Contributors: 38
Author |
Tokens |
Token Proportion |
Commits |
Commit Proportion |
Rob Clark |
1144 |
50.66% |
52 |
35.37% |
Dmitry Eremin-Solenikov |
309 |
13.68% |
20 |
13.61% |
Hai Li |
137 |
6.07% |
2 |
1.36% |
Chandan Uddaraju |
110 |
4.87% |
1 |
0.68% |
Jeykumar Sankaran |
85 |
3.76% |
3 |
2.04% |
Jordan Crouse |
63 |
2.79% |
8 |
5.44% |
Paloma Arellano |
48 |
2.13% |
3 |
2.04% |
Abhinav Kumar |
47 |
2.08% |
6 |
4.08% |
Archit Taneja |
44 |
1.95% |
8 |
5.44% |
Kuogee Hsieh |
33 |
1.46% |
4 |
2.72% |
Arnd Bergmann |
29 |
1.28% |
4 |
2.72% |
Sharat Masetty |
19 |
0.84% |
1 |
0.68% |
Jessica Zhang |
19 |
0.84% |
1 |
0.68% |
Björn Andersson |
17 |
0.75% |
2 |
1.36% |
Vinod Koul |
16 |
0.71% |
3 |
2.04% |
Thomas Zimmermann |
14 |
0.62% |
2 |
1.36% |
Jonathan Marek |
12 |
0.53% |
2 |
1.36% |
Joe Perches |
12 |
0.53% |
1 |
0.68% |
Eric Anholt |
10 |
0.44% |
1 |
0.68% |
Marek Vašut |
10 |
0.44% |
1 |
0.68% |
Kristian H. Kristensen |
9 |
0.40% |
1 |
0.68% |
Sean Paul |
8 |
0.35% |
2 |
1.36% |
Noralf Trönnes |
8 |
0.35% |
1 |
0.68% |
Tanmay Shah |
7 |
0.31% |
1 |
0.68% |
Kalyan Thota |
6 |
0.27% |
2 |
1.36% |
Robin Murphy |
6 |
0.27% |
1 |
0.68% |
Sushmita Susheelendra |
6 |
0.27% |
1 |
0.68% |
Daniel Mack |
5 |
0.22% |
1 |
0.68% |
Dave Airlie |
5 |
0.22% |
2 |
1.36% |
Samuel Iglesias Gonsálvez |
4 |
0.18% |
1 |
0.68% |
Daniel Vetter |
4 |
0.18% |
2 |
1.36% |
Bernard Zhao |
2 |
0.09% |
1 |
0.68% |
Lucas De Marchi |
2 |
0.09% |
1 |
0.68% |
Qi Zheng |
2 |
0.09% |
1 |
0.68% |
Konrad Dybcio |
2 |
0.09% |
1 |
0.68% |
Thomas Gleixner |
2 |
0.09% |
1 |
0.68% |
Masahiro Yamada |
1 |
0.04% |
1 |
0.68% |
Ville Syrjälä |
1 |
0.04% |
1 |
0.68% |
Total |
2258 |
|
147 |
|
/* SPDX-License-Identifier: GPL-2.0-only */
/*
* Copyright (c) 2016-2018, The Linux Foundation. All rights reserved.
* Copyright (C) 2013 Red Hat
* Author: Rob Clark <robdclark@gmail.com>
*/
#ifndef __MSM_DRV_H__
#define __MSM_DRV_H__
#include <linux/kernel.h>
#include <linux/clk.h>
#include <linux/cpufreq.h>
#include <linux/devfreq.h>
#include <linux/module.h>
#include <linux/component.h>
#include <linux/platform_device.h>
#include <linux/pm.h>
#include <linux/pm_runtime.h>
#include <linux/slab.h>
#include <linux/list.h>
#include <linux/iommu.h>
#include <linux/types.h>
#include <linux/of_graph.h>
#include <linux/of_device.h>
#include <linux/sizes.h>
#include <linux/kthread.h>
#include <drm/drm_atomic.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_probe_helper.h>
#include <drm/display/drm_dsc.h>
#include <drm/msm_drm.h>
#include <drm/drm_gem.h>
#ifdef CONFIG_FAULT_INJECTION
extern struct fault_attr fail_gem_alloc;
extern struct fault_attr fail_gem_iova;
#else
# define should_fail(attr, size) 0
#endif
struct msm_kms;
struct msm_gpu;
struct msm_mmu;
struct msm_mdss;
struct msm_rd_state;
struct msm_perf_state;
struct msm_gem_submit;
struct msm_fence_context;
struct msm_gem_address_space;
struct msm_gem_vma;
struct msm_disp_state;
#define MAX_CRTCS 8
#define MAX_BRIDGES 8
#define FRAC_16_16(mult, div) (((mult) << 16) / (div))
enum msm_dp_controller {
MSM_DP_CONTROLLER_0,
MSM_DP_CONTROLLER_1,
MSM_DP_CONTROLLER_2,
MSM_DP_CONTROLLER_3,
MSM_DP_CONTROLLER_COUNT,
};
enum msm_dsi_controller {
MSM_DSI_CONTROLLER_0,
MSM_DSI_CONTROLLER_1,
MSM_DSI_CONTROLLER_COUNT,
};
#define MSM_GPU_MAX_RINGS 4
#define MAX_H_TILES_PER_DISPLAY 2
/**
* struct msm_display_topology - defines a display topology pipeline
* @num_lm: number of layer mixers used
* @num_intf: number of interfaces the panel is mounted on
* @num_dspp: number of dspp blocks used
* @num_dsc: number of Display Stream Compression (DSC) blocks used
* @needs_cdm: indicates whether cdm block is needed for this display topology
*/
struct msm_display_topology {
u32 num_lm;
u32 num_intf;
u32 num_dspp;
u32 num_dsc;
bool needs_cdm;
};
/* Commit/Event thread specific structure */
struct msm_drm_thread {
struct drm_device *dev;
struct kthread_worker *worker;
};
struct msm_drm_private {
struct drm_device *dev;
struct msm_kms *kms;
int (*kms_init)(struct drm_device *dev);
/* subordinate devices, if present: */
struct platform_device *gpu_pdev;
/* possibly this should be in the kms component, but it is
* shared by both mdp4 and mdp5..
*/
struct hdmi *hdmi;
/* DSI is shared by mdp4 and mdp5 */
struct msm_dsi *dsi[MSM_DSI_CONTROLLER_COUNT];
struct msm_dp *dp[MSM_DP_CONTROLLER_COUNT];
/* when we have more than one 'msm_gpu' these need to be an array: */
struct msm_gpu *gpu;
/* gpu is only set on open(), but we need this info earlier */
bool is_a2xx;
bool has_cached_coherent;
struct msm_rd_state *rd; /* debugfs to dump all submits */
struct msm_rd_state *hangrd; /* debugfs to dump hanging submits */
struct msm_perf_state *perf;
/**
* total_mem: Total/global amount of memory backing GEM objects.
*/
atomic64_t total_mem;
/**
* List of all GEM objects (mainly for debugfs, protected by obj_lock
* (acquire before per GEM object lock)
*/
struct list_head objects;
struct mutex obj_lock;
/**
* lru:
*
* The various LRU's that a GEM object is in at various stages of
* it's lifetime. Objects start out in the unbacked LRU. When
* pinned (for scannout or permanently mapped GPU buffers, like
* ringbuffer, memptr, fw, etc) it moves to the pinned LRU. When
* unpinned, it moves into willneed or dontneed LRU depending on
* madvise state. When backing pages are evicted (willneed) or
* purged (dontneed) it moves back into the unbacked LRU.
*
* The dontneed LRU is considered by the shrinker for objects
* that are candidate for purging, and the willneed LRU is
* considered for objects that could be evicted.
*/
struct {
/**
* unbacked:
*
* The LRU for GEM objects without backing pages allocated.
* This mostly exists so that objects are always is one
* LRU.
*/
struct drm_gem_lru unbacked;
/**
* pinned:
*
* The LRU for pinned GEM objects
*/
struct drm_gem_lru pinned;
/**
* willneed:
*
* The LRU for unpinned GEM objects which are in madvise
* WILLNEED state (ie. can be evicted)
*/
struct drm_gem_lru willneed;
/**
* dontneed:
*
* The LRU for unpinned GEM objects which are in madvise
* DONTNEED state (ie. can be purged)
*/
struct drm_gem_lru dontneed;
/**
* lock:
*
* Protects manipulation of all of the LRUs.
*/
struct mutex lock;
} lru;
struct workqueue_struct *wq;
unsigned int num_crtcs;
struct msm_drm_thread event_thread[MAX_CRTCS];
/* VRAM carveout, used when no IOMMU: */
struct {
unsigned long size;
dma_addr_t paddr;
/* NOTE: mm managed at the page level, size is in # of pages
* and position mm_node->start is in # of pages:
*/
struct drm_mm mm;
spinlock_t lock; /* Protects drm_mm node allocation/removal */
} vram;
struct notifier_block vmap_notifier;
struct shrinker *shrinker;
struct drm_atomic_state *pm_state;
/**
* hangcheck_period: For hang detection, in ms
*
* Note that in practice, a submit/job will get at least two hangcheck
* periods, due to checking for progress being implemented as simply
* "have the CP position registers changed since last time?"
*/
unsigned int hangcheck_period;
/** gpu_devfreq_config: Devfreq tuning config for the GPU. */
struct devfreq_simple_ondemand_data gpu_devfreq_config;
/**
* gpu_clamp_to_idle: Enable clamping to idle freq when inactive
*/
bool gpu_clamp_to_idle;
/**
* disable_err_irq:
*
* Disable handling of GPU hw error interrupts, to force fallback to
* sw hangcheck timer. Written (via debugfs) by igt tests to test
* the sw hangcheck mechanism.
*/
bool disable_err_irq;
};
const struct msm_format *mdp_get_format(struct msm_kms *kms, uint32_t format, uint64_t modifier);
struct msm_pending_timer;
int msm_atomic_init_pending_timer(struct msm_pending_timer *timer,
struct msm_kms *kms, int crtc_idx);
void msm_atomic_destroy_pending_timer(struct msm_pending_timer *timer);
void msm_atomic_commit_tail(struct drm_atomic_state *state);
int msm_atomic_check(struct drm_device *dev, struct drm_atomic_state *state);
struct drm_atomic_state *msm_atomic_state_alloc(struct drm_device *dev);
void msm_atomic_state_clear(struct drm_atomic_state *state);
void msm_atomic_state_free(struct drm_atomic_state *state);
int msm_crtc_enable_vblank(struct drm_crtc *crtc);
void msm_crtc_disable_vblank(struct drm_crtc *crtc);
int msm_register_mmu(struct drm_device *dev, struct msm_mmu *mmu);
void msm_unregister_mmu(struct drm_device *dev, struct msm_mmu *mmu);
struct msm_gem_address_space *msm_kms_init_aspace(struct drm_device *dev);
bool msm_use_mmu(struct drm_device *dev);
int msm_ioctl_gem_submit(struct drm_device *dev, void *data,
struct drm_file *file);
#ifdef CONFIG_DEBUG_FS
unsigned long msm_gem_shrinker_shrink(struct drm_device *dev, unsigned long nr_to_scan);
#endif
int msm_gem_shrinker_init(struct drm_device *dev);
void msm_gem_shrinker_cleanup(struct drm_device *dev);
struct sg_table *msm_gem_prime_get_sg_table(struct drm_gem_object *obj);
int msm_gem_prime_vmap(struct drm_gem_object *obj, struct iosys_map *map);
void msm_gem_prime_vunmap(struct drm_gem_object *obj, struct iosys_map *map);
struct drm_gem_object *msm_gem_prime_import_sg_table(struct drm_device *dev,
struct dma_buf_attachment *attach, struct sg_table *sg);
int msm_gem_prime_pin(struct drm_gem_object *obj);
void msm_gem_prime_unpin(struct drm_gem_object *obj);
int msm_framebuffer_prepare(struct drm_framebuffer *fb,
struct msm_gem_address_space *aspace, bool needs_dirtyfb);
void msm_framebuffer_cleanup(struct drm_framebuffer *fb,
struct msm_gem_address_space *aspace, bool needed_dirtyfb);
uint32_t msm_framebuffer_iova(struct drm_framebuffer *fb,
struct msm_gem_address_space *aspace, int plane);
struct drm_gem_object *msm_framebuffer_bo(struct drm_framebuffer *fb, int plane);
const struct msm_format *msm_framebuffer_format(struct drm_framebuffer *fb);
struct drm_framebuffer *msm_framebuffer_create(struct drm_device *dev,
struct drm_file *file, const struct drm_mode_fb_cmd2 *mode_cmd);
struct drm_framebuffer * msm_alloc_stolen_fb(struct drm_device *dev,
int w, int h, int p, uint32_t format);
#ifdef CONFIG_DRM_FBDEV_EMULATION
void msm_fbdev_setup(struct drm_device *dev);
#else
static inline void msm_fbdev_setup(struct drm_device *dev)
{
}
#endif
struct hdmi;
#ifdef CONFIG_DRM_MSM_HDMI
int msm_hdmi_modeset_init(struct hdmi *hdmi, struct drm_device *dev,
struct drm_encoder *encoder);
void __init msm_hdmi_register(void);
void __exit msm_hdmi_unregister(void);
#else
static inline int msm_hdmi_modeset_init(struct hdmi *hdmi, struct drm_device *dev,
struct drm_encoder *encoder)
{
return -EINVAL;
}
static inline void __init msm_hdmi_register(void) {}
static inline void __exit msm_hdmi_unregister(void) {}
#endif
struct msm_dsi;
#ifdef CONFIG_DRM_MSM_DSI
int dsi_dev_attach(struct platform_device *pdev);
void dsi_dev_detach(struct platform_device *pdev);
void __init msm_dsi_register(void);
void __exit msm_dsi_unregister(void);
int msm_dsi_modeset_init(struct msm_dsi *msm_dsi, struct drm_device *dev,
struct drm_encoder *encoder);
void msm_dsi_snapshot(struct msm_disp_state *disp_state, struct msm_dsi *msm_dsi);
bool msm_dsi_is_cmd_mode(struct msm_dsi *msm_dsi);
bool msm_dsi_is_bonded_dsi(struct msm_dsi *msm_dsi);
bool msm_dsi_is_master_dsi(struct msm_dsi *msm_dsi);
bool msm_dsi_wide_bus_enabled(struct msm_dsi *msm_dsi);
struct drm_dsc_config *msm_dsi_get_dsc_config(struct msm_dsi *msm_dsi);
const char *msm_dsi_get_te_source(struct msm_dsi *msm_dsi);
#else
static inline void __init msm_dsi_register(void)
{
}
static inline void __exit msm_dsi_unregister(void)
{
}
static inline int msm_dsi_modeset_init(struct msm_dsi *msm_dsi,
struct drm_device *dev,
struct drm_encoder *encoder)
{
return -EINVAL;
}
static inline void msm_dsi_snapshot(struct msm_disp_state *disp_state, struct msm_dsi *msm_dsi)
{
}
static inline bool msm_dsi_is_cmd_mode(struct msm_dsi *msm_dsi)
{
return false;
}
static inline bool msm_dsi_is_bonded_dsi(struct msm_dsi *msm_dsi)
{
return false;
}
static inline bool msm_dsi_is_master_dsi(struct msm_dsi *msm_dsi)
{
return false;
}
static inline bool msm_dsi_wide_bus_enabled(struct msm_dsi *msm_dsi)
{
return false;
}
static inline struct drm_dsc_config *msm_dsi_get_dsc_config(struct msm_dsi *msm_dsi)
{
return NULL;
}
static inline const char *msm_dsi_get_te_source(struct msm_dsi *msm_dsi)
{
return NULL;
}
#endif
#ifdef CONFIG_DRM_MSM_DP
int __init msm_dp_register(void);
void __exit msm_dp_unregister(void);
int msm_dp_modeset_init(struct msm_dp *dp_display, struct drm_device *dev,
struct drm_encoder *encoder, bool yuv_supported);
void msm_dp_snapshot(struct msm_disp_state *disp_state, struct msm_dp *dp_display);
bool msm_dp_is_yuv_420_enabled(const struct msm_dp *dp_display,
const struct drm_display_mode *mode);
bool msm_dp_needs_periph_flush(const struct msm_dp *dp_display,
const struct drm_display_mode *mode);
bool msm_dp_wide_bus_available(const struct msm_dp *dp_display);
#else
static inline int __init msm_dp_register(void)
{
return -EINVAL;
}
static inline void __exit msm_dp_unregister(void)
{
}
static inline int msm_dp_modeset_init(struct msm_dp *dp_display,
struct drm_device *dev,
struct drm_encoder *encoder,
bool yuv_supported)
{
return -EINVAL;
}
static inline void msm_dp_snapshot(struct msm_disp_state *disp_state, struct msm_dp *dp_display)
{
}
static inline bool msm_dp_is_yuv_420_enabled(const struct msm_dp *dp_display,
const struct drm_display_mode *mode)
{
return false;
}
static inline bool msm_dp_needs_periph_flush(const struct msm_dp *dp_display,
const struct drm_display_mode *mode)
{
return false;
}
static inline bool msm_dp_wide_bus_available(const struct msm_dp *dp_display)
{
return false;
}
#endif
#ifdef CONFIG_DRM_MSM_MDP4
void msm_mdp4_register(void);
void msm_mdp4_unregister(void);
#else
static inline void msm_mdp4_register(void) {}
static inline void msm_mdp4_unregister(void) {}
#endif
#ifdef CONFIG_DRM_MSM_MDP5
void msm_mdp_register(void);
void msm_mdp_unregister(void);
#else
static inline void msm_mdp_register(void) {}
static inline void msm_mdp_unregister(void) {}
#endif
#ifdef CONFIG_DRM_MSM_DPU
void msm_dpu_register(void);
void msm_dpu_unregister(void);
#else
static inline void msm_dpu_register(void) {}
static inline void msm_dpu_unregister(void) {}
#endif
#ifdef CONFIG_DRM_MSM_MDSS
void msm_mdss_register(void);
void msm_mdss_unregister(void);
#else
static inline void msm_mdss_register(void) {}
static inline void msm_mdss_unregister(void) {}
#endif
#ifdef CONFIG_DEBUG_FS
void msm_framebuffer_describe(struct drm_framebuffer *fb, struct seq_file *m);
int msm_debugfs_late_init(struct drm_device *dev);
int msm_rd_debugfs_init(struct drm_minor *minor);
void msm_rd_debugfs_cleanup(struct msm_drm_private *priv);
__printf(3, 4)
void msm_rd_dump_submit(struct msm_rd_state *rd, struct msm_gem_submit *submit,
const char *fmt, ...);
int msm_perf_debugfs_init(struct drm_minor *minor);
void msm_perf_debugfs_cleanup(struct msm_drm_private *priv);
#else
static inline int msm_debugfs_late_init(struct drm_device *dev) { return 0; }
__printf(3, 4)
static inline void msm_rd_dump_submit(struct msm_rd_state *rd,
struct msm_gem_submit *submit,
const char *fmt, ...) {}
static inline void msm_rd_debugfs_cleanup(struct msm_drm_private *priv) {}
static inline void msm_perf_debugfs_cleanup(struct msm_drm_private *priv) {}
#endif
struct clk *msm_clk_get(struct platform_device *pdev, const char *name);
struct clk *msm_clk_bulk_get_clock(struct clk_bulk_data *bulk, int count,
const char *name);
void __iomem *msm_ioremap(struct platform_device *pdev, const char *name);
void __iomem *msm_ioremap_size(struct platform_device *pdev, const char *name,
phys_addr_t *size);
void __iomem *msm_ioremap_quiet(struct platform_device *pdev, const char *name);
void __iomem *msm_ioremap_mdss(struct platform_device *mdss_pdev,
struct platform_device *dev,
const char *name);
struct icc_path *msm_icc_get(struct device *dev, const char *name);
static inline void msm_rmw(void __iomem *addr, u32 mask, u32 or)
{
u32 val = readl(addr);
val &= ~mask;
writel(val | or, addr);
}
/**
* struct msm_hrtimer_work - a helper to combine an hrtimer with kthread_work
*
* @timer: hrtimer to control when the kthread work is triggered
* @work: the kthread work
* @worker: the kthread worker the work will be scheduled on
*/
struct msm_hrtimer_work {
struct hrtimer timer;
struct kthread_work work;
struct kthread_worker *worker;
};
void msm_hrtimer_queue_work(struct msm_hrtimer_work *work,
ktime_t wakeup_time,
enum hrtimer_mode mode);
void msm_hrtimer_work_init(struct msm_hrtimer_work *work,
struct kthread_worker *worker,
kthread_work_func_t fn,
clockid_t clock_id,
enum hrtimer_mode mode);
#define DBG(fmt, ...) DRM_DEBUG_DRIVER(fmt"\n", ##__VA_ARGS__)
#define VERB(fmt, ...) if (0) DRM_DEBUG_DRIVER(fmt"\n", ##__VA_ARGS__)
static inline int align_pitch(int width, int bpp)
{
int bytespp = (bpp + 7) / 8;
/* adreno needs pitch aligned to 32 pixels: */
return bytespp * ALIGN(width, 32);
}
/* for the generated headers: */
#define INVALID_IDX(idx) ({BUG(); 0;})
#define fui(x) ({BUG(); 0;})
#define _mesa_float_to_half(x) ({BUG(); 0;})
#define FIELD(val, name) (((val) & name ## __MASK) >> name ## __SHIFT)
/* for conditionally setting boolean flag(s): */
#define COND(bool, val) ((bool) ? (val) : 0)
static inline unsigned long timeout_to_jiffies(const ktime_t *timeout)
{
ktime_t now = ktime_get();
s64 remaining_jiffies;
if (ktime_compare(*timeout, now) < 0) {
remaining_jiffies = 0;
} else {
ktime_t rem = ktime_sub(*timeout, now);
remaining_jiffies = ktime_divns(rem, NSEC_PER_SEC / HZ);
}
return clamp(remaining_jiffies, 1LL, (s64)INT_MAX);
}
/* Driver helpers */
extern const struct component_master_ops msm_drm_ops;
int msm_kms_pm_prepare(struct device *dev);
void msm_kms_pm_complete(struct device *dev);
int msm_drv_probe(struct device *dev,
int (*kms_init)(struct drm_device *dev),
struct msm_kms *kms);
void msm_kms_shutdown(struct platform_device *pdev);
bool msm_disp_drv_should_bind(struct device *dev, bool dpu_driver);
#endif /* __MSM_DRV_H__ */