAL_BUSY)) break; udelay(1); } while (--i > 0); } static void dsi_28nm_phy_lane_config(struct msm_dsi_phy *phy) { void __iomem *base = phy->base; int i; for (i = 0; i < 4; i++) { writel(0x80, base + REG_DSI_28nm_8960_PHY_LN_CFG_0(i)); writel(0x45, base + REG_DSI_28nm_8960_PHY_LN_CFG_1(i)); writel(0x00, base + REG_DSI_28nm_8960_PHY_LN_CFG_2(i)); writel(0x00, base + REG_DSI_28nm_8960_PHY_LN_TEST_DATAPATH(i)); writel(0x01, base + REG_DSI_28nm_8960_PHY_LN_TEST_STR_0(i)); writel(0x66, base + REG_DSI_28nm_8960_PHY_LN_TEST_STR_1(i)); } writel(0x40, base + REG_DSI_28nm_8960_PHY_LNCK_CFG_0); writel(0x67, base + REG_DSI_28nm_8960_PHY_LNCK_CFG_1); writel(0x0, base + REG_DSI_28nm_8960_PHY_LNCK_CFG_2); writel(0x0, base + REG_DSI_28nm_8960_PHY_LNCK_TEST_DATAPATH); writel(0x1, base + REG_DSI_28nm_8960_PHY_LNCK_TEST_STR0); writel(0x88, base + REG_DSI_28nm_8960_PHY_LNCK_TEST_STR1); } static int dsi_28nm_phy_enable(struct msm_dsi_phy *phy, struct msm_dsi_phy_clk_request *clk_req) { struct msm_dsi_dphy_timing *timing = &phy->timing; void __iomem *base = phy->base; DBG(""); if (msm_dsi_dphy_timing_calc(timing, clk_req)) { DRM_DEV_ERROR(&phy->pdev->dev, "%s: D-PHY timing calculation failed\n", __func__); return -EINVAL; } dsi_28nm_phy_regulator_init(phy); writel(0x04, base + REG_DSI_28nm_8960_PHY_LDO_CTRL); /* strength control */ writel(0xff, base + REG_DSI_28nm_8960_PHY_STRENGTH_0); writel(0x00, base + REG_DSI_28nm_8960_PHY_STRENGTH_1); writel(0x06, base + REG_DSI_28nm_8960_PHY_STRENGTH_2); /* phy ctrl */ writel(0x5f, base + REG_DSI_28nm_8960_PHY_CTRL_0); writel(0x00, base + REG_DSI_28nm_8960_PHY_CTRL_1); writel(0x00, base + REG_DSI_28nm_8960_PHY_CTRL_2); writel(0x10, base + REG_DSI_28nm_8960_PHY_CTRL_3); dsi_28nm_phy_regulator_ctrl(phy); dsi_28nm_phy_calibration(phy); dsi_28nm_phy_lane_config(phy); writel(0x0f, base + REG_DSI_28nm_8960_PHY_BIST_CTRL_4); writel(0x03, base + REG_DSI_28nm_8960_PHY_BIST_CTRL_1); writel(0x03, base + REG_DSI_28nm_8960_PHY_BIST_CTRL_0); writel(0x0, base + REG_DSI_28nm_8960_PHY_BIST_CTRL_4); dsi_28nm_dphy_set_timing(phy, timing); return 0; } static void dsi_28nm_phy_disable(struct msm_dsi_phy *phy) { writel(0x0, phy->base + REG_DSI_28nm_8960_PHY_CTRL_0); /* * Wait for the registers writes to complete in order to * ensure that the phy is completely disabled */ wmb(); } static const struct regulator_bulk_data dsi_phy_28nm_8960_regulators[] = { { .supply = "vddio", .init_load_uA = 100000 }, /* 1.8 V */ }; const struct msm_dsi_phy_cfg dsi_phy_28nm_8960_cfgs = { .has_phy_regulator = true, .regulator_data = dsi_phy_28nm_8960_regulators, .num_regulators = ARRAY_SIZE(dsi_phy_28nm_8960_regulators), .ops = { .enable = dsi_28nm_phy_enable, .disable = dsi_28nm_phy_disable, .pll_init = dsi_pll_28nm_8960_init, .save_pll_state = dsi_28nm_pll_save_state, .restore_pll_state = dsi_28nm_pll_restore_state, }, .min_pll_rate = VCO_MIN_RATE, .max_pll_rate = VCO_MAX_RATE, .io_start = { 0x4700300, 0x5800300 }, .num_dsi_phy = 2, };
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1