Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Ben Skeggs | 5493 | 99.08% | 113 | 94.96% |
Marcin Ślusarz | 41 | 0.74% | 3 | 2.52% |
Alistair Popple | 8 | 0.14% | 1 | 0.84% |
Alexandre Courbot | 1 | 0.02% | 1 | 0.84% |
Tom Rix | 1 | 0.02% | 1 | 0.84% |
Total | 5544 | 119 |
/* * Copyright 2012 Red Hat Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: Ben Skeggs */ #include "priv.h" #include "cgrp.h" #include "chan.h" #include "chid.h" #include "runl.h" #include "runq.h" #include <core/gpuobj.h> #include <subdev/bar.h> #include <subdev/fault.h> #include <subdev/mc.h> #include <subdev/mmu.h> #include <engine/sw.h> #include <nvif/class.h> void gf100_chan_preempt(struct nvkm_chan *chan) { nvkm_wr32(chan->cgrp->runl->fifo->engine.subdev.device, 0x002634, chan->id); } static void gf100_chan_stop(struct nvkm_chan *chan) { struct nvkm_device *device = chan->cgrp->runl->fifo->engine.subdev.device; nvkm_mask(device, 0x003004 + (chan->id * 8), 0x00000001, 0x00000000); } static void gf100_chan_start(struct nvkm_chan *chan) { struct nvkm_device *device = chan->cgrp->runl->fifo->engine.subdev.device; nvkm_wr32(device, 0x003004 + (chan->id * 8), 0x001f0001); } static void gf100_fifo_intr_engine(struct nvkm_fifo *); static void gf100_chan_unbind(struct nvkm_chan *chan) { struct nvkm_fifo *fifo = chan->cgrp->runl->fifo; struct nvkm_device *device = fifo->engine.subdev.device; /*TODO: Is this cargo-culted, or necessary? RM does *something* here... Why? */ gf100_fifo_intr_engine(fifo); nvkm_wr32(device, 0x003000 + (chan->id * 8), 0x00000000); } static void gf100_chan_bind(struct nvkm_chan *chan) { struct nvkm_device *device = chan->cgrp->runl->fifo->engine.subdev.device; nvkm_wr32(device, 0x003000 + (chan->id * 8), 0xc0000000 | chan->inst->addr >> 12); } static int gf100_chan_ramfc_write(struct nvkm_chan *chan, u64 offset, u64 length, u32 devm, bool priv) { const u64 userd = nvkm_memory_addr(chan->userd.mem) + chan->userd.base; const u32 limit2 = ilog2(length / 8); nvkm_kmap(chan->inst); nvkm_wo32(chan->inst, 0x08, lower_32_bits(userd)); nvkm_wo32(chan->inst, 0x0c, upper_32_bits(userd)); nvkm_wo32(chan->inst, 0x10, 0x0000face); nvkm_wo32(chan->inst, 0x30, 0xfffff902); nvkm_wo32(chan->inst, 0x48, lower_32_bits(offset)); nvkm_wo32(chan->inst, 0x4c, upper_32_bits(offset) | (limit2 << 16)); nvkm_wo32(chan->inst, 0x54, 0x00000002); nvkm_wo32(chan->inst, 0x84, 0x20400000); nvkm_wo32(chan->inst, 0x94, 0x30000000 | devm); nvkm_wo32(chan->inst, 0x9c, 0x00000100); nvkm_wo32(chan->inst, 0xa4, 0x1f1f1f1f); nvkm_wo32(chan->inst, 0xa8, 0x1f1f1f1f); nvkm_wo32(chan->inst, 0xac, 0x0000001f); nvkm_wo32(chan->inst, 0xb8, 0xf8000000); nvkm_wo32(chan->inst, 0xf8, 0x10003080); /* 0x002310 */ nvkm_wo32(chan->inst, 0xfc, 0x10000010); /* 0x002350 */ nvkm_done(chan->inst); return 0; } static const struct nvkm_chan_func_ramfc gf100_chan_ramfc = { .write = gf100_chan_ramfc_write, .devm = 0xfff, }; void gf100_chan_userd_clear(struct nvkm_chan *chan) { nvkm_kmap(chan->userd.mem); nvkm_wo32(chan->userd.mem, chan->userd.base + 0x040, 0x00000000); nvkm_wo32(chan->userd.mem, chan->userd.base + 0x044, 0x00000000); nvkm_wo32(chan->userd.mem, chan->userd.base + 0x048, 0x00000000); nvkm_wo32(chan->userd.mem, chan->userd.base + 0x04c, 0x00000000); nvkm_wo32(chan->userd.mem, chan->userd.base + 0x050, 0x00000000); nvkm_wo32(chan->userd.mem, chan->userd.base + 0x058, 0x00000000); nvkm_wo32(chan->userd.mem, chan->userd.base + 0x05c, 0x00000000); nvkm_wo32(chan->userd.mem, chan->userd.base + 0x060, 0x00000000); nvkm_wo32(chan->userd.mem, chan->userd.base + 0x088, 0x00000000); nvkm_wo32(chan->userd.mem, chan->userd.base + 0x08c, 0x00000000); nvkm_done(chan->userd.mem); } static const struct nvkm_chan_func_userd gf100_chan_userd = { .bar = 1, .size = 0x1000, .clear = gf100_chan_userd_clear, }; const struct nvkm_chan_func_inst gf100_chan_inst = { .size = 0x1000, .zero = true, .vmm = true, }; static const struct nvkm_chan_func gf100_chan = { .inst = &gf100_chan_inst, .userd = &gf100_chan_userd, .ramfc = &gf100_chan_ramfc, .bind = gf100_chan_bind, .unbind = gf100_chan_unbind, .start = gf100_chan_start, .stop = gf100_chan_stop, .preempt = gf100_chan_preempt, }; static void gf100_ectx_bind(struct nvkm_engn *engn, struct nvkm_cctx *cctx, struct nvkm_chan *chan) { u64 addr = 0ULL; u32 ptr0; switch (engn->engine->subdev.type) { case NVKM_ENGINE_SW : return; case NVKM_ENGINE_GR : ptr0 = 0x0210; break; case NVKM_ENGINE_CE : ptr0 = 0x0230 + (engn->engine->subdev.inst * 0x10); break; case NVKM_ENGINE_MSPDEC: ptr0 = 0x0250; break; case NVKM_ENGINE_MSPPP : ptr0 = 0x0260; break; case NVKM_ENGINE_MSVLD : ptr0 = 0x0270; break; default: WARN_ON(1); return; } if (cctx) { addr = cctx->vctx->vma->addr; addr |= 4ULL; } nvkm_kmap(chan->inst); nvkm_wo32(chan->inst, ptr0 + 0, lower_32_bits(addr)); nvkm_wo32(chan->inst, ptr0 + 4, upper_32_bits(addr)); nvkm_done(chan->inst); } static int gf100_ectx_ctor(struct nvkm_engn *engn, struct nvkm_vctx *vctx) { int ret; ret = nvkm_vmm_get(vctx->vmm, 12, vctx->inst->size, &vctx->vma); if (ret) return ret; return nvkm_memory_map(vctx->inst, 0, vctx->vmm, vctx->vma, NULL, 0); } bool gf100_engn_mmu_fault_triggered(struct nvkm_engn *engn) { struct nvkm_runl *runl = engn->runl; struct nvkm_fifo *fifo = runl->fifo; struct nvkm_device *device = fifo->engine.subdev.device; u32 data = nvkm_rd32(device, 0x002a30 + (engn->id * 4)); ENGN_DEBUG(engn, "%08x: mmu fault triggered", data); if (!(data & 0x00000100)) return false; spin_lock(&fifo->lock); nvkm_mask(device, 0x002a30 + (engn->id * 4), 0x00000100, 0x00000000); if (atomic_dec_and_test(&runl->rc_triggered)) nvkm_mask(device, 0x002140, 0x00000100, 0x00000100); spin_unlock(&fifo->lock); return true; } void gf100_engn_mmu_fault_trigger(struct nvkm_engn *engn) { struct nvkm_runl *runl = engn->runl; struct nvkm_fifo *fifo = runl->fifo; struct nvkm_device *device = fifo->engine.subdev.device; ENGN_DEBUG(engn, "triggering mmu fault on 0x%02x", engn->fault); spin_lock(&fifo->lock); if (atomic_inc_return(&runl->rc_triggered) == 1) nvkm_mask(device, 0x002140, 0x00000100, 0x00000000); nvkm_wr32(device, 0x002100, 0x00000100); nvkm_wr32(device, 0x002a30 + (engn->id * 4), 0x00000100 | engn->fault); spin_unlock(&fifo->lock); } /*TODO: clean all this up. */ struct gf100_engn_status { bool busy; bool save; bool unk0; bool unk1; u8 chid; }; static void gf100_engn_status(struct nvkm_engn *engn, struct gf100_engn_status *status) { u32 stat = nvkm_rd32(engn->engine->subdev.device, 0x002640 + (engn->id * 4)); status->busy = (stat & 0x10000000); status->save = (stat & 0x00100000); status->unk0 = (stat & 0x00004000); status->unk1 = (stat & 0x00001000); status->chid = (stat & 0x0000007f); ENGN_DEBUG(engn, "%08x: busy %d save %d unk0 %d unk1 %d chid %d", stat, status->busy, status->save, status->unk0, status->unk1, status->chid); } static int gf100_engn_cxid(struct nvkm_engn *engn, bool *cgid) { struct gf100_engn_status status; gf100_engn_status(engn, &status); if (status.busy) { *cgid = false; return status.chid; } return -ENODEV; } static bool gf100_engn_chsw(struct nvkm_engn *engn) { struct gf100_engn_status status; gf100_engn_status(engn, &status); if (status.busy && (status.unk0 || status.unk1)) return true; return false; } static const struct nvkm_engn_func gf100_engn = { .chsw = gf100_engn_chsw, .cxid = gf100_engn_cxid, .mmu_fault_trigger = gf100_engn_mmu_fault_trigger, .mmu_fault_triggered = gf100_engn_mmu_fault_triggered, .ctor = gf100_ectx_ctor, .bind = gf100_ectx_bind, }; const struct nvkm_engn_func gf100_engn_sw = { }; static const struct nvkm_bitfield gf100_runq_intr_0_names[] = { /* { 0x00008000, "" } seen with null ib push */ { 0x00200000, "ILLEGAL_MTHD" }, { 0x00800000, "EMPTY_SUBC" }, {} }; bool gf100_runq_intr(struct nvkm_runq *runq, struct nvkm_runl *null) { struct nvkm_subdev *subdev = &runq->fifo->engine.subdev; struct nvkm_device *device = subdev->device; u32 mask = nvkm_rd32(device, 0x04010c + (runq->id * 0x2000)); u32 stat = nvkm_rd32(device, 0x040108 + (runq->id * 0x2000)) & mask; u32 addr = nvkm_rd32(device, 0x0400c0 + (runq->id * 0x2000)); u32 data = nvkm_rd32(device, 0x0400c4 + (runq->id * 0x2000)); u32 chid = nvkm_rd32(device, 0x040120 + (runq->id * 0x2000)) & runq->fifo->chid->mask; u32 subc = (addr & 0x00070000) >> 16; u32 mthd = (addr & 0x00003ffc); u32 show = stat; struct nvkm_chan *chan; unsigned long flags; char msg[128]; if (stat & 0x00800000) { if (device->sw) { if (nvkm_sw_mthd(device->sw, chid, subc, mthd, data)) show &= ~0x00800000; } } if (show) { nvkm_snprintbf(msg, sizeof(msg), runq->func->intr_0_names, show); chan = nvkm_chan_get_chid(&runq->fifo->engine, chid, &flags); nvkm_error(subdev, "PBDMA%d: %08x [%s] ch %d [%010llx %s] " "subc %d mthd %04x data %08x\n", runq->id, show, msg, chid, chan ? chan->inst->addr : 0, chan ? chan->name : "unknown", subc, mthd, data); /*TODO: use proper procedure for clearing each exception / debug output */ if ((stat & 0xc67fe000) && chan) nvkm_chan_error(chan, true); nvkm_chan_put(&chan, flags); } nvkm_wr32(device, 0x0400c0 + (runq->id * 0x2000), 0x80600008); nvkm_wr32(device, 0x040108 + (runq->id * 0x2000), stat); return true; } void gf100_runq_init(struct nvkm_runq *runq) { struct nvkm_device *device = runq->fifo->engine.subdev.device; nvkm_mask(device, 0x04013c + (runq->id * 0x2000), 0x10000100, 0x00000000); nvkm_wr32(device, 0x040108 + (runq->id * 0x2000), 0xffffffff); /* INTR */ nvkm_wr32(device, 0x04010c + (runq->id * 0x2000), 0xfffffeff); /* INTREN */ } static const struct nvkm_runq_func gf100_runq = { .init = gf100_runq_init, .intr = gf100_runq_intr, .intr_0_names = gf100_runq_intr_0_names, }; bool gf100_runl_preempt_pending(struct nvkm_runl *runl) { return nvkm_rd32(runl->fifo->engine.subdev.device, 0x002634) & 0x00100000; } static void gf100_runl_fault_clear(struct nvkm_runl *runl) { nvkm_mask(runl->fifo->engine.subdev.device, 0x00262c, 0x00000000, 0x00000000); } static void gf100_runl_allow(struct nvkm_runl *runl, u32 engm) { nvkm_mask(runl->fifo->engine.subdev.device, 0x002630, engm, 0x00000000); } static void gf100_runl_block(struct nvkm_runl *runl, u32 engm) { nvkm_mask(runl->fifo->engine.subdev.device, 0x002630, engm, engm); } static bool gf100_runl_pending(struct nvkm_runl *runl) { return nvkm_rd32(runl->fifo->engine.subdev.device, 0x00227c) & 0x00100000; } static void gf100_runl_commit(struct nvkm_runl *runl, struct nvkm_memory *memory, u32 start, int count) { struct nvkm_device *device = runl->fifo->engine.subdev.device; u64 addr = nvkm_memory_addr(memory) + start; int target; switch (nvkm_memory_target(memory)) { case NVKM_MEM_TARGET_VRAM: target = 0; break; case NVKM_MEM_TARGET_NCOH: target = 3; break; default: WARN_ON(1); return; } nvkm_wr32(device, 0x002270, (target << 28) | (addr >> 12)); nvkm_wr32(device, 0x002274, 0x01f00000 | count); } static void gf100_runl_insert_chan(struct nvkm_chan *chan, struct nvkm_memory *memory, u64 offset) { nvkm_wo32(memory, offset + 0, chan->id); nvkm_wo32(memory, offset + 4, 0x00000004); } static const struct nvkm_runl_func gf100_runl = { .size = 8, .update = nv50_runl_update, .insert_chan = gf100_runl_insert_chan, .commit = gf100_runl_commit, .wait = nv50_runl_wait, .pending = gf100_runl_pending, .block = gf100_runl_block, .allow = gf100_runl_allow, .fault_clear = gf100_runl_fault_clear, .preempt_pending = gf100_runl_preempt_pending, }; static void gf100_fifo_nonstall_allow(struct nvkm_event *event, int type, int index) { struct nvkm_fifo *fifo = container_of(event, typeof(*fifo), nonstall.event); unsigned long flags; spin_lock_irqsave(&fifo->lock, flags); nvkm_mask(fifo->engine.subdev.device, 0x002140, 0x80000000, 0x80000000); spin_unlock_irqrestore(&fifo->lock, flags); } static void gf100_fifo_nonstall_block(struct nvkm_event *event, int type, int index) { struct nvkm_fifo *fifo = container_of(event, typeof(*fifo), nonstall.event); unsigned long flags; spin_lock_irqsave(&fifo->lock, flags); nvkm_mask(fifo->engine.subdev.device, 0x002140, 0x80000000, 0x00000000); spin_unlock_irqrestore(&fifo->lock, flags); } const struct nvkm_event_func gf100_fifo_nonstall = { .init = gf100_fifo_nonstall_allow, .fini = gf100_fifo_nonstall_block, }; static const struct nvkm_enum gf100_fifo_mmu_fault_engine[] = { { 0x00, "PGRAPH", NULL, NVKM_ENGINE_GR }, { 0x03, "PEEPHOLE", NULL, NVKM_ENGINE_IFB }, { 0x04, "BAR1", NULL, NVKM_SUBDEV_BAR }, { 0x05, "BAR3", NULL, NVKM_SUBDEV_INSTMEM }, { 0x07, "PFIFO" }, { 0x10, "PMSVLD", NULL, NVKM_ENGINE_MSVLD }, { 0x11, "PMSPPP", NULL, NVKM_ENGINE_MSPPP }, { 0x13, "PCOUNTER" }, { 0x14, "PMSPDEC", NULL, NVKM_ENGINE_MSPDEC }, { 0x15, "PCE0", NULL, NVKM_ENGINE_CE, 0 }, { 0x16, "PCE1", NULL, NVKM_ENGINE_CE, 1 }, { 0x17, "PMU" }, {} }; static const struct nvkm_enum gf100_fifo_mmu_fault_reason[] = { { 0x00, "PT_NOT_PRESENT" }, { 0x01, "PT_TOO_SHORT" }, { 0x02, "PAGE_NOT_PRESENT" }, { 0x03, "VM_LIMIT_EXCEEDED" }, { 0x04, "NO_CHANNEL" }, { 0x05, "PAGE_SYSTEM_ONLY" }, { 0x06, "PAGE_READ_ONLY" }, { 0x0a, "COMPRESSED_SYSRAM" }, { 0x0c, "INVALID_STORAGE_TYPE" }, {} }; static const struct nvkm_enum gf100_fifo_mmu_fault_hubclient[] = { { 0x01, "PCOPY0" }, { 0x02, "PCOPY1" }, { 0x04, "DISPATCH" }, { 0x05, "CTXCTL" }, { 0x06, "PFIFO" }, { 0x07, "BAR_READ" }, { 0x08, "BAR_WRITE" }, { 0x0b, "PVP" }, { 0x0c, "PMSPPP" }, { 0x0d, "PMSVLD" }, { 0x11, "PCOUNTER" }, { 0x12, "PMU" }, { 0x14, "CCACHE" }, { 0x15, "CCACHE_POST" }, {} }; static const struct nvkm_enum gf100_fifo_mmu_fault_gpcclient[] = { { 0x01, "TEX" }, { 0x0c, "ESETUP" }, { 0x0e, "CTXCTL" }, { 0x0f, "PROP" }, {} }; const struct nvkm_enum gf100_fifo_mmu_fault_access[] = { { 0x00, "READ" }, { 0x01, "WRITE" }, {} }; void gf100_fifo_mmu_fault_recover(struct nvkm_fifo *fifo, struct nvkm_fault_data *info) { struct nvkm_subdev *subdev = &fifo->engine.subdev; struct nvkm_device *device = subdev->device; const struct nvkm_enum *er, *ee, *ec, *ea; struct nvkm_engine *engine = NULL; struct nvkm_runl *runl; struct nvkm_engn *engn; struct nvkm_chan *chan; unsigned long flags; char ct[8] = "HUB/"; /* Lookup engine by MMU fault ID. */ nvkm_runl_foreach(runl, fifo) { engn = nvkm_runl_find_engn(engn, runl, engn->fault == info->engine); if (engn) { /* Fault triggered by CTXSW_TIMEOUT recovery procedure. */ if (engn->func->mmu_fault_triggered && engn->func->mmu_fault_triggered(engn)) { nvkm_runl_rc_engn(runl, engn); return; } engine = engn->engine; break; } } er = nvkm_enum_find(fifo->func->mmu_fault->reason, info->reason); ee = nvkm_enum_find(fifo->func->mmu_fault->engine, info->engine); if (info->hub) { ec = nvkm_enum_find(fifo->func->mmu_fault->hubclient, info->client); } else { ec = nvkm_enum_find(fifo->func->mmu_fault->gpcclient, info->client); snprintf(ct, sizeof(ct), "GPC%d/", info->gpc); } ea = nvkm_enum_find(fifo->func->mmu_fault->access, info->access); /* Handle BAR faults. */ if (ee && ee->data2) { switch (ee->data2) { case NVKM_SUBDEV_BAR: nvkm_bar_bar1_reset(device); break; case NVKM_SUBDEV_INSTMEM: nvkm_bar_bar2_reset(device); break; case NVKM_ENGINE_IFB: nvkm_mask(device, 0x001718, 0x00000000, 0x00000000); break; default: break; } } chan = nvkm_chan_get_inst(&fifo->engine, info->inst, &flags); nvkm_error(subdev, "fault %02x [%s] at %016llx engine %02x [%s] client %02x " "[%s%s] reason %02x [%s] on channel %d [%010llx %s]\n", info->access, ea ? ea->name : "", info->addr, info->engine, ee ? ee->name : engine ? engine->subdev.name : "", info->client, ct, ec ? ec->name : "", info->reason, er ? er->name : "", chan ? chan->id : -1, info->inst, chan ? chan->name : "unknown"); /* Handle host/engine faults. */ if (chan) nvkm_runl_rc_cgrp(chan->cgrp); nvkm_chan_put(&chan, flags); } static const struct nvkm_fifo_func_mmu_fault gf100_fifo_mmu_fault = { .recover = gf100_fifo_mmu_fault_recover, .access = gf100_fifo_mmu_fault_access, .engine = gf100_fifo_mmu_fault_engine, .reason = gf100_fifo_mmu_fault_reason, .hubclient = gf100_fifo_mmu_fault_hubclient, .gpcclient = gf100_fifo_mmu_fault_gpcclient, }; void gf100_fifo_intr_ctxsw_timeout(struct nvkm_fifo *fifo, u32 engm) { struct nvkm_runl *runl; struct nvkm_engn *engn, *engn2; bool cgid, cgid2; int id, id2; nvkm_runl_foreach(runl, fifo) { /* Stop the runlist, and go through all engines serving it. */ nvkm_runl_block(runl); nvkm_runl_foreach_engn_cond(engn, runl, engm & BIT(engn->id)) { /* Determine what channel (group) the engine is on. */ id = engn->func->cxid(engn, &cgid); if (id >= 0) { /* Trigger MMU fault on any engine(s) on that channel (group). */ nvkm_runl_foreach_engn_cond(engn2, runl, engn2->func->cxid) { id2 = engn2->func->cxid(engn2, &cgid2); if (cgid2 == cgid && id2 == id) engn2->func->mmu_fault_trigger(engn2); } } } nvkm_runl_allow(runl); /* HW will keep runlist blocked via ERROR_SCHED_DISABLE. */ } } static void gf100_fifo_intr_sched_ctxsw(struct nvkm_fifo *fifo) { struct nvkm_runl *runl; struct nvkm_engn *engn; u32 engm = 0; /* Look for any engines that are busy, and awaiting chsw ack. */ nvkm_runl_foreach(runl, fifo) { nvkm_runl_foreach_engn_cond(engn, runl, engn->func->chsw) { if (WARN_ON(engn->fault < 0) || !engn->func->chsw(engn)) continue; engm |= BIT(engn->id); } } if (!engm) return; fifo->func->intr_ctxsw_timeout(fifo, engm); } static const struct nvkm_enum gf100_fifo_intr_sched_names[] = { { 0x0a, "CTXSW_TIMEOUT" }, {} }; void gf100_fifo_intr_sched(struct nvkm_fifo *fifo) { struct nvkm_subdev *subdev = &fifo->engine.subdev; struct nvkm_device *device = subdev->device; u32 intr = nvkm_rd32(device, 0x00254c); u32 code = intr & 0x000000ff; const struct nvkm_enum *en; en = nvkm_enum_find(gf100_fifo_intr_sched_names, code); nvkm_error(subdev, "SCHED_ERROR %02x [%s]\n", code, en ? en->name : ""); switch (code) { case 0x0a: gf100_fifo_intr_sched_ctxsw(fifo); break; default: break; } } void gf100_fifo_intr_mmu_fault_unit(struct nvkm_fifo *fifo, int unit) { struct nvkm_device *device = fifo->engine.subdev.device; u32 inst = nvkm_rd32(device, 0x002800 + (unit * 0x10)); u32 valo = nvkm_rd32(device, 0x002804 + (unit * 0x10)); u32 vahi = nvkm_rd32(device, 0x002808 + (unit * 0x10)); u32 type = nvkm_rd32(device, 0x00280c + (unit * 0x10)); struct nvkm_fault_data info; info.inst = (u64)inst << 12; info.addr = ((u64)vahi << 32) | valo; info.time = 0; info.engine = unit; info.valid = 1; info.gpc = (type & 0x1f000000) >> 24; info.client = (type & 0x00001f00) >> 8; info.access = (type & 0x00000080) >> 7; info.hub = (type & 0x00000040) >> 6; info.reason = (type & 0x0000000f); nvkm_fifo_fault(fifo, &info); } void gf100_fifo_intr_mmu_fault(struct nvkm_fifo *fifo) { struct nvkm_device *device = fifo->engine.subdev.device; unsigned long mask = nvkm_rd32(device, 0x00259c); int unit; for_each_set_bit(unit, &mask, 32) { fifo->func->intr_mmu_fault_unit(fifo, unit); nvkm_wr32(device, 0x00259c, BIT(unit)); } } bool gf100_fifo_intr_pbdma(struct nvkm_fifo *fifo) { struct nvkm_device *device = fifo->engine.subdev.device; struct nvkm_runq *runq; u32 mask = nvkm_rd32(device, 0x0025a0); bool handled = false; nvkm_runq_foreach_cond(runq, fifo, mask & BIT(runq->id)) { if (runq->func->intr(runq, NULL)) handled = true; nvkm_wr32(device, 0x0025a0, BIT(runq->id)); } return handled; } static void gf100_fifo_intr_runlist(struct nvkm_fifo *fifo) { struct nvkm_subdev *subdev = &fifo->engine.subdev; struct nvkm_device *device = subdev->device; u32 intr = nvkm_rd32(device, 0x002a00); if (intr & 0x10000000) { nvkm_wr32(device, 0x002a00, 0x10000000); intr &= ~0x10000000; } if (intr) { nvkm_error(subdev, "RUNLIST %08x\n", intr); nvkm_wr32(device, 0x002a00, intr); } } static void gf100_fifo_intr_engine_unit(struct nvkm_fifo *fifo, int engn) { struct nvkm_subdev *subdev = &fifo->engine.subdev; struct nvkm_device *device = subdev->device; u32 intr = nvkm_rd32(device, 0x0025a8 + (engn * 0x04)); u32 inte = nvkm_rd32(device, 0x002628); u32 unkn; nvkm_wr32(device, 0x0025a8 + (engn * 0x04), intr); for (unkn = 0; unkn < 8; unkn++) { u32 ints = (intr >> (unkn * 0x04)) & inte; if (ints & 0x1) { nvkm_event_ntfy(&fifo->nonstall.event, 0, NVKM_FIFO_NONSTALL_EVENT); ints &= ~1; } if (ints) { nvkm_error(subdev, "ENGINE %d %d %01x", engn, unkn, ints); nvkm_mask(device, 0x002628, ints, 0); } } } static void gf100_fifo_intr_engine(struct nvkm_fifo *fifo) { struct nvkm_device *device = fifo->engine.subdev.device; u32 mask = nvkm_rd32(device, 0x0025a4); while (mask) { u32 unit = __ffs(mask); gf100_fifo_intr_engine_unit(fifo, unit); mask &= ~(1 << unit); } } static irqreturn_t gf100_fifo_intr(struct nvkm_inth *inth) { struct nvkm_fifo *fifo = container_of(inth, typeof(*fifo), engine.subdev.inth); struct nvkm_subdev *subdev = &fifo->engine.subdev; struct nvkm_device *device = subdev->device; u32 mask = nvkm_rd32(device, 0x002140); u32 stat = nvkm_rd32(device, 0x002100) & mask; if (stat & 0x00000001) { u32 intr = nvkm_rd32(device, 0x00252c); nvkm_warn(subdev, "INTR 00000001: %08x\n", intr); nvkm_wr32(device, 0x002100, 0x00000001); stat &= ~0x00000001; } if (stat & 0x00000100) { gf100_fifo_intr_sched(fifo); nvkm_wr32(device, 0x002100, 0x00000100); stat &= ~0x00000100; } if (stat & 0x00010000) { u32 intr = nvkm_rd32(device, 0x00256c); nvkm_warn(subdev, "INTR 00010000: %08x\n", intr); nvkm_wr32(device, 0x002100, 0x00010000); stat &= ~0x00010000; } if (stat & 0x01000000) { u32 intr = nvkm_rd32(device, 0x00258c); nvkm_warn(subdev, "INTR 01000000: %08x\n", intr); nvkm_wr32(device, 0x002100, 0x01000000); stat &= ~0x01000000; } if (stat & 0x10000000) { gf100_fifo_intr_mmu_fault(fifo); stat &= ~0x10000000; } if (stat & 0x20000000) { if (gf100_fifo_intr_pbdma(fifo)) stat &= ~0x20000000; } if (stat & 0x40000000) { gf100_fifo_intr_runlist(fifo); stat &= ~0x40000000; } if (stat & 0x80000000) { gf100_fifo_intr_engine(fifo); stat &= ~0x80000000; } if (stat) { nvkm_error(subdev, "INTR %08x\n", stat); spin_lock(&fifo->lock); nvkm_mask(device, 0x002140, stat, 0x00000000); spin_unlock(&fifo->lock); nvkm_wr32(device, 0x002100, stat); } return IRQ_HANDLED; } static void gf100_fifo_init_pbdmas(struct nvkm_fifo *fifo, u32 mask) { struct nvkm_device *device = fifo->engine.subdev.device; /* Enable PBDMAs. */ nvkm_wr32(device, 0x000204, mask); nvkm_wr32(device, 0x002204, mask); /* Assign engines to PBDMAs. */ if ((mask & 7) == 7) { nvkm_wr32(device, 0x002208, ~(1 << 0)); /* PGRAPH */ nvkm_wr32(device, 0x00220c, ~(1 << 1)); /* PVP */ nvkm_wr32(device, 0x002210, ~(1 << 1)); /* PMSPP */ nvkm_wr32(device, 0x002214, ~(1 << 1)); /* PMSVLD */ nvkm_wr32(device, 0x002218, ~(1 << 2)); /* PCE0 */ nvkm_wr32(device, 0x00221c, ~(1 << 1)); /* PCE1 */ } nvkm_mask(device, 0x002a04, 0xbfffffff, 0xbfffffff); } static void gf100_fifo_init(struct nvkm_fifo *fifo) { struct nvkm_device *device = fifo->engine.subdev.device; nvkm_mask(device, 0x002200, 0x00000001, 0x00000001); nvkm_wr32(device, 0x002254, 0x10000000 | fifo->userd.bar1->addr >> 12); nvkm_wr32(device, 0x002100, 0xffffffff); nvkm_wr32(device, 0x002140, 0x7fffffff); nvkm_wr32(device, 0x002628, 0x00000001); /* ENGINE_INTR_EN */ } static int gf100_fifo_runl_ctor(struct nvkm_fifo *fifo) { struct nvkm_runl *runl; runl = nvkm_runl_new(fifo, 0, 0, 0); if (IS_ERR(runl)) return PTR_ERR(runl); nvkm_runl_add(runl, 0, fifo->func->engn, NVKM_ENGINE_GR, 0); nvkm_runl_add(runl, 1, fifo->func->engn, NVKM_ENGINE_MSPDEC, 0); nvkm_runl_add(runl, 2, fifo->func->engn, NVKM_ENGINE_MSPPP, 0); nvkm_runl_add(runl, 3, fifo->func->engn, NVKM_ENGINE_MSVLD, 0); nvkm_runl_add(runl, 4, fifo->func->engn, NVKM_ENGINE_CE, 0); nvkm_runl_add(runl, 5, fifo->func->engn, NVKM_ENGINE_CE, 1); nvkm_runl_add(runl, 15, &gf100_engn_sw, NVKM_ENGINE_SW, 0); return 0; } int gf100_fifo_runq_nr(struct nvkm_fifo *fifo) { struct nvkm_device *device = fifo->engine.subdev.device; u32 save; /* Determine number of PBDMAs by checking valid enable bits. */ save = nvkm_mask(device, 0x000204, 0xffffffff, 0xffffffff); save = nvkm_mask(device, 0x000204, 0xffffffff, save); return hweight32(save); } int gf100_fifo_chid_ctor(struct nvkm_fifo *fifo, int nr) { return nvkm_chid_new(&nvkm_chan_event, &fifo->engine.subdev, nr, 0, nr, &fifo->chid); } static const struct nvkm_fifo_func gf100_fifo = { .chid_nr = nv50_fifo_chid_nr, .chid_ctor = gf100_fifo_chid_ctor, .runq_nr = gf100_fifo_runq_nr, .runl_ctor = gf100_fifo_runl_ctor, .init = gf100_fifo_init, .init_pbdmas = gf100_fifo_init_pbdmas, .intr = gf100_fifo_intr, .intr_mmu_fault_unit = gf100_fifo_intr_mmu_fault_unit, .intr_ctxsw_timeout = gf100_fifo_intr_ctxsw_timeout, .mmu_fault = &gf100_fifo_mmu_fault, .nonstall = &gf100_fifo_nonstall, .runl = &gf100_runl, .runq = &gf100_runq, .engn = &gf100_engn, .cgrp = {{ }, &nv04_cgrp }, .chan = {{ 0, 0, FERMI_CHANNEL_GPFIFO }, &gf100_chan }, }; int gf100_fifo_new(struct nvkm_device *device, enum nvkm_subdev_type type, int inst, struct nvkm_fifo **pfifo) { return nvkm_fifo_new_(&gf100_fifo, device, type, inst, pfifo); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1