Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Ben Skeggs | 12340 | 86.41% | 55 | 66.27% |
Timur Tabi | 1205 | 8.44% | 5 | 6.02% |
Dave Airlie | 342 | 2.39% | 9 | 10.84% |
Stephen Chandler Paul | 243 | 1.70% | 2 | 2.41% |
Alexandre Courbot | 104 | 0.73% | 3 | 3.61% |
Sid Pranjale | 20 | 0.14% | 1 | 1.20% |
Dan Carpenter | 9 | 0.06% | 2 | 2.41% |
Alistair Popple | 6 | 0.04% | 1 | 1.20% |
Maarten Maathuis | 5 | 0.04% | 1 | 1.20% |
Karol Herbst | 4 | 0.03% | 1 | 1.20% |
Chaitanya Kumar Borah | 1 | 0.01% | 1 | 1.20% |
Gustavo A. R. Silva | 1 | 0.01% | 1 | 1.20% |
Baoyou Xie | 1 | 0.01% | 1 | 1.20% |
Total | 14281 | 83 |
/* * Copyright 2023 Red Hat Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #include "priv.h" #include <core/pci.h> #include <subdev/timer.h> #include <subdev/vfn.h> #include <engine/fifo/chan.h> #include <engine/sec2.h> #include <nvfw/fw.h> #include <nvrm/nvtypes.h> #include <nvrm/535.113.01/common/sdk/nvidia/inc/class/cl0000.h> #include <nvrm/535.113.01/common/sdk/nvidia/inc/class/cl0005.h> #include <nvrm/535.113.01/common/sdk/nvidia/inc/class/cl0080.h> #include <nvrm/535.113.01/common/sdk/nvidia/inc/class/cl2080.h> #include <nvrm/535.113.01/common/sdk/nvidia/inc/ctrl/ctrl2080/ctrl2080event.h> #include <nvrm/535.113.01/common/sdk/nvidia/inc/ctrl/ctrl2080/ctrl2080gpu.h> #include <nvrm/535.113.01/common/sdk/nvidia/inc/ctrl/ctrl2080/ctrl2080internal.h> #include <nvrm/535.113.01/common/sdk/nvidia/inc/nvos.h> #include <nvrm/535.113.01/common/shared/msgq/inc/msgq/msgq_priv.h> #include <nvrm/535.113.01/common/uproc/os/common/include/libos_init_args.h> #include <nvrm/535.113.01/nvidia/arch/nvalloc/common/inc/gsp/gsp_fw_sr_meta.h> #include <nvrm/535.113.01/nvidia/arch/nvalloc/common/inc/gsp/gsp_fw_wpr_meta.h> #include <nvrm/535.113.01/nvidia/arch/nvalloc/common/inc/rmRiscvUcode.h> #include <nvrm/535.113.01/nvidia/arch/nvalloc/common/inc/rmgspseq.h> #include <nvrm/535.113.01/nvidia/generated/g_allclasses.h> #include <nvrm/535.113.01/nvidia/generated/g_os_nvoc.h> #include <nvrm/535.113.01/nvidia/generated/g_rpc-structures.h> #include <nvrm/535.113.01/nvidia/inc/kernel/gpu/gsp/gsp_fw_heap.h> #include <nvrm/535.113.01/nvidia/inc/kernel/gpu/gsp/gsp_init_args.h> #include <nvrm/535.113.01/nvidia/inc/kernel/gpu/gsp/gsp_static_config.h> #include <nvrm/535.113.01/nvidia/inc/kernel/gpu/intr/engine_idx.h> #include <nvrm/535.113.01/nvidia/kernel/inc/vgpu/rpc_global_enums.h> #include <linux/acpi.h> #include <linux/ctype.h> #include <linux/parser.h> #define GSP_MSG_MIN_SIZE GSP_PAGE_SIZE #define GSP_MSG_MAX_SIZE GSP_PAGE_MIN_SIZE * 16 struct r535_gsp_msg { u8 auth_tag_buffer[16]; u8 aad_buffer[16]; u32 checksum; u32 sequence; u32 elem_count; u32 pad; u8 data[]; }; #define GSP_MSG_HDR_SIZE offsetof(struct r535_gsp_msg, data) static int r535_rpc_status_to_errno(uint32_t rpc_status) { switch (rpc_status) { case 0x55: /* NV_ERR_NOT_READY */ case 0x66: /* NV_ERR_TIMEOUT_RETRY */ return -EAGAIN; case 0x51: /* NV_ERR_NO_MEMORY */ return -ENOMEM; default: return -EINVAL; } } static void * r535_gsp_msgq_wait(struct nvkm_gsp *gsp, u32 repc, u32 *prepc, int *ptime) { struct r535_gsp_msg *mqe; u32 size, rptr = *gsp->msgq.rptr; int used; u8 *msg; u32 len; size = DIV_ROUND_UP(GSP_MSG_HDR_SIZE + repc, GSP_PAGE_SIZE); if (WARN_ON(!size || size >= gsp->msgq.cnt)) return ERR_PTR(-EINVAL); do { u32 wptr = *gsp->msgq.wptr; used = wptr + gsp->msgq.cnt - rptr; if (used >= gsp->msgq.cnt) used -= gsp->msgq.cnt; if (used >= size) break; usleep_range(1, 2); } while (--(*ptime)); if (WARN_ON(!*ptime)) return ERR_PTR(-ETIMEDOUT); mqe = (void *)((u8 *)gsp->shm.msgq.ptr + 0x1000 + rptr * 0x1000); if (prepc) { *prepc = (used * GSP_PAGE_SIZE) - sizeof(*mqe); return mqe->data; } msg = kvmalloc(repc, GFP_KERNEL); if (!msg) return ERR_PTR(-ENOMEM); len = ((gsp->msgq.cnt - rptr) * GSP_PAGE_SIZE) - sizeof(*mqe); len = min_t(u32, repc, len); memcpy(msg, mqe->data, len); rptr += DIV_ROUND_UP(len, GSP_PAGE_SIZE); if (rptr == gsp->msgq.cnt) rptr = 0; repc -= len; if (repc) { mqe = (void *)((u8 *)gsp->shm.msgq.ptr + 0x1000 + 0 * 0x1000); memcpy(msg + len, mqe, repc); rptr += DIV_ROUND_UP(repc, GSP_PAGE_SIZE); } mb(); (*gsp->msgq.rptr) = rptr; return msg; } static void * r535_gsp_msgq_recv(struct nvkm_gsp *gsp, u32 repc, int *ptime) { return r535_gsp_msgq_wait(gsp, repc, NULL, ptime); } static int r535_gsp_cmdq_push(struct nvkm_gsp *gsp, void *argv) { struct r535_gsp_msg *cmd = container_of(argv, typeof(*cmd), data); struct r535_gsp_msg *cqe; u32 argc = cmd->checksum; u64 *ptr = (void *)cmd; u64 *end; u64 csum = 0; int free, time = 1000000; u32 wptr, size; u32 off = 0; argc = ALIGN(GSP_MSG_HDR_SIZE + argc, GSP_PAGE_SIZE); end = (u64 *)((char *)ptr + argc); cmd->pad = 0; cmd->checksum = 0; cmd->sequence = gsp->cmdq.seq++; cmd->elem_count = DIV_ROUND_UP(argc, 0x1000); while (ptr < end) csum ^= *ptr++; cmd->checksum = upper_32_bits(csum) ^ lower_32_bits(csum); wptr = *gsp->cmdq.wptr; do { do { free = *gsp->cmdq.rptr + gsp->cmdq.cnt - wptr - 1; if (free >= gsp->cmdq.cnt) free -= gsp->cmdq.cnt; if (free >= 1) break; usleep_range(1, 2); } while(--time); if (WARN_ON(!time)) { kvfree(cmd); return -ETIMEDOUT; } cqe = (void *)((u8 *)gsp->shm.cmdq.ptr + 0x1000 + wptr * 0x1000); size = min_t(u32, argc, (gsp->cmdq.cnt - wptr) * GSP_PAGE_SIZE); memcpy(cqe, (u8 *)cmd + off, size); wptr += DIV_ROUND_UP(size, 0x1000); if (wptr == gsp->cmdq.cnt) wptr = 0; off += size; argc -= size; } while(argc); nvkm_trace(&gsp->subdev, "cmdq: wptr %d\n", wptr); wmb(); (*gsp->cmdq.wptr) = wptr; mb(); nvkm_falcon_wr32(&gsp->falcon, 0xc00, 0x00000000); kvfree(cmd); return 0; } static void * r535_gsp_cmdq_get(struct nvkm_gsp *gsp, u32 argc) { struct r535_gsp_msg *cmd; u32 size = GSP_MSG_HDR_SIZE + argc; size = ALIGN(size, GSP_MSG_MIN_SIZE); cmd = kvzalloc(size, GFP_KERNEL); if (!cmd) return ERR_PTR(-ENOMEM); cmd->checksum = argc; return cmd->data; } struct nvfw_gsp_rpc { u32 header_version; u32 signature; u32 length; u32 function; u32 rpc_result; u32 rpc_result_private; u32 sequence; union { u32 spare; u32 cpuRmGfid; }; u8 data[]; }; static void r535_gsp_msg_done(struct nvkm_gsp *gsp, struct nvfw_gsp_rpc *msg) { kvfree(msg); } static void r535_gsp_msg_dump(struct nvkm_gsp *gsp, struct nvfw_gsp_rpc *msg, int lvl) { if (gsp->subdev.debug >= lvl) { nvkm_printk__(&gsp->subdev, lvl, info, "msg fn:%d len:0x%x/0x%zx res:0x%x resp:0x%x\n", msg->function, msg->length, msg->length - sizeof(*msg), msg->rpc_result, msg->rpc_result_private); print_hex_dump(KERN_INFO, "msg: ", DUMP_PREFIX_OFFSET, 16, 1, msg->data, msg->length - sizeof(*msg), true); } } static struct nvfw_gsp_rpc * r535_gsp_msg_recv(struct nvkm_gsp *gsp, int fn, u32 repc) { struct nvkm_subdev *subdev = &gsp->subdev; struct nvfw_gsp_rpc *msg; int time = 4000000, i; u32 size; retry: msg = r535_gsp_msgq_wait(gsp, sizeof(*msg), &size, &time); if (IS_ERR_OR_NULL(msg)) return msg; msg = r535_gsp_msgq_recv(gsp, msg->length, &time); if (IS_ERR_OR_NULL(msg)) return msg; if (msg->rpc_result) { r535_gsp_msg_dump(gsp, msg, NV_DBG_ERROR); r535_gsp_msg_done(gsp, msg); return ERR_PTR(-EINVAL); } r535_gsp_msg_dump(gsp, msg, NV_DBG_TRACE); if (fn && msg->function == fn) { if (repc) { if (msg->length < sizeof(*msg) + repc) { nvkm_error(subdev, "msg len %d < %zd\n", msg->length, sizeof(*msg) + repc); r535_gsp_msg_dump(gsp, msg, NV_DBG_ERROR); r535_gsp_msg_done(gsp, msg); return ERR_PTR(-EIO); } return msg; } r535_gsp_msg_done(gsp, msg); return NULL; } for (i = 0; i < gsp->msgq.ntfy_nr; i++) { struct nvkm_gsp_msgq_ntfy *ntfy = &gsp->msgq.ntfy[i]; if (ntfy->fn == msg->function) { if (ntfy->func) ntfy->func(ntfy->priv, ntfy->fn, msg->data, msg->length - sizeof(*msg)); break; } } if (i == gsp->msgq.ntfy_nr) r535_gsp_msg_dump(gsp, msg, NV_DBG_WARN); r535_gsp_msg_done(gsp, msg); if (fn) goto retry; if (*gsp->msgq.rptr != *gsp->msgq.wptr) goto retry; return NULL; } static int r535_gsp_msg_ntfy_add(struct nvkm_gsp *gsp, u32 fn, nvkm_gsp_msg_ntfy_func func, void *priv) { int ret = 0; mutex_lock(&gsp->msgq.mutex); if (WARN_ON(gsp->msgq.ntfy_nr >= ARRAY_SIZE(gsp->msgq.ntfy))) { ret = -ENOSPC; } else { gsp->msgq.ntfy[gsp->msgq.ntfy_nr].fn = fn; gsp->msgq.ntfy[gsp->msgq.ntfy_nr].func = func; gsp->msgq.ntfy[gsp->msgq.ntfy_nr].priv = priv; gsp->msgq.ntfy_nr++; } mutex_unlock(&gsp->msgq.mutex); return ret; } static int r535_gsp_rpc_poll(struct nvkm_gsp *gsp, u32 fn) { void *repv; mutex_lock(&gsp->cmdq.mutex); repv = r535_gsp_msg_recv(gsp, fn, 0); mutex_unlock(&gsp->cmdq.mutex); if (IS_ERR(repv)) return PTR_ERR(repv); return 0; } static void * r535_gsp_rpc_send(struct nvkm_gsp *gsp, void *argv, bool wait, u32 repc) { struct nvfw_gsp_rpc *rpc = container_of(argv, typeof(*rpc), data); struct nvfw_gsp_rpc *msg; u32 fn = rpc->function; void *repv = NULL; int ret; if (gsp->subdev.debug >= NV_DBG_TRACE) { nvkm_trace(&gsp->subdev, "rpc fn:%d len:0x%x/0x%zx\n", rpc->function, rpc->length, rpc->length - sizeof(*rpc)); print_hex_dump(KERN_INFO, "rpc: ", DUMP_PREFIX_OFFSET, 16, 1, rpc->data, rpc->length - sizeof(*rpc), true); } ret = r535_gsp_cmdq_push(gsp, rpc); if (ret) return ERR_PTR(ret); if (wait) { msg = r535_gsp_msg_recv(gsp, fn, repc); if (!IS_ERR_OR_NULL(msg)) repv = msg->data; else repv = msg; } return repv; } static void r535_gsp_event_dtor(struct nvkm_gsp_event *event) { struct nvkm_gsp_device *device = event->device; struct nvkm_gsp_client *client = device->object.client; struct nvkm_gsp *gsp = client->gsp; mutex_lock(&gsp->client_id.mutex); if (event->func) { list_del(&event->head); event->func = NULL; } mutex_unlock(&gsp->client_id.mutex); nvkm_gsp_rm_free(&event->object); event->device = NULL; } static int r535_gsp_device_event_get(struct nvkm_gsp_event *event) { struct nvkm_gsp_device *device = event->device; NV2080_CTRL_EVENT_SET_NOTIFICATION_PARAMS *ctrl; ctrl = nvkm_gsp_rm_ctrl_get(&device->subdevice, NV2080_CTRL_CMD_EVENT_SET_NOTIFICATION, sizeof(*ctrl)); if (IS_ERR(ctrl)) return PTR_ERR(ctrl); ctrl->event = event->id; ctrl->action = NV2080_CTRL_EVENT_SET_NOTIFICATION_ACTION_REPEAT; return nvkm_gsp_rm_ctrl_wr(&device->subdevice, ctrl); } static int r535_gsp_device_event_ctor(struct nvkm_gsp_device *device, u32 handle, u32 id, nvkm_gsp_event_func func, struct nvkm_gsp_event *event) { struct nvkm_gsp_client *client = device->object.client; struct nvkm_gsp *gsp = client->gsp; NV0005_ALLOC_PARAMETERS *args; int ret; args = nvkm_gsp_rm_alloc_get(&device->subdevice, handle, NV01_EVENT_KERNEL_CALLBACK_EX, sizeof(*args), &event->object); if (IS_ERR(args)) return PTR_ERR(args); args->hParentClient = client->object.handle; args->hSrcResource = 0; args->hClass = NV01_EVENT_KERNEL_CALLBACK_EX; args->notifyIndex = NV01_EVENT_CLIENT_RM | id; args->data = NULL; ret = nvkm_gsp_rm_alloc_wr(&event->object, args); if (ret) return ret; event->device = device; event->id = id; ret = r535_gsp_device_event_get(event); if (ret) { nvkm_gsp_event_dtor(event); return ret; } mutex_lock(&gsp->client_id.mutex); event->func = func; list_add(&event->head, &client->events); mutex_unlock(&gsp->client_id.mutex); return 0; } static void r535_gsp_device_dtor(struct nvkm_gsp_device *device) { nvkm_gsp_rm_free(&device->subdevice); nvkm_gsp_rm_free(&device->object); } static int r535_gsp_subdevice_ctor(struct nvkm_gsp_device *device) { NV2080_ALLOC_PARAMETERS *args; return nvkm_gsp_rm_alloc(&device->object, 0x5d1d0000, NV20_SUBDEVICE_0, sizeof(*args), &device->subdevice); } static int r535_gsp_device_ctor(struct nvkm_gsp_client *client, struct nvkm_gsp_device *device) { NV0080_ALLOC_PARAMETERS *args; int ret; args = nvkm_gsp_rm_alloc_get(&client->object, 0xde1d0000, NV01_DEVICE_0, sizeof(*args), &device->object); if (IS_ERR(args)) return PTR_ERR(args); args->hClientShare = client->object.handle; ret = nvkm_gsp_rm_alloc_wr(&device->object, args); if (ret) return ret; ret = r535_gsp_subdevice_ctor(device); if (ret) nvkm_gsp_rm_free(&device->object); return ret; } static void r535_gsp_client_dtor(struct nvkm_gsp_client *client) { struct nvkm_gsp *gsp = client->gsp; nvkm_gsp_rm_free(&client->object); mutex_lock(&gsp->client_id.mutex); idr_remove(&gsp->client_id.idr, client->object.handle & 0xffff); mutex_unlock(&gsp->client_id.mutex); client->gsp = NULL; } static int r535_gsp_client_ctor(struct nvkm_gsp *gsp, struct nvkm_gsp_client *client) { NV0000_ALLOC_PARAMETERS *args; int ret; mutex_lock(&gsp->client_id.mutex); ret = idr_alloc(&gsp->client_id.idr, client, 0, 0xffff + 1, GFP_KERNEL); mutex_unlock(&gsp->client_id.mutex); if (ret < 0) return ret; client->gsp = gsp; client->object.client = client; INIT_LIST_HEAD(&client->events); args = nvkm_gsp_rm_alloc_get(&client->object, 0xc1d00000 | ret, NV01_ROOT, sizeof(*args), &client->object); if (IS_ERR(args)) { r535_gsp_client_dtor(client); return ret; } args->hClient = client->object.handle; args->processID = ~0; ret = nvkm_gsp_rm_alloc_wr(&client->object, args); if (ret) { r535_gsp_client_dtor(client); return ret; } return 0; } static int r535_gsp_rpc_rm_free(struct nvkm_gsp_object *object) { struct nvkm_gsp_client *client = object->client; struct nvkm_gsp *gsp = client->gsp; rpc_free_v03_00 *rpc; nvkm_debug(&gsp->subdev, "cli:0x%08x obj:0x%08x free\n", client->object.handle, object->handle); rpc = nvkm_gsp_rpc_get(gsp, NV_VGPU_MSG_FUNCTION_FREE, sizeof(*rpc)); if (WARN_ON(IS_ERR_OR_NULL(rpc))) return -EIO; rpc->params.hRoot = client->object.handle; rpc->params.hObjectParent = 0; rpc->params.hObjectOld = object->handle; return nvkm_gsp_rpc_wr(gsp, rpc, true); } static void r535_gsp_rpc_rm_alloc_done(struct nvkm_gsp_object *object, void *repv) { rpc_gsp_rm_alloc_v03_00 *rpc = container_of(repv, typeof(*rpc), params); nvkm_gsp_rpc_done(object->client->gsp, rpc); } static void * r535_gsp_rpc_rm_alloc_push(struct nvkm_gsp_object *object, void *argv, u32 repc) { rpc_gsp_rm_alloc_v03_00 *rpc = container_of(argv, typeof(*rpc), params); struct nvkm_gsp *gsp = object->client->gsp; void *ret; rpc = nvkm_gsp_rpc_push(gsp, rpc, true, sizeof(*rpc) + repc); if (IS_ERR_OR_NULL(rpc)) return rpc; if (rpc->status) { ret = ERR_PTR(r535_rpc_status_to_errno(rpc->status)); if (PTR_ERR(ret) != -EAGAIN) nvkm_error(&gsp->subdev, "RM_ALLOC: 0x%x\n", rpc->status); } else { ret = repc ? rpc->params : NULL; } nvkm_gsp_rpc_done(gsp, rpc); return ret; } static void * r535_gsp_rpc_rm_alloc_get(struct nvkm_gsp_object *object, u32 oclass, u32 argc) { struct nvkm_gsp_client *client = object->client; struct nvkm_gsp *gsp = client->gsp; rpc_gsp_rm_alloc_v03_00 *rpc; nvkm_debug(&gsp->subdev, "cli:0x%08x obj:0x%08x new obj:0x%08x cls:0x%08x argc:%d\n", client->object.handle, object->parent->handle, object->handle, oclass, argc); rpc = nvkm_gsp_rpc_get(gsp, NV_VGPU_MSG_FUNCTION_GSP_RM_ALLOC, sizeof(*rpc) + argc); if (IS_ERR(rpc)) return rpc; rpc->hClient = client->object.handle; rpc->hParent = object->parent->handle; rpc->hObject = object->handle; rpc->hClass = oclass; rpc->status = 0; rpc->paramsSize = argc; return rpc->params; } static void r535_gsp_rpc_rm_ctrl_done(struct nvkm_gsp_object *object, void *repv) { rpc_gsp_rm_control_v03_00 *rpc = container_of(repv, typeof(*rpc), params); if (!repv) return; nvkm_gsp_rpc_done(object->client->gsp, rpc); } static int r535_gsp_rpc_rm_ctrl_push(struct nvkm_gsp_object *object, void **argv, u32 repc) { rpc_gsp_rm_control_v03_00 *rpc = container_of((*argv), typeof(*rpc), params); struct nvkm_gsp *gsp = object->client->gsp; int ret = 0; rpc = nvkm_gsp_rpc_push(gsp, rpc, true, repc); if (IS_ERR_OR_NULL(rpc)) { *argv = NULL; return PTR_ERR(rpc); } if (rpc->status) { ret = r535_rpc_status_to_errno(rpc->status); if (ret != -EAGAIN) nvkm_error(&gsp->subdev, "cli:0x%08x obj:0x%08x ctrl cmd:0x%08x failed: 0x%08x\n", object->client->object.handle, object->handle, rpc->cmd, rpc->status); } if (repc) *argv = rpc->params; else nvkm_gsp_rpc_done(gsp, rpc); return ret; } static void * r535_gsp_rpc_rm_ctrl_get(struct nvkm_gsp_object *object, u32 cmd, u32 argc) { struct nvkm_gsp_client *client = object->client; struct nvkm_gsp *gsp = client->gsp; rpc_gsp_rm_control_v03_00 *rpc; nvkm_debug(&gsp->subdev, "cli:0x%08x obj:0x%08x ctrl cmd:0x%08x argc:%d\n", client->object.handle, object->handle, cmd, argc); rpc = nvkm_gsp_rpc_get(gsp, NV_VGPU_MSG_FUNCTION_GSP_RM_CONTROL, sizeof(*rpc) + argc); if (IS_ERR(rpc)) return rpc; rpc->hClient = client->object.handle; rpc->hObject = object->handle; rpc->cmd = cmd; rpc->status = 0; rpc->paramsSize = argc; return rpc->params; } static void r535_gsp_rpc_done(struct nvkm_gsp *gsp, void *repv) { struct nvfw_gsp_rpc *rpc = container_of(repv, typeof(*rpc), data); r535_gsp_msg_done(gsp, rpc); } static void * r535_gsp_rpc_get(struct nvkm_gsp *gsp, u32 fn, u32 argc) { struct nvfw_gsp_rpc *rpc; rpc = r535_gsp_cmdq_get(gsp, ALIGN(sizeof(*rpc) + argc, sizeof(u64))); if (IS_ERR(rpc)) return ERR_CAST(rpc); rpc->header_version = 0x03000000; rpc->signature = ('C' << 24) | ('P' << 16) | ('R' << 8) | 'V'; rpc->function = fn; rpc->rpc_result = 0xffffffff; rpc->rpc_result_private = 0xffffffff; rpc->length = sizeof(*rpc) + argc; return rpc->data; } static void * r535_gsp_rpc_push(struct nvkm_gsp *gsp, void *argv, bool wait, u32 repc) { struct nvfw_gsp_rpc *rpc = container_of(argv, typeof(*rpc), data); struct r535_gsp_msg *cmd = container_of((void *)rpc, typeof(*cmd), data); const u32 max_msg_size = (16 * 0x1000) - sizeof(struct r535_gsp_msg); const u32 max_rpc_size = max_msg_size - sizeof(*rpc); u32 rpc_size = rpc->length - sizeof(*rpc); void *repv; mutex_lock(&gsp->cmdq.mutex); if (rpc_size > max_rpc_size) { const u32 fn = rpc->function; /* Adjust length, and send initial RPC. */ rpc->length = sizeof(*rpc) + max_rpc_size; cmd->checksum = rpc->length; repv = r535_gsp_rpc_send(gsp, argv, false, 0); if (IS_ERR(repv)) goto done; argv += max_rpc_size; rpc_size -= max_rpc_size; /* Remaining chunks sent as CONTINUATION_RECORD RPCs. */ while (rpc_size) { u32 size = min(rpc_size, max_rpc_size); void *next; next = r535_gsp_rpc_get(gsp, NV_VGPU_MSG_FUNCTION_CONTINUATION_RECORD, size); if (IS_ERR(next)) { repv = next; goto done; } memcpy(next, argv, size); repv = r535_gsp_rpc_send(gsp, next, false, 0); if (IS_ERR(repv)) goto done; argv += size; rpc_size -= size; } /* Wait for reply. */ if (wait) { rpc = r535_gsp_msg_recv(gsp, fn, repc); if (!IS_ERR_OR_NULL(rpc)) repv = rpc->data; else repv = rpc; } else { repv = NULL; } } else { repv = r535_gsp_rpc_send(gsp, argv, wait, repc); } done: mutex_unlock(&gsp->cmdq.mutex); return repv; } const struct nvkm_gsp_rm r535_gsp_rm = { .rpc_get = r535_gsp_rpc_get, .rpc_push = r535_gsp_rpc_push, .rpc_done = r535_gsp_rpc_done, .rm_ctrl_get = r535_gsp_rpc_rm_ctrl_get, .rm_ctrl_push = r535_gsp_rpc_rm_ctrl_push, .rm_ctrl_done = r535_gsp_rpc_rm_ctrl_done, .rm_alloc_get = r535_gsp_rpc_rm_alloc_get, .rm_alloc_push = r535_gsp_rpc_rm_alloc_push, .rm_alloc_done = r535_gsp_rpc_rm_alloc_done, .rm_free = r535_gsp_rpc_rm_free, .client_ctor = r535_gsp_client_ctor, .client_dtor = r535_gsp_client_dtor, .device_ctor = r535_gsp_device_ctor, .device_dtor = r535_gsp_device_dtor, .event_ctor = r535_gsp_device_event_ctor, .event_dtor = r535_gsp_event_dtor, }; static void r535_gsp_msgq_work(struct work_struct *work) { struct nvkm_gsp *gsp = container_of(work, typeof(*gsp), msgq.work); mutex_lock(&gsp->cmdq.mutex); if (*gsp->msgq.rptr != *gsp->msgq.wptr) r535_gsp_msg_recv(gsp, 0, 0); mutex_unlock(&gsp->cmdq.mutex); } static irqreturn_t r535_gsp_intr(struct nvkm_inth *inth) { struct nvkm_gsp *gsp = container_of(inth, typeof(*gsp), subdev.inth); struct nvkm_subdev *subdev = &gsp->subdev; u32 intr = nvkm_falcon_rd32(&gsp->falcon, 0x0008); u32 inte = nvkm_falcon_rd32(&gsp->falcon, gsp->falcon.func->addr2 + gsp->falcon.func->riscv_irqmask); u32 stat = intr & inte; if (!stat) { nvkm_debug(subdev, "inte %08x %08x\n", intr, inte); return IRQ_NONE; } if (stat & 0x00000040) { nvkm_falcon_wr32(&gsp->falcon, 0x004, 0x00000040); schedule_work(&gsp->msgq.work); stat &= ~0x00000040; } if (stat) { nvkm_error(subdev, "intr %08x\n", stat); nvkm_falcon_wr32(&gsp->falcon, 0x014, stat); nvkm_falcon_wr32(&gsp->falcon, 0x004, stat); } nvkm_falcon_intr_retrigger(&gsp->falcon); return IRQ_HANDLED; } static int r535_gsp_intr_get_table(struct nvkm_gsp *gsp) { NV2080_CTRL_INTERNAL_INTR_GET_KERNEL_TABLE_PARAMS *ctrl; int ret = 0; ctrl = nvkm_gsp_rm_ctrl_get(&gsp->internal.device.subdevice, NV2080_CTRL_CMD_INTERNAL_INTR_GET_KERNEL_TABLE, sizeof(*ctrl)); if (IS_ERR(ctrl)) return PTR_ERR(ctrl); ret = nvkm_gsp_rm_ctrl_push(&gsp->internal.device.subdevice, &ctrl, sizeof(*ctrl)); if (WARN_ON(ret)) { nvkm_gsp_rm_ctrl_done(&gsp->internal.device.subdevice, ctrl); return ret; } for (unsigned i = 0; i < ctrl->tableLen; i++) { enum nvkm_subdev_type type; int inst; nvkm_debug(&gsp->subdev, "%2d: engineIdx %3d pmcIntrMask %08x stall %08x nonStall %08x\n", i, ctrl->table[i].engineIdx, ctrl->table[i].pmcIntrMask, ctrl->table[i].vectorStall, ctrl->table[i].vectorNonStall); switch (ctrl->table[i].engineIdx) { case MC_ENGINE_IDX_GSP: type = NVKM_SUBDEV_GSP; inst = 0; break; case MC_ENGINE_IDX_DISP: type = NVKM_ENGINE_DISP; inst = 0; break; case MC_ENGINE_IDX_CE0 ... MC_ENGINE_IDX_CE9: type = NVKM_ENGINE_CE; inst = ctrl->table[i].engineIdx - MC_ENGINE_IDX_CE0; break; case MC_ENGINE_IDX_GR0: type = NVKM_ENGINE_GR; inst = 0; break; case MC_ENGINE_IDX_NVDEC0 ... MC_ENGINE_IDX_NVDEC7: type = NVKM_ENGINE_NVDEC; inst = ctrl->table[i].engineIdx - MC_ENGINE_IDX_NVDEC0; break; case MC_ENGINE_IDX_MSENC ... MC_ENGINE_IDX_MSENC2: type = NVKM_ENGINE_NVENC; inst = ctrl->table[i].engineIdx - MC_ENGINE_IDX_MSENC; break; case MC_ENGINE_IDX_NVJPEG0 ... MC_ENGINE_IDX_NVJPEG7: type = NVKM_ENGINE_NVJPG; inst = ctrl->table[i].engineIdx - MC_ENGINE_IDX_NVJPEG0; break; case MC_ENGINE_IDX_OFA0: type = NVKM_ENGINE_OFA; inst = 0; break; default: continue; } if (WARN_ON(gsp->intr_nr == ARRAY_SIZE(gsp->intr))) { ret = -ENOSPC; break; } gsp->intr[gsp->intr_nr].type = type; gsp->intr[gsp->intr_nr].inst = inst; gsp->intr[gsp->intr_nr].stall = ctrl->table[i].vectorStall; gsp->intr[gsp->intr_nr].nonstall = ctrl->table[i].vectorNonStall; gsp->intr_nr++; } nvkm_gsp_rm_ctrl_done(&gsp->internal.device.subdevice, ctrl); return ret; } static int r535_gsp_rpc_get_gsp_static_info(struct nvkm_gsp *gsp) { GspStaticConfigInfo *rpc; int last_usable = -1; rpc = nvkm_gsp_rpc_rd(gsp, NV_VGPU_MSG_FUNCTION_GET_GSP_STATIC_INFO, sizeof(*rpc)); if (IS_ERR(rpc)) return PTR_ERR(rpc); gsp->internal.client.object.client = &gsp->internal.client; gsp->internal.client.object.parent = NULL; gsp->internal.client.object.handle = rpc->hInternalClient; gsp->internal.client.gsp = gsp; gsp->internal.device.object.client = &gsp->internal.client; gsp->internal.device.object.parent = &gsp->internal.client.object; gsp->internal.device.object.handle = rpc->hInternalDevice; gsp->internal.device.subdevice.client = &gsp->internal.client; gsp->internal.device.subdevice.parent = &gsp->internal.device.object; gsp->internal.device.subdevice.handle = rpc->hInternalSubdevice; gsp->bar.rm_bar1_pdb = rpc->bar1PdeBase; gsp->bar.rm_bar2_pdb = rpc->bar2PdeBase; for (int i = 0; i < rpc->fbRegionInfoParams.numFBRegions; i++) { NV2080_CTRL_CMD_FB_GET_FB_REGION_FB_REGION_INFO *reg = &rpc->fbRegionInfoParams.fbRegion[i]; nvkm_debug(&gsp->subdev, "fb region %d: " "%016llx-%016llx rsvd:%016llx perf:%08x comp:%d iso:%d prot:%d\n", i, reg->base, reg->limit, reg->reserved, reg->performance, reg->supportCompressed, reg->supportISO, reg->bProtected); if (!reg->reserved && !reg->bProtected) { if (reg->supportCompressed && reg->supportISO && !WARN_ON_ONCE(gsp->fb.region_nr >= ARRAY_SIZE(gsp->fb.region))) { const u64 size = (reg->limit + 1) - reg->base; gsp->fb.region[gsp->fb.region_nr].addr = reg->base; gsp->fb.region[gsp->fb.region_nr].size = size; gsp->fb.region_nr++; } last_usable = i; } } if (last_usable >= 0) { u32 rsvd_base = rpc->fbRegionInfoParams.fbRegion[last_usable].limit + 1; gsp->fb.rsvd_size = gsp->fb.heap.addr - rsvd_base; } for (int gpc = 0; gpc < ARRAY_SIZE(rpc->tpcInfo); gpc++) { if (rpc->gpcInfo.gpcMask & BIT(gpc)) { gsp->gr.tpcs += hweight32(rpc->tpcInfo[gpc].tpcMask); gsp->gr.gpcs++; } } nvkm_gsp_rpc_done(gsp, rpc); return 0; } static void nvkm_gsp_mem_dtor(struct nvkm_gsp *gsp, struct nvkm_gsp_mem *mem) { if (mem->data) { /* * Poison the buffer to catch any unexpected access from * GSP-RM if the buffer was prematurely freed. */ memset(mem->data, 0xFF, mem->size); dma_free_coherent(gsp->subdev.device->dev, mem->size, mem->data, mem->addr); memset(mem, 0, sizeof(*mem)); } } static int nvkm_gsp_mem_ctor(struct nvkm_gsp *gsp, size_t size, struct nvkm_gsp_mem *mem) { mem->size = size; mem->data = dma_alloc_coherent(gsp->subdev.device->dev, size, &mem->addr, GFP_KERNEL); if (WARN_ON(!mem->data)) return -ENOMEM; return 0; } static int r535_gsp_postinit(struct nvkm_gsp *gsp) { struct nvkm_device *device = gsp->subdev.device; int ret; ret = r535_gsp_rpc_get_gsp_static_info(gsp); if (WARN_ON(ret)) return ret; INIT_WORK(&gsp->msgq.work, r535_gsp_msgq_work); ret = r535_gsp_intr_get_table(gsp); if (WARN_ON(ret)) return ret; ret = nvkm_gsp_intr_stall(gsp, gsp->subdev.type, gsp->subdev.inst); if (WARN_ON(ret < 0)) return ret; ret = nvkm_inth_add(&device->vfn->intr, ret, NVKM_INTR_PRIO_NORMAL, &gsp->subdev, r535_gsp_intr, &gsp->subdev.inth); if (WARN_ON(ret)) return ret; nvkm_inth_allow(&gsp->subdev.inth); nvkm_wr32(device, 0x110004, 0x00000040); /* Release the DMA buffers that were needed only for boot and init */ nvkm_gsp_mem_dtor(gsp, &gsp->boot.fw); nvkm_gsp_mem_dtor(gsp, &gsp->libos); return ret; } static int r535_gsp_rpc_unloading_guest_driver(struct nvkm_gsp *gsp, bool suspend) { rpc_unloading_guest_driver_v1F_07 *rpc; rpc = nvkm_gsp_rpc_get(gsp, NV_VGPU_MSG_FUNCTION_UNLOADING_GUEST_DRIVER, sizeof(*rpc)); if (IS_ERR(rpc)) return PTR_ERR(rpc); if (suspend) { rpc->bInPMTransition = 1; rpc->bGc6Entering = 0; rpc->newLevel = NV2080_CTRL_GPU_SET_POWER_STATE_GPU_LEVEL_3; } else { rpc->bInPMTransition = 0; rpc->bGc6Entering = 0; rpc->newLevel = NV2080_CTRL_GPU_SET_POWER_STATE_GPU_LEVEL_0; } return nvkm_gsp_rpc_wr(gsp, rpc, true); } enum registry_type { REGISTRY_TABLE_ENTRY_TYPE_DWORD = 1, /* 32-bit unsigned integer */ REGISTRY_TABLE_ENTRY_TYPE_BINARY = 2, /* Binary blob */ REGISTRY_TABLE_ENTRY_TYPE_STRING = 3, /* Null-terminated string */ }; /* An arbitrary limit to the length of a registry key */ #define REGISTRY_MAX_KEY_LENGTH 64 /** * registry_list_entry - linked list member for a registry key/value * @head: list_head struct * @type: dword, binary, or string * @klen: the length of name of the key * @vlen: the length of the value * @key: the key name * @dword: the data, if REGISTRY_TABLE_ENTRY_TYPE_DWORD * @binary: the data, if TYPE_BINARY or TYPE_STRING * * Every registry key/value is represented internally by this struct. * * Type DWORD is a simple 32-bit unsigned integer, and its value is stored in * @dword. * * Types BINARY and STRING are variable-length binary blobs. The only real * difference between BINARY and STRING is that STRING is null-terminated and * is expected to contain only printable characters. * * Note: it is technically possible to have multiple keys with the same name * but different types, but this is not useful since GSP-RM expects keys to * have only one specific type. */ struct registry_list_entry { struct list_head head; enum registry_type type; size_t klen; char key[REGISTRY_MAX_KEY_LENGTH]; size_t vlen; u32 dword; /* TYPE_DWORD */ u8 binary[] __counted_by(vlen); /* TYPE_BINARY or TYPE_STRING */ }; /** * add_registry -- adds a registry entry * @gsp: gsp pointer * @key: name of the registry key * @type: type of data * @data: pointer to value * @length: size of data, in bytes * * Adds a registry key/value pair to the registry database. * * This function collects the registry information in a linked list. After * all registry keys have been added, build_registry() is used to create the * RPC data structure. * * registry_rpc_size is a running total of the size of all registry keys. * It's used to avoid an O(n) calculation of the size when the RPC is built. * * Returns 0 on success, or negative error code on error. */ static int add_registry(struct nvkm_gsp *gsp, const char *key, enum registry_type type, const void *data, size_t length) { struct registry_list_entry *reg; const size_t nlen = strnlen(key, REGISTRY_MAX_KEY_LENGTH) + 1; size_t alloc_size; /* extra bytes to alloc for binary or string value */ if (nlen > REGISTRY_MAX_KEY_LENGTH) return -EINVAL; alloc_size = (type == REGISTRY_TABLE_ENTRY_TYPE_DWORD) ? 0 : length; reg = kmalloc(sizeof(*reg) + alloc_size, GFP_KERNEL); if (!reg) return -ENOMEM; switch (type) { case REGISTRY_TABLE_ENTRY_TYPE_DWORD: reg->dword = *(const u32 *)(data); break; case REGISTRY_TABLE_ENTRY_TYPE_BINARY: case REGISTRY_TABLE_ENTRY_TYPE_STRING: memcpy(reg->binary, data, alloc_size); break; default: nvkm_error(&gsp->subdev, "unrecognized registry type %u for '%s'\n", type, key); kfree(reg); return -EINVAL; } memcpy(reg->key, key, nlen); reg->klen = nlen; reg->vlen = length; reg->type = type; list_add_tail(®->head, &gsp->registry_list); gsp->registry_rpc_size += sizeof(PACKED_REGISTRY_ENTRY) + nlen + alloc_size; return 0; } static int add_registry_num(struct nvkm_gsp *gsp, const char *key, u32 value) { return add_registry(gsp, key, REGISTRY_TABLE_ENTRY_TYPE_DWORD, &value, sizeof(u32)); } static int add_registry_string(struct nvkm_gsp *gsp, const char *key, const char *value) { return add_registry(gsp, key, REGISTRY_TABLE_ENTRY_TYPE_STRING, value, strlen(value) + 1); } /** * build_registry -- create the registry RPC data * @gsp: gsp pointer * @registry: pointer to the RPC payload to fill * * After all registry key/value pairs have been added, call this function to * build the RPC. * * The registry RPC looks like this: * * +-----------------+ * |NvU32 size; | * |NvU32 numEntries;| * +-----------------+ * +----------------------------------------+ * |PACKED_REGISTRY_ENTRY | * +----------------------------------------+ * |Null-terminated key (string) for entry 0| * +----------------------------------------+ * |Binary/string data value for entry 0 | (only if necessary) * +----------------------------------------+ * * +----------------------------------------+ * |PACKED_REGISTRY_ENTRY | * +----------------------------------------+ * |Null-terminated key (string) for entry 1| * +----------------------------------------+ * |Binary/string data value for entry 1 | (only if necessary) * +----------------------------------------+ * ... (and so on, one copy for each entry) * * * The 'data' field of an entry is either a 32-bit integer (for type DWORD) * or an offset into the PACKED_REGISTRY_TABLE (for types BINARY and STRING). * * All memory allocated by add_registry() is released. */ static void build_registry(struct nvkm_gsp *gsp, PACKED_REGISTRY_TABLE *registry) { struct registry_list_entry *reg, *n; size_t str_offset; unsigned int i = 0; registry->numEntries = list_count_nodes(&gsp->registry_list); str_offset = struct_size(registry, entries, registry->numEntries); list_for_each_entry_safe(reg, n, &gsp->registry_list, head) { registry->entries[i].type = reg->type; registry->entries[i].length = reg->vlen; /* Append the key name to the table */ registry->entries[i].nameOffset = str_offset; memcpy((void *)registry + str_offset, reg->key, reg->klen); str_offset += reg->klen; switch (reg->type) { case REGISTRY_TABLE_ENTRY_TYPE_DWORD: registry->entries[i].data = reg->dword; break; case REGISTRY_TABLE_ENTRY_TYPE_BINARY: case REGISTRY_TABLE_ENTRY_TYPE_STRING: /* If the type is binary or string, also append the value */ memcpy((void *)registry + str_offset, reg->binary, reg->vlen); registry->entries[i].data = str_offset; str_offset += reg->vlen; break; default: break; } i++; list_del(®->head); kfree(reg); } /* Double-check that we calculated the sizes correctly */ WARN_ON(gsp->registry_rpc_size != str_offset); registry->size = gsp->registry_rpc_size; } /** * clean_registry -- clean up registry memory in case of error * @gsp: gsp pointer * * Call this function to clean up all memory allocated by add_registry() * in case of error and build_registry() is not called. */ static void clean_registry(struct nvkm_gsp *gsp) { struct registry_list_entry *reg, *n; list_for_each_entry_safe(reg, n, &gsp->registry_list, head) { list_del(®->head); kfree(reg); } gsp->registry_rpc_size = sizeof(PACKED_REGISTRY_TABLE); } MODULE_PARM_DESC(NVreg_RegistryDwords, "A semicolon-separated list of key=integer pairs of GSP-RM registry keys"); static char *NVreg_RegistryDwords; module_param(NVreg_RegistryDwords, charp, 0400); /* dword only */ struct nv_gsp_registry_entries { const char *name; u32 value; }; /** * r535_registry_entries - required registry entries for GSP-RM * * This array lists registry entries that are required for GSP-RM to * function correctly. * * RMSecBusResetEnable - enables PCI secondary bus reset * RMForcePcieConfigSave - forces GSP-RM to preserve PCI configuration * registers on any PCI reset. */ static const struct nv_gsp_registry_entries r535_registry_entries[] = { { "RMSecBusResetEnable", 1 }, { "RMForcePcieConfigSave", 1 }, }; #define NV_GSP_REG_NUM_ENTRIES ARRAY_SIZE(r535_registry_entries) /** * strip - strips all characters in 'reject' from 's' * @s: string to strip * @reject: string of characters to remove * * 's' is modified. * * Returns the length of the new string. */ static size_t strip(char *s, const char *reject) { char *p = s, *p2 = s; size_t length = 0; char c; do { while ((c = *p2) && strchr(reject, c)) p2++; *p++ = c = *p2++; length++; } while (c); return length; } /** * r535_gsp_rpc_set_registry - build registry RPC and call GSP-RM * @gsp: gsp pointer * * The GSP-RM registry is a set of key/value pairs that configure some aspects * of GSP-RM. The keys are strings, and the values are 32-bit integers. * * The registry is built from a combination of a static hard-coded list (see * above) and entries passed on the driver's command line. */ static int r535_gsp_rpc_set_registry(struct nvkm_gsp *gsp) { PACKED_REGISTRY_TABLE *rpc; unsigned int i; int ret; INIT_LIST_HEAD(&gsp->registry_list); gsp->registry_rpc_size = sizeof(PACKED_REGISTRY_TABLE); for (i = 0; i < NV_GSP_REG_NUM_ENTRIES; i++) { ret = add_registry_num(gsp, r535_registry_entries[i].name, r535_registry_entries[i].value); if (ret) goto fail; } /* * The NVreg_RegistryDwords parameter is a string of key=value * pairs separated by semicolons. We need to extract and trim each * substring, and then parse the substring to extract the key and * value. */ if (NVreg_RegistryDwords) { char *p = kstrdup(NVreg_RegistryDwords, GFP_KERNEL); char *start, *next = p, *equal; if (!p) { ret = -ENOMEM; goto fail; } /* Remove any whitespace from the parameter string */ strip(p, " \t\n"); while ((start = strsep(&next, ";"))) { long value; equal = strchr(start, '='); if (!equal || equal == start || equal[1] == 0) { nvkm_error(&gsp->subdev, "ignoring invalid registry string '%s'\n", start); continue; } /* Truncate the key=value string to just key */ *equal = 0; ret = kstrtol(equal + 1, 0, &value); if (!ret) { ret = add_registry_num(gsp, start, value); } else { /* Not a number, so treat it as a string */ ret = add_registry_string(gsp, start, equal + 1); } if (ret) { nvkm_error(&gsp->subdev, "ignoring invalid registry key/value '%s=%s'\n", start, equal + 1); continue; } } kfree(p); } rpc = nvkm_gsp_rpc_get(gsp, NV_VGPU_MSG_FUNCTION_SET_REGISTRY, gsp->registry_rpc_size); if (IS_ERR(rpc)) { ret = PTR_ERR(rpc); goto fail; } build_registry(gsp, rpc); return nvkm_gsp_rpc_wr(gsp, rpc, false); fail: clean_registry(gsp); return ret; } #if defined(CONFIG_ACPI) && defined(CONFIG_X86) static void r535_gsp_acpi_caps(acpi_handle handle, CAPS_METHOD_DATA *caps) { const guid_t NVOP_DSM_GUID = GUID_INIT(0xA486D8F8, 0x0BDA, 0x471B, 0xA7, 0x2B, 0x60, 0x42, 0xA6, 0xB5, 0xBE, 0xE0); u64 NVOP_DSM_REV = 0x00000100; union acpi_object argv4 = { .buffer.type = ACPI_TYPE_BUFFER, .buffer.length = 4, .buffer.pointer = kmalloc(argv4.buffer.length, GFP_KERNEL), }, *obj; caps->status = 0xffff; if (!acpi_check_dsm(handle, &NVOP_DSM_GUID, NVOP_DSM_REV, BIT_ULL(0x1a))) return; obj = acpi_evaluate_dsm(handle, &NVOP_DSM_GUID, NVOP_DSM_REV, 0x1a, &argv4); if (!obj) return; if (WARN_ON(obj->type != ACPI_TYPE_BUFFER) || WARN_ON(obj->buffer.length != 4)) return; caps->status = 0; caps->optimusCaps = *(u32 *)obj->buffer.pointer; ACPI_FREE(obj); kfree(argv4.buffer.pointer); } static void r535_gsp_acpi_jt(acpi_handle handle, JT_METHOD_DATA *jt) { const guid_t JT_DSM_GUID = GUID_INIT(0xCBECA351L, 0x067B, 0x4924, 0x9C, 0xBD, 0xB4, 0x6B, 0x00, 0xB8, 0x6F, 0x34); u64 JT_DSM_REV = 0x00000103; u32 caps; union acpi_object argv4 = { .buffer.type = ACPI_TYPE_BUFFER, .buffer.length = sizeof(caps), .buffer.pointer = kmalloc(argv4.buffer.length, GFP_KERNEL), }, *obj; jt->status = 0xffff; obj = acpi_evaluate_dsm(handle, &JT_DSM_GUID, JT_DSM_REV, 0x1, &argv4); if (!obj) return; if (WARN_ON(obj->type != ACPI_TYPE_BUFFER) || WARN_ON(obj->buffer.length != 4)) return; jt->status = 0; jt->jtCaps = *(u32 *)obj->buffer.pointer; jt->jtRevId = (jt->jtCaps & 0xfff00000) >> 20; jt->bSBIOSCaps = 0; ACPI_FREE(obj); kfree(argv4.buffer.pointer); } static void r535_gsp_acpi_mux_id(acpi_handle handle, u32 id, MUX_METHOD_DATA_ELEMENT *mode, MUX_METHOD_DATA_ELEMENT *part) { union acpi_object mux_arg = { ACPI_TYPE_INTEGER }; struct acpi_object_list input = { 1, &mux_arg }; acpi_handle iter = NULL, handle_mux = NULL; acpi_status status; unsigned long long value; mode->status = 0xffff; part->status = 0xffff; do { status = acpi_get_next_object(ACPI_TYPE_DEVICE, handle, iter, &iter); if (ACPI_FAILURE(status) || !iter) return; status = acpi_evaluate_integer(iter, "_ADR", NULL, &value); if (ACPI_FAILURE(status) || value != id) continue; handle_mux = iter; } while (!handle_mux); if (!handle_mux) return; /* I -think- 0 means "acquire" according to nvidia's driver source */ input.pointer->integer.type = ACPI_TYPE_INTEGER; input.pointer->integer.value = 0; status = acpi_evaluate_integer(handle_mux, "MXDM", &input, &value); if (ACPI_SUCCESS(status)) { mode->acpiId = id; mode->mode = value; mode->status = 0; } status = acpi_evaluate_integer(handle_mux, "MXDS", &input, &value); if (ACPI_SUCCESS(status)) { part->acpiId = id; part->mode = value; part->status = 0; } } static void r535_gsp_acpi_mux(acpi_handle handle, DOD_METHOD_DATA *dod, MUX_METHOD_DATA *mux) { mux->tableLen = dod->acpiIdListLen / sizeof(dod->acpiIdList[0]); for (int i = 0; i < mux->tableLen; i++) { r535_gsp_acpi_mux_id(handle, dod->acpiIdList[i], &mux->acpiIdMuxModeTable[i], &mux->acpiIdMuxPartTable[i]); } } static void r535_gsp_acpi_dod(acpi_handle handle, DOD_METHOD_DATA *dod) { acpi_status status; struct acpi_buffer output = { ACPI_ALLOCATE_BUFFER, NULL }; union acpi_object *_DOD; dod->status = 0xffff; status = acpi_evaluate_object(handle, "_DOD", NULL, &output); if (ACPI_FAILURE(status)) return; _DOD = output.pointer; if (WARN_ON(_DOD->type != ACPI_TYPE_PACKAGE) || WARN_ON(_DOD->package.count > ARRAY_SIZE(dod->acpiIdList))) return; for (int i = 0; i < _DOD->package.count; i++) { if (WARN_ON(_DOD->package.elements[i].type != ACPI_TYPE_INTEGER)) return; dod->acpiIdList[i] = _DOD->package.elements[i].integer.value; dod->acpiIdListLen += sizeof(dod->acpiIdList[0]); } dod->status = 0; kfree(output.pointer); } #endif static void r535_gsp_acpi_info(struct nvkm_gsp *gsp, ACPI_METHOD_DATA *acpi) { #if defined(CONFIG_ACPI) && defined(CONFIG_X86) acpi_handle handle = ACPI_HANDLE(gsp->subdev.device->dev); if (!handle) return; acpi->bValid = 1; r535_gsp_acpi_dod(handle, &acpi->dodMethodData); if (acpi->dodMethodData.status == 0) r535_gsp_acpi_mux(handle, &acpi->dodMethodData, &acpi->muxMethodData); r535_gsp_acpi_jt(handle, &acpi->jtMethodData); r535_gsp_acpi_caps(handle, &acpi->capsMethodData); #endif } static int r535_gsp_rpc_set_system_info(struct nvkm_gsp *gsp) { struct nvkm_device *device = gsp->subdev.device; struct nvkm_device_pci *pdev = container_of(device, typeof(*pdev), device); GspSystemInfo *info; if (WARN_ON(device->type == NVKM_DEVICE_TEGRA)) return -ENOSYS; info = nvkm_gsp_rpc_get(gsp, NV_VGPU_MSG_FUNCTION_GSP_SET_SYSTEM_INFO, sizeof(*info)); if (IS_ERR(info)) return PTR_ERR(info); info->gpuPhysAddr = device->func->resource_addr(device, 0); info->gpuPhysFbAddr = device->func->resource_addr(device, 1); info->gpuPhysInstAddr = device->func->resource_addr(device, 3); info->nvDomainBusDeviceFunc = pci_dev_id(pdev->pdev); info->maxUserVa = TASK_SIZE; info->pciConfigMirrorBase = 0x088000; info->pciConfigMirrorSize = 0x001000; r535_gsp_acpi_info(gsp, &info->acpiMethodData); return nvkm_gsp_rpc_wr(gsp, info, false); } static int r535_gsp_msg_os_error_log(void *priv, u32 fn, void *repv, u32 repc) { struct nvkm_gsp *gsp = priv; struct nvkm_subdev *subdev = &gsp->subdev; rpc_os_error_log_v17_00 *msg = repv; if (WARN_ON(repc < sizeof(*msg))) return -EINVAL; nvkm_error(subdev, "Xid:%d %s\n", msg->exceptType, msg->errString); return 0; } static int r535_gsp_msg_rc_triggered(void *priv, u32 fn, void *repv, u32 repc) { rpc_rc_triggered_v17_02 *msg = repv; struct nvkm_gsp *gsp = priv; struct nvkm_subdev *subdev = &gsp->subdev; struct nvkm_chan *chan; unsigned long flags; if (WARN_ON(repc < sizeof(*msg))) return -EINVAL; nvkm_error(subdev, "rc engn:%08x chid:%d type:%d scope:%d part:%d\n", msg->nv2080EngineType, msg->chid, msg->exceptType, msg->scope, msg->partitionAttributionId); chan = nvkm_chan_get_chid(&subdev->device->fifo->engine, msg->chid / 8, &flags); if (!chan) { nvkm_error(subdev, "rc chid:%d not found!\n", msg->chid); return 0; } nvkm_chan_error(chan, false); nvkm_chan_put(&chan, flags); return 0; } static int r535_gsp_msg_mmu_fault_queued(void *priv, u32 fn, void *repv, u32 repc) { struct nvkm_gsp *gsp = priv; struct nvkm_subdev *subdev = &gsp->subdev; WARN_ON(repc != 0); nvkm_error(subdev, "mmu fault queued\n"); return 0; } static int r535_gsp_msg_post_event(void *priv, u32 fn, void *repv, u32 repc) { struct nvkm_gsp *gsp = priv; struct nvkm_gsp_client *client; struct nvkm_subdev *subdev = &gsp->subdev; rpc_post_event_v17_00 *msg = repv; if (WARN_ON(repc < sizeof(*msg))) return -EINVAL; if (WARN_ON(repc != sizeof(*msg) + msg->eventDataSize)) return -EINVAL; nvkm_debug(subdev, "event: %08x %08x %d %08x %08x %d %d\n", msg->hClient, msg->hEvent, msg->notifyIndex, msg->data, msg->status, msg->eventDataSize, msg->bNotifyList); mutex_lock(&gsp->client_id.mutex); client = idr_find(&gsp->client_id.idr, msg->hClient & 0xffff); if (client) { struct nvkm_gsp_event *event; bool handled = false; list_for_each_entry(event, &client->events, head) { if (event->object.handle == msg->hEvent) { event->func(event, msg->eventData, msg->eventDataSize); handled = true; } } if (!handled) { nvkm_error(subdev, "event: cid 0x%08x event 0x%08x not found!\n", msg->hClient, msg->hEvent); } } else { nvkm_error(subdev, "event: cid 0x%08x not found!\n", msg->hClient); } mutex_unlock(&gsp->client_id.mutex); return 0; } /** * r535_gsp_msg_run_cpu_sequencer() -- process I/O commands from the GSP * @priv: gsp pointer * @fn: function number (ignored) * @repv: pointer to libos print RPC * @repc: message size * * The GSP sequencer is a list of I/O commands that the GSP can send to * the driver to perform for various purposes. The most common usage is to * perform a special mid-initialization reset. */ static int r535_gsp_msg_run_cpu_sequencer(void *priv, u32 fn, void *repv, u32 repc) { struct nvkm_gsp *gsp = priv; struct nvkm_subdev *subdev = &gsp->subdev; struct nvkm_device *device = subdev->device; rpc_run_cpu_sequencer_v17_00 *seq = repv; int ptr = 0, ret; nvkm_debug(subdev, "seq: %08x %08x\n", seq->bufferSizeDWord, seq->cmdIndex); while (ptr < seq->cmdIndex) { GSP_SEQUENCER_BUFFER_CMD *cmd = (void *)&seq->commandBuffer[ptr]; ptr += 1; ptr += GSP_SEQUENCER_PAYLOAD_SIZE_DWORDS(cmd->opCode); switch (cmd->opCode) { case GSP_SEQ_BUF_OPCODE_REG_WRITE: { u32 addr = cmd->payload.regWrite.addr; u32 data = cmd->payload.regWrite.val; nvkm_trace(subdev, "seq wr32 %06x %08x\n", addr, data); nvkm_wr32(device, addr, data); } break; case GSP_SEQ_BUF_OPCODE_REG_MODIFY: { u32 addr = cmd->payload.regModify.addr; u32 mask = cmd->payload.regModify.mask; u32 data = cmd->payload.regModify.val; nvkm_trace(subdev, "seq mask %06x %08x %08x\n", addr, mask, data); nvkm_mask(device, addr, mask, data); } break; case GSP_SEQ_BUF_OPCODE_REG_POLL: { u32 addr = cmd->payload.regPoll.addr; u32 mask = cmd->payload.regPoll.mask; u32 data = cmd->payload.regPoll.val; u32 usec = cmd->payload.regPoll.timeout ?: 4000000; //u32 error = cmd->payload.regPoll.error; nvkm_trace(subdev, "seq poll %06x %08x %08x %d\n", addr, mask, data, usec); nvkm_rd32(device, addr); nvkm_usec(device, usec, if ((nvkm_rd32(device, addr) & mask) == data) break; ); } break; case GSP_SEQ_BUF_OPCODE_DELAY_US: { u32 usec = cmd->payload.delayUs.val; nvkm_trace(subdev, "seq usec %d\n", usec); udelay(usec); } break; case GSP_SEQ_BUF_OPCODE_REG_STORE: { u32 addr = cmd->payload.regStore.addr; u32 slot = cmd->payload.regStore.index; seq->regSaveArea[slot] = nvkm_rd32(device, addr); nvkm_trace(subdev, "seq save %08x -> %d: %08x\n", addr, slot, seq->regSaveArea[slot]); } break; case GSP_SEQ_BUF_OPCODE_CORE_RESET: nvkm_trace(subdev, "seq core reset\n"); nvkm_falcon_reset(&gsp->falcon); nvkm_falcon_mask(&gsp->falcon, 0x624, 0x00000080, 0x00000080); nvkm_falcon_wr32(&gsp->falcon, 0x10c, 0x00000000); break; case GSP_SEQ_BUF_OPCODE_CORE_START: nvkm_trace(subdev, "seq core start\n"); if (nvkm_falcon_rd32(&gsp->falcon, 0x100) & 0x00000040) nvkm_falcon_wr32(&gsp->falcon, 0x130, 0x00000002); else nvkm_falcon_wr32(&gsp->falcon, 0x100, 0x00000002); break; case GSP_SEQ_BUF_OPCODE_CORE_WAIT_FOR_HALT: nvkm_trace(subdev, "seq core wait halt\n"); nvkm_msec(device, 2000, if (nvkm_falcon_rd32(&gsp->falcon, 0x100) & 0x00000010) break; ); break; case GSP_SEQ_BUF_OPCODE_CORE_RESUME: { struct nvkm_sec2 *sec2 = device->sec2; u32 mbox0; nvkm_trace(subdev, "seq core resume\n"); ret = gsp->func->reset(gsp); if (WARN_ON(ret)) return ret; nvkm_falcon_wr32(&gsp->falcon, 0x040, lower_32_bits(gsp->libos.addr)); nvkm_falcon_wr32(&gsp->falcon, 0x044, upper_32_bits(gsp->libos.addr)); nvkm_falcon_start(&sec2->falcon); if (nvkm_msec(device, 2000, if (nvkm_rd32(device, 0x1180f8) & 0x04000000) break; ) < 0) return -ETIMEDOUT; mbox0 = nvkm_falcon_rd32(&sec2->falcon, 0x040); if (WARN_ON(mbox0)) { nvkm_error(&gsp->subdev, "seq core resume sec2: 0x%x\n", mbox0); return -EIO; } nvkm_falcon_wr32(&gsp->falcon, 0x080, gsp->boot.app_version); if (WARN_ON(!nvkm_falcon_riscv_active(&gsp->falcon))) return -EIO; } break; default: nvkm_error(subdev, "unknown sequencer opcode %08x\n", cmd->opCode); return -EINVAL; } } return 0; } static int r535_gsp_booter_unload(struct nvkm_gsp *gsp, u32 mbox0, u32 mbox1) { struct nvkm_subdev *subdev = &gsp->subdev; struct nvkm_device *device = subdev->device; u32 wpr2_hi; int ret; wpr2_hi = nvkm_rd32(device, 0x1fa828); if (!wpr2_hi) { nvkm_debug(subdev, "WPR2 not set - skipping booter unload\n"); return 0; } ret = nvkm_falcon_fw_boot(&gsp->booter.unload, &gsp->subdev, true, &mbox0, &mbox1, 0, 0); if (WARN_ON(ret)) return ret; wpr2_hi = nvkm_rd32(device, 0x1fa828); if (WARN_ON(wpr2_hi)) return -EIO; return 0; } static int r535_gsp_booter_load(struct nvkm_gsp *gsp, u32 mbox0, u32 mbox1) { int ret; ret = nvkm_falcon_fw_boot(&gsp->booter.load, &gsp->subdev, true, &mbox0, &mbox1, 0, 0); if (ret) return ret; nvkm_falcon_wr32(&gsp->falcon, 0x080, gsp->boot.app_version); if (WARN_ON(!nvkm_falcon_riscv_active(&gsp->falcon))) return -EIO; return 0; } static int r535_gsp_wpr_meta_init(struct nvkm_gsp *gsp) { GspFwWprMeta *meta; int ret; ret = nvkm_gsp_mem_ctor(gsp, 0x1000, &gsp->wpr_meta); if (ret) return ret; meta = gsp->wpr_meta.data; meta->magic = GSP_FW_WPR_META_MAGIC; meta->revision = GSP_FW_WPR_META_REVISION; meta->sysmemAddrOfRadix3Elf = gsp->radix3.lvl0.addr; meta->sizeOfRadix3Elf = gsp->fb.wpr2.elf.size; meta->sysmemAddrOfBootloader = gsp->boot.fw.addr; meta->sizeOfBootloader = gsp->boot.fw.size; meta->bootloaderCodeOffset = gsp->boot.code_offset; meta->bootloaderDataOffset = gsp->boot.data_offset; meta->bootloaderManifestOffset = gsp->boot.manifest_offset; meta->sysmemAddrOfSignature = gsp->sig.addr; meta->sizeOfSignature = gsp->sig.size; meta->gspFwRsvdStart = gsp->fb.heap.addr; meta->nonWprHeapOffset = gsp->fb.heap.addr; meta->nonWprHeapSize = gsp->fb.heap.size; meta->gspFwWprStart = gsp->fb.wpr2.addr; meta->gspFwHeapOffset = gsp->fb.wpr2.heap.addr; meta->gspFwHeapSize = gsp->fb.wpr2.heap.size; meta->gspFwOffset = gsp->fb.wpr2.elf.addr; meta->bootBinOffset = gsp->fb.wpr2.boot.addr; meta->frtsOffset = gsp->fb.wpr2.frts.addr; meta->frtsSize = gsp->fb.wpr2.frts.size; meta->gspFwWprEnd = ALIGN_DOWN(gsp->fb.bios.vga_workspace.addr, 0x20000); meta->fbSize = gsp->fb.size; meta->vgaWorkspaceOffset = gsp->fb.bios.vga_workspace.addr; meta->vgaWorkspaceSize = gsp->fb.bios.vga_workspace.size; meta->bootCount = 0; meta->partitionRpcAddr = 0; meta->partitionRpcRequestOffset = 0; meta->partitionRpcReplyOffset = 0; meta->verified = 0; return 0; } static int r535_gsp_shared_init(struct nvkm_gsp *gsp) { struct { msgqTxHeader tx; msgqRxHeader rx; } *cmdq, *msgq; int ret, i; gsp->shm.cmdq.size = 0x40000; gsp->shm.msgq.size = 0x40000; gsp->shm.ptes.nr = (gsp->shm.cmdq.size + gsp->shm.msgq.size) >> GSP_PAGE_SHIFT; gsp->shm.ptes.nr += DIV_ROUND_UP(gsp->shm.ptes.nr * sizeof(u64), GSP_PAGE_SIZE); gsp->shm.ptes.size = ALIGN(gsp->shm.ptes.nr * sizeof(u64), GSP_PAGE_SIZE); ret = nvkm_gsp_mem_ctor(gsp, gsp->shm.ptes.size + gsp->shm.cmdq.size + gsp->shm.msgq.size, &gsp->shm.mem); if (ret) return ret; gsp->shm.ptes.ptr = gsp->shm.mem.data; gsp->shm.cmdq.ptr = (u8 *)gsp->shm.ptes.ptr + gsp->shm.ptes.size; gsp->shm.msgq.ptr = (u8 *)gsp->shm.cmdq.ptr + gsp->shm.cmdq.size; for (i = 0; i < gsp->shm.ptes.nr; i++) gsp->shm.ptes.ptr[i] = gsp->shm.mem.addr + (i << GSP_PAGE_SHIFT); cmdq = gsp->shm.cmdq.ptr; cmdq->tx.version = 0; cmdq->tx.size = gsp->shm.cmdq.size; cmdq->tx.entryOff = GSP_PAGE_SIZE; cmdq->tx.msgSize = GSP_PAGE_SIZE; cmdq->tx.msgCount = (cmdq->tx.size - cmdq->tx.entryOff) / cmdq->tx.msgSize; cmdq->tx.writePtr = 0; cmdq->tx.flags = 1; cmdq->tx.rxHdrOff = offsetof(typeof(*cmdq), rx.readPtr); msgq = gsp->shm.msgq.ptr; gsp->cmdq.cnt = cmdq->tx.msgCount; gsp->cmdq.wptr = &cmdq->tx.writePtr; gsp->cmdq.rptr = &msgq->rx.readPtr; gsp->msgq.cnt = cmdq->tx.msgCount; gsp->msgq.wptr = &msgq->tx.writePtr; gsp->msgq.rptr = &cmdq->rx.readPtr; return 0; } static int r535_gsp_rmargs_init(struct nvkm_gsp *gsp, bool resume) { GSP_ARGUMENTS_CACHED *args; int ret; if (!resume) { ret = r535_gsp_shared_init(gsp); if (ret) return ret; ret = nvkm_gsp_mem_ctor(gsp, 0x1000, &gsp->rmargs); if (ret) return ret; } args = gsp->rmargs.data; args->messageQueueInitArguments.sharedMemPhysAddr = gsp->shm.mem.addr; args->messageQueueInitArguments.pageTableEntryCount = gsp->shm.ptes.nr; args->messageQueueInitArguments.cmdQueueOffset = (u8 *)gsp->shm.cmdq.ptr - (u8 *)gsp->shm.mem.data; args->messageQueueInitArguments.statQueueOffset = (u8 *)gsp->shm.msgq.ptr - (u8 *)gsp->shm.mem.data; if (!resume) { args->srInitArguments.oldLevel = 0; args->srInitArguments.flags = 0; args->srInitArguments.bInPMTransition = 0; } else { args->srInitArguments.oldLevel = NV2080_CTRL_GPU_SET_POWER_STATE_GPU_LEVEL_3; args->srInitArguments.flags = 0; args->srInitArguments.bInPMTransition = 1; } return 0; } static inline u64 r535_gsp_libos_id8(const char *name) { u64 id = 0; for (int i = 0; i < sizeof(id) && *name; i++, name++) id = (id << 8) | *name; return id; } /** * create_pte_array() - creates a PTE array of a physically contiguous buffer * @ptes: pointer to the array * @addr: base address of physically contiguous buffer (GSP_PAGE_SIZE aligned) * @size: size of the buffer * * GSP-RM sometimes expects physically-contiguous buffers to have an array of * "PTEs" for each page in that buffer. Although in theory that allows for * the buffer to be physically discontiguous, GSP-RM does not currently * support that. * * In this case, the PTEs are DMA addresses of each page of the buffer. Since * the buffer is physically contiguous, calculating all the PTEs is simple * math. * * See memdescGetPhysAddrsForGpu() */ static void create_pte_array(u64 *ptes, dma_addr_t addr, size_t size) { unsigned int num_pages = DIV_ROUND_UP_ULL(size, GSP_PAGE_SIZE); unsigned int i; for (i = 0; i < num_pages; i++) ptes[i] = (u64)addr + (i << GSP_PAGE_SHIFT); } /** * r535_gsp_libos_init() -- create the libos arguments structure * @gsp: gsp pointer * * The logging buffers are byte queues that contain encoded printf-like * messages from GSP-RM. They need to be decoded by a special application * that can parse the buffers. * * The 'loginit' buffer contains logs from early GSP-RM init and * exception dumps. The 'logrm' buffer contains the subsequent logs. Both are * written to directly by GSP-RM and can be any multiple of GSP_PAGE_SIZE. * * The physical address map for the log buffer is stored in the buffer * itself, starting with offset 1. Offset 0 contains the "put" pointer. * * The GSP only understands 4K pages (GSP_PAGE_SIZE), so even if the kernel is * configured for a larger page size (e.g. 64K pages), we need to give * the GSP an array of 4K pages. Fortunately, since the buffer is * physically contiguous, it's simple math to calculate the addresses. * * The buffers must be a multiple of GSP_PAGE_SIZE. GSP-RM also currently * ignores the @kind field for LOGINIT, LOGINTR, and LOGRM, but expects the * buffers to be physically contiguous anyway. * * The memory allocated for the arguments must remain until the GSP sends the * init_done RPC. * * See _kgspInitLibosLoggingStructures (allocates memory for buffers) * See kgspSetupLibosInitArgs_IMPL (creates pLibosInitArgs[] array) */ static int r535_gsp_libos_init(struct nvkm_gsp *gsp) { LibosMemoryRegionInitArgument *args; int ret; ret = nvkm_gsp_mem_ctor(gsp, 0x1000, &gsp->libos); if (ret) return ret; args = gsp->libos.data; ret = nvkm_gsp_mem_ctor(gsp, 0x10000, &gsp->loginit); if (ret) return ret; args[0].id8 = r535_gsp_libos_id8("LOGINIT"); args[0].pa = gsp->loginit.addr; args[0].size = gsp->loginit.size; args[0].kind = LIBOS_MEMORY_REGION_CONTIGUOUS; args[0].loc = LIBOS_MEMORY_REGION_LOC_SYSMEM; create_pte_array(gsp->loginit.data + sizeof(u64), gsp->loginit.addr, gsp->loginit.size); ret = nvkm_gsp_mem_ctor(gsp, 0x10000, &gsp->logintr); if (ret) return ret; args[1].id8 = r535_gsp_libos_id8("LOGINTR"); args[1].pa = gsp->logintr.addr; args[1].size = gsp->logintr.size; args[1].kind = LIBOS_MEMORY_REGION_CONTIGUOUS; args[1].loc = LIBOS_MEMORY_REGION_LOC_SYSMEM; create_pte_array(gsp->logintr.data + sizeof(u64), gsp->logintr.addr, gsp->logintr.size); ret = nvkm_gsp_mem_ctor(gsp, 0x10000, &gsp->logrm); if (ret) return ret; args[2].id8 = r535_gsp_libos_id8("LOGRM"); args[2].pa = gsp->logrm.addr; args[2].size = gsp->logrm.size; args[2].kind = LIBOS_MEMORY_REGION_CONTIGUOUS; args[2].loc = LIBOS_MEMORY_REGION_LOC_SYSMEM; create_pte_array(gsp->logrm.data + sizeof(u64), gsp->logrm.addr, gsp->logrm.size); ret = r535_gsp_rmargs_init(gsp, false); if (ret) return ret; args[3].id8 = r535_gsp_libos_id8("RMARGS"); args[3].pa = gsp->rmargs.addr; args[3].size = gsp->rmargs.size; args[3].kind = LIBOS_MEMORY_REGION_CONTIGUOUS; args[3].loc = LIBOS_MEMORY_REGION_LOC_SYSMEM; return 0; } void nvkm_gsp_sg_free(struct nvkm_device *device, struct sg_table *sgt) { struct scatterlist *sgl; int i; dma_unmap_sgtable(device->dev, sgt, DMA_BIDIRECTIONAL, 0); for_each_sgtable_sg(sgt, sgl, i) { struct page *page = sg_page(sgl); __free_page(page); } sg_free_table(sgt); } int nvkm_gsp_sg(struct nvkm_device *device, u64 size, struct sg_table *sgt) { const u64 pages = DIV_ROUND_UP(size, PAGE_SIZE); struct scatterlist *sgl; int ret, i; ret = sg_alloc_table(sgt, pages, GFP_KERNEL); if (ret) return ret; for_each_sgtable_sg(sgt, sgl, i) { struct page *page = alloc_page(GFP_KERNEL); if (!page) { nvkm_gsp_sg_free(device, sgt); return -ENOMEM; } sg_set_page(sgl, page, PAGE_SIZE, 0); } ret = dma_map_sgtable(device->dev, sgt, DMA_BIDIRECTIONAL, 0); if (ret) nvkm_gsp_sg_free(device, sgt); return ret; } static void nvkm_gsp_radix3_dtor(struct nvkm_gsp *gsp, struct nvkm_gsp_radix3 *rx3) { nvkm_gsp_sg_free(gsp->subdev.device, &rx3->lvl2); nvkm_gsp_mem_dtor(gsp, &rx3->lvl1); nvkm_gsp_mem_dtor(gsp, &rx3->lvl0); } /** * nvkm_gsp_radix3_sg - build a radix3 table from a S/G list * @gsp: gsp pointer * @sgt: S/G list to traverse * @size: size of the image, in bytes * @rx3: radix3 array to update * * The GSP uses a three-level page table, called radix3, to map the firmware. * Each 64-bit "pointer" in the table is either the bus address of an entry in * the next table (for levels 0 and 1) or the bus address of the next page in * the GSP firmware image itself. * * Level 0 contains a single entry in one page that points to the first page * of level 1. * * Level 1, since it's also only one page in size, contains up to 512 entries, * one for each page in Level 2. * * Level 2 can be up to 512 pages in size, and each of those entries points to * the next page of the firmware image. Since there can be up to 512*512 * pages, that limits the size of the firmware to 512*512*GSP_PAGE_SIZE = 1GB. * * Internally, the GSP has its window into system memory, but the base * physical address of the aperture is not 0. In fact, it varies depending on * the GPU architecture. Since the GPU is a PCI device, this window is * accessed via DMA and is therefore bound by IOMMU translation. The end * result is that GSP-RM must translate the bus addresses in the table to GSP * physical addresses. All this should happen transparently. * * Returns 0 on success, or negative error code * * See kgspCreateRadix3_IMPL */ static int nvkm_gsp_radix3_sg(struct nvkm_gsp *gsp, struct sg_table *sgt, u64 size, struct nvkm_gsp_radix3 *rx3) { struct sg_dma_page_iter sg_dma_iter; struct scatterlist *sg; size_t bufsize; u64 *pte; int ret, i, page_idx = 0; ret = nvkm_gsp_mem_ctor(gsp, GSP_PAGE_SIZE, &rx3->lvl0); if (ret) return ret; ret = nvkm_gsp_mem_ctor(gsp, GSP_PAGE_SIZE, &rx3->lvl1); if (ret) goto lvl1_fail; // Allocate level 2 bufsize = ALIGN((size / GSP_PAGE_SIZE) * sizeof(u64), GSP_PAGE_SIZE); ret = nvkm_gsp_sg(gsp->subdev.device, bufsize, &rx3->lvl2); if (ret) goto lvl2_fail; // Write the bus address of level 1 to level 0 pte = rx3->lvl0.data; *pte = rx3->lvl1.addr; // Write the bus address of each page in level 2 to level 1 pte = rx3->lvl1.data; for_each_sgtable_dma_page(&rx3->lvl2, &sg_dma_iter, 0) *pte++ = sg_page_iter_dma_address(&sg_dma_iter); // Finally, write the bus address of each page in sgt to level 2 for_each_sgtable_sg(&rx3->lvl2, sg, i) { void *sgl_end; pte = sg_virt(sg); sgl_end = (void *)pte + sg->length; for_each_sgtable_dma_page(sgt, &sg_dma_iter, page_idx) { *pte++ = sg_page_iter_dma_address(&sg_dma_iter); page_idx++; // Go to the next scatterlist for level 2 if we've reached the end if ((void *)pte >= sgl_end) break; } } if (ret) { lvl2_fail: nvkm_gsp_mem_dtor(gsp, &rx3->lvl1); lvl1_fail: nvkm_gsp_mem_dtor(gsp, &rx3->lvl0); } return ret; } int r535_gsp_fini(struct nvkm_gsp *gsp, bool suspend) { u32 mbox0 = 0xff, mbox1 = 0xff; int ret; if (!gsp->running) return 0; if (suspend) { GspFwWprMeta *meta = gsp->wpr_meta.data; u64 len = meta->gspFwWprEnd - meta->gspFwWprStart; GspFwSRMeta *sr; ret = nvkm_gsp_sg(gsp->subdev.device, len, &gsp->sr.sgt); if (ret) return ret; ret = nvkm_gsp_radix3_sg(gsp, &gsp->sr.sgt, len, &gsp->sr.radix3); if (ret) return ret; ret = nvkm_gsp_mem_ctor(gsp, sizeof(*sr), &gsp->sr.meta); if (ret) return ret; sr = gsp->sr.meta.data; sr->magic = GSP_FW_SR_META_MAGIC; sr->revision = GSP_FW_SR_META_REVISION; sr->sysmemAddrOfSuspendResumeData = gsp->sr.radix3.lvl0.addr; sr->sizeOfSuspendResumeData = len; mbox0 = lower_32_bits(gsp->sr.meta.addr); mbox1 = upper_32_bits(gsp->sr.meta.addr); } ret = r535_gsp_rpc_unloading_guest_driver(gsp, suspend); if (WARN_ON(ret)) return ret; nvkm_msec(gsp->subdev.device, 2000, if (nvkm_falcon_rd32(&gsp->falcon, 0x040) & 0x80000000) break; ); nvkm_falcon_reset(&gsp->falcon); ret = nvkm_gsp_fwsec_sb(gsp); WARN_ON(ret); ret = r535_gsp_booter_unload(gsp, mbox0, mbox1); WARN_ON(ret); gsp->running = false; return 0; } int r535_gsp_init(struct nvkm_gsp *gsp) { u32 mbox0, mbox1; int ret; if (!gsp->sr.meta.data) { mbox0 = lower_32_bits(gsp->wpr_meta.addr); mbox1 = upper_32_bits(gsp->wpr_meta.addr); } else { r535_gsp_rmargs_init(gsp, true); mbox0 = lower_32_bits(gsp->sr.meta.addr); mbox1 = upper_32_bits(gsp->sr.meta.addr); } /* Execute booter to handle (eventually...) booting GSP-RM. */ ret = r535_gsp_booter_load(gsp, mbox0, mbox1); if (WARN_ON(ret)) goto done; ret = r535_gsp_rpc_poll(gsp, NV_VGPU_MSG_EVENT_GSP_INIT_DONE); if (ret) goto done; gsp->running = true; done: if (gsp->sr.meta.data) { nvkm_gsp_mem_dtor(gsp, &gsp->sr.meta); nvkm_gsp_radix3_dtor(gsp, &gsp->sr.radix3); nvkm_gsp_sg_free(gsp->subdev.device, &gsp->sr.sgt); return ret; } if (ret == 0) ret = r535_gsp_postinit(gsp); return ret; } static int r535_gsp_rm_boot_ctor(struct nvkm_gsp *gsp) { const struct firmware *fw = gsp->fws.bl; const struct nvfw_bin_hdr *hdr; RM_RISCV_UCODE_DESC *desc; int ret; hdr = nvfw_bin_hdr(&gsp->subdev, fw->data); desc = (void *)fw->data + hdr->header_offset; ret = nvkm_gsp_mem_ctor(gsp, hdr->data_size, &gsp->boot.fw); if (ret) return ret; memcpy(gsp->boot.fw.data, fw->data + hdr->data_offset, hdr->data_size); gsp->boot.code_offset = desc->monitorCodeOffset; gsp->boot.data_offset = desc->monitorDataOffset; gsp->boot.manifest_offset = desc->manifestOffset; gsp->boot.app_version = desc->appVersion; return 0; } static const struct nvkm_firmware_func r535_gsp_fw = { .type = NVKM_FIRMWARE_IMG_SGT, }; static int r535_gsp_elf_section(struct nvkm_gsp *gsp, const char *name, const u8 **pdata, u64 *psize) { const u8 *img = gsp->fws.rm->data; const struct elf64_hdr *ehdr = (const struct elf64_hdr *)img; const struct elf64_shdr *shdr = (const struct elf64_shdr *)&img[ehdr->e_shoff]; const char *names = &img[shdr[ehdr->e_shstrndx].sh_offset]; for (int i = 0; i < ehdr->e_shnum; i++, shdr++) { if (!strcmp(&names[shdr->sh_name], name)) { *pdata = &img[shdr->sh_offset]; *psize = shdr->sh_size; return 0; } } nvkm_error(&gsp->subdev, "section '%s' not found\n", name); return -ENOENT; } static void r535_gsp_dtor_fws(struct nvkm_gsp *gsp) { nvkm_firmware_put(gsp->fws.bl); gsp->fws.bl = NULL; nvkm_firmware_put(gsp->fws.booter.unload); gsp->fws.booter.unload = NULL; nvkm_firmware_put(gsp->fws.booter.load); gsp->fws.booter.load = NULL; nvkm_firmware_put(gsp->fws.rm); gsp->fws.rm = NULL; } void r535_gsp_dtor(struct nvkm_gsp *gsp) { idr_destroy(&gsp->client_id.idr); mutex_destroy(&gsp->client_id.mutex); nvkm_gsp_radix3_dtor(gsp, &gsp->radix3); nvkm_gsp_mem_dtor(gsp, &gsp->sig); nvkm_firmware_dtor(&gsp->fw); nvkm_falcon_fw_dtor(&gsp->booter.unload); nvkm_falcon_fw_dtor(&gsp->booter.load); mutex_destroy(&gsp->msgq.mutex); mutex_destroy(&gsp->cmdq.mutex); r535_gsp_dtor_fws(gsp); nvkm_gsp_mem_dtor(gsp, &gsp->rmargs); nvkm_gsp_mem_dtor(gsp, &gsp->wpr_meta); nvkm_gsp_mem_dtor(gsp, &gsp->shm.mem); nvkm_gsp_mem_dtor(gsp, &gsp->loginit); nvkm_gsp_mem_dtor(gsp, &gsp->logintr); nvkm_gsp_mem_dtor(gsp, &gsp->logrm); } int r535_gsp_oneinit(struct nvkm_gsp *gsp) { struct nvkm_device *device = gsp->subdev.device; const u8 *data; u64 size; int ret; mutex_init(&gsp->cmdq.mutex); mutex_init(&gsp->msgq.mutex); ret = gsp->func->booter.ctor(gsp, "booter-load", gsp->fws.booter.load, &device->sec2->falcon, &gsp->booter.load); if (ret) return ret; ret = gsp->func->booter.ctor(gsp, "booter-unload", gsp->fws.booter.unload, &device->sec2->falcon, &gsp->booter.unload); if (ret) return ret; /* Load GSP firmware from ELF image into DMA-accessible memory. */ ret = r535_gsp_elf_section(gsp, ".fwimage", &data, &size); if (ret) return ret; ret = nvkm_firmware_ctor(&r535_gsp_fw, "gsp-rm", device, data, size, &gsp->fw); if (ret) return ret; /* Load relevant signature from ELF image. */ ret = r535_gsp_elf_section(gsp, gsp->func->sig_section, &data, &size); if (ret) return ret; ret = nvkm_gsp_mem_ctor(gsp, ALIGN(size, 256), &gsp->sig); if (ret) return ret; memcpy(gsp->sig.data, data, size); /* Build radix3 page table for ELF image. */ ret = nvkm_gsp_radix3_sg(gsp, &gsp->fw.mem.sgt, gsp->fw.len, &gsp->radix3); if (ret) return ret; r535_gsp_msg_ntfy_add(gsp, NV_VGPU_MSG_EVENT_GSP_RUN_CPU_SEQUENCER, r535_gsp_msg_run_cpu_sequencer, gsp); r535_gsp_msg_ntfy_add(gsp, NV_VGPU_MSG_EVENT_POST_EVENT, r535_gsp_msg_post_event, gsp); r535_gsp_msg_ntfy_add(gsp, NV_VGPU_MSG_EVENT_RC_TRIGGERED, r535_gsp_msg_rc_triggered, gsp); r535_gsp_msg_ntfy_add(gsp, NV_VGPU_MSG_EVENT_MMU_FAULT_QUEUED, r535_gsp_msg_mmu_fault_queued, gsp); r535_gsp_msg_ntfy_add(gsp, NV_VGPU_MSG_EVENT_OS_ERROR_LOG, r535_gsp_msg_os_error_log, gsp); r535_gsp_msg_ntfy_add(gsp, NV_VGPU_MSG_EVENT_PERF_BRIDGELESS_INFO_UPDATE, NULL, NULL); r535_gsp_msg_ntfy_add(gsp, NV_VGPU_MSG_EVENT_UCODE_LIBOS_PRINT, NULL, NULL); r535_gsp_msg_ntfy_add(gsp, NV_VGPU_MSG_EVENT_GSP_SEND_USER_SHARED_DATA, NULL, NULL); ret = r535_gsp_rm_boot_ctor(gsp); if (ret) return ret; /* Release FW images - we've copied them to DMA buffers now. */ r535_gsp_dtor_fws(gsp); /* Calculate FB layout. */ gsp->fb.wpr2.frts.size = 0x100000; gsp->fb.wpr2.frts.addr = ALIGN_DOWN(gsp->fb.bios.addr, 0x20000) - gsp->fb.wpr2.frts.size; gsp->fb.wpr2.boot.size = gsp->boot.fw.size; gsp->fb.wpr2.boot.addr = ALIGN_DOWN(gsp->fb.wpr2.frts.addr - gsp->fb.wpr2.boot.size, 0x1000); gsp->fb.wpr2.elf.size = gsp->fw.len; gsp->fb.wpr2.elf.addr = ALIGN_DOWN(gsp->fb.wpr2.boot.addr - gsp->fb.wpr2.elf.size, 0x10000); { u32 fb_size_gb = DIV_ROUND_UP_ULL(gsp->fb.size, 1 << 30); gsp->fb.wpr2.heap.size = gsp->func->wpr_heap.os_carveout_size + gsp->func->wpr_heap.base_size + ALIGN(GSP_FW_HEAP_PARAM_SIZE_PER_GB_FB * fb_size_gb, 1 << 20) + ALIGN(GSP_FW_HEAP_PARAM_CLIENT_ALLOC_SIZE, 1 << 20); gsp->fb.wpr2.heap.size = max(gsp->fb.wpr2.heap.size, gsp->func->wpr_heap.min_size); } gsp->fb.wpr2.heap.addr = ALIGN_DOWN(gsp->fb.wpr2.elf.addr - gsp->fb.wpr2.heap.size, 0x100000); gsp->fb.wpr2.heap.size = ALIGN_DOWN(gsp->fb.wpr2.elf.addr - gsp->fb.wpr2.heap.addr, 0x100000); gsp->fb.wpr2.addr = ALIGN_DOWN(gsp->fb.wpr2.heap.addr - sizeof(GspFwWprMeta), 0x100000); gsp->fb.wpr2.size = gsp->fb.wpr2.frts.addr + gsp->fb.wpr2.frts.size - gsp->fb.wpr2.addr; gsp->fb.heap.size = 0x100000; gsp->fb.heap.addr = gsp->fb.wpr2.addr - gsp->fb.heap.size; ret = nvkm_gsp_fwsec_frts(gsp); if (WARN_ON(ret)) return ret; ret = r535_gsp_libos_init(gsp); if (WARN_ON(ret)) return ret; ret = r535_gsp_wpr_meta_init(gsp); if (WARN_ON(ret)) return ret; ret = r535_gsp_rpc_set_system_info(gsp); if (WARN_ON(ret)) return ret; ret = r535_gsp_rpc_set_registry(gsp); if (WARN_ON(ret)) return ret; /* Reset GSP into RISC-V mode. */ ret = gsp->func->reset(gsp); if (WARN_ON(ret)) return ret; nvkm_falcon_wr32(&gsp->falcon, 0x040, lower_32_bits(gsp->libos.addr)); nvkm_falcon_wr32(&gsp->falcon, 0x044, upper_32_bits(gsp->libos.addr)); mutex_init(&gsp->client_id.mutex); idr_init(&gsp->client_id.idr); return 0; } static int r535_gsp_load_fw(struct nvkm_gsp *gsp, const char *name, const char *ver, const struct firmware **pfw) { char fwname[64]; snprintf(fwname, sizeof(fwname), "gsp/%s-%s", name, ver); return nvkm_firmware_get(&gsp->subdev, fwname, 0, pfw); } int r535_gsp_load(struct nvkm_gsp *gsp, int ver, const struct nvkm_gsp_fwif *fwif) { struct nvkm_subdev *subdev = &gsp->subdev; int ret; bool enable_gsp = fwif->enable; #if IS_ENABLED(CONFIG_DRM_NOUVEAU_GSP_DEFAULT) enable_gsp = true; #endif if (!nvkm_boolopt(subdev->device->cfgopt, "NvGspRm", enable_gsp)) return -EINVAL; if ((ret = r535_gsp_load_fw(gsp, "gsp", fwif->ver, &gsp->fws.rm)) || (ret = r535_gsp_load_fw(gsp, "booter_load", fwif->ver, &gsp->fws.booter.load)) || (ret = r535_gsp_load_fw(gsp, "booter_unload", fwif->ver, &gsp->fws.booter.unload)) || (ret = r535_gsp_load_fw(gsp, "bootloader", fwif->ver, &gsp->fws.bl))) { r535_gsp_dtor_fws(gsp); return ret; } return 0; } #define NVKM_GSP_FIRMWARE(chip) \ MODULE_FIRMWARE("nvidia/"#chip"/gsp/booter_load-535.113.01.bin"); \ MODULE_FIRMWARE("nvidia/"#chip"/gsp/booter_unload-535.113.01.bin"); \ MODULE_FIRMWARE("nvidia/"#chip"/gsp/bootloader-535.113.01.bin"); \ MODULE_FIRMWARE("nvidia/"#chip"/gsp/gsp-535.113.01.bin") NVKM_GSP_FIRMWARE(tu102); NVKM_GSP_FIRMWARE(tu104); NVKM_GSP_FIRMWARE(tu106); NVKM_GSP_FIRMWARE(tu116); NVKM_GSP_FIRMWARE(tu117); NVKM_GSP_FIRMWARE(ga100); NVKM_GSP_FIRMWARE(ga102); NVKM_GSP_FIRMWARE(ga103); NVKM_GSP_FIRMWARE(ga104); NVKM_GSP_FIRMWARE(ga106); NVKM_GSP_FIRMWARE(ga107); NVKM_GSP_FIRMWARE(ad102); NVKM_GSP_FIRMWARE(ad103); NVKM_GSP_FIRMWARE(ad104); NVKM_GSP_FIRMWARE(ad106); NVKM_GSP_FIRMWARE(ad107);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1