Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Boris Brezillon | 5195 | 98.52% | 5 | 62.50% |
Mary Guillemard | 68 | 1.29% | 1 | 12.50% |
Harshit Mogalapalli | 10 | 0.19% | 2 | 25.00% |
Total | 5273 | 8 |
// SPDX-License-Identifier: GPL-2.0 or MIT /* Copyright 2018 Marty E. Plummer <hanetzer@startmail.com> */ /* Copyright 2019 Linaro, Ltd., Rob Herring <robh@kernel.org> */ /* Copyright 2019 Collabora ltd. */ #include <linux/list.h> #include <linux/module.h> #include <linux/of_platform.h> #include <linux/pagemap.h> #include <linux/platform_device.h> #include <linux/pm_runtime.h> #include <drm/drm_auth.h> #include <drm/drm_debugfs.h> #include <drm/drm_drv.h> #include <drm/drm_exec.h> #include <drm/drm_ioctl.h> #include <drm/drm_syncobj.h> #include <drm/drm_utils.h> #include <drm/gpu_scheduler.h> #include <drm/panthor_drm.h> #include "panthor_device.h" #include "panthor_fw.h" #include "panthor_gem.h" #include "panthor_gpu.h" #include "panthor_heap.h" #include "panthor_mmu.h" #include "panthor_regs.h" #include "panthor_sched.h" /** * DOC: user <-> kernel object copy helpers. */ /** * panthor_set_uobj() - Copy kernel object to user object. * @usr_ptr: Users pointer. * @usr_size: Size of the user object. * @min_size: Minimum size for this object. * @kern_size: Size of the kernel object. * @in: Address of the kernel object to copy. * * Helper automating kernel -> user object copies. * * Don't use this function directly, use PANTHOR_UOBJ_SET() instead. * * Return: 0 on success, a negative error code otherwise. */ static int panthor_set_uobj(u64 usr_ptr, u32 usr_size, u32 min_size, u32 kern_size, const void *in) { /* User size shouldn't be smaller than the minimal object size. */ if (usr_size < min_size) return -EINVAL; if (copy_to_user(u64_to_user_ptr(usr_ptr), in, min_t(u32, usr_size, kern_size))) return -EFAULT; /* When the kernel object is smaller than the user object, we fill the gap with * zeros. */ if (usr_size > kern_size && clear_user(u64_to_user_ptr(usr_ptr + kern_size), usr_size - kern_size)) { return -EFAULT; } return 0; } /** * panthor_get_uobj_array() - Copy a user object array into a kernel accessible object array. * @in: The object array to copy. * @min_stride: Minimum array stride. * @obj_size: Kernel object size. * * Helper automating user -> kernel object copies. * * Don't use this function directly, use PANTHOR_UOBJ_GET_ARRAY() instead. * * Return: newly allocated object array or an ERR_PTR on error. */ static void * panthor_get_uobj_array(const struct drm_panthor_obj_array *in, u32 min_stride, u32 obj_size) { int ret = 0; void *out_alloc; if (!in->count) return NULL; /* User stride must be at least the minimum object size, otherwise it might * lack useful information. */ if (in->stride < min_stride) return ERR_PTR(-EINVAL); out_alloc = kvmalloc_array(in->count, obj_size, GFP_KERNEL); if (!out_alloc) return ERR_PTR(-ENOMEM); if (obj_size == in->stride) { /* Fast path when user/kernel have the same uAPI header version. */ if (copy_from_user(out_alloc, u64_to_user_ptr(in->array), (unsigned long)obj_size * in->count)) ret = -EFAULT; } else { void __user *in_ptr = u64_to_user_ptr(in->array); void *out_ptr = out_alloc; /* If the sizes differ, we need to copy elements one by one. */ for (u32 i = 0; i < in->count; i++) { ret = copy_struct_from_user(out_ptr, obj_size, in_ptr, in->stride); if (ret) break; out_ptr += obj_size; in_ptr += in->stride; } } if (ret) { kvfree(out_alloc); return ERR_PTR(ret); } return out_alloc; } /** * PANTHOR_UOBJ_MIN_SIZE_INTERNAL() - Get the minimum user object size * @_typename: Object type. * @_last_mandatory_field: Last mandatory field. * * Get the minimum user object size based on the last mandatory field name, * A.K.A, the name of the last field of the structure at the time this * structure was added to the uAPI. * * Don't use directly, use PANTHOR_UOBJ_DECL() instead. */ #define PANTHOR_UOBJ_MIN_SIZE_INTERNAL(_typename, _last_mandatory_field) \ (offsetof(_typename, _last_mandatory_field) + \ sizeof(((_typename *)NULL)->_last_mandatory_field)) /** * PANTHOR_UOBJ_DECL() - Declare a new uAPI object whose subject to * evolutions. * @_typename: Object type. * @_last_mandatory_field: Last mandatory field. * * Should be used to extend the PANTHOR_UOBJ_MIN_SIZE() list. */ #define PANTHOR_UOBJ_DECL(_typename, _last_mandatory_field) \ _typename : PANTHOR_UOBJ_MIN_SIZE_INTERNAL(_typename, _last_mandatory_field) /** * PANTHOR_UOBJ_MIN_SIZE() - Get the minimum size of a given uAPI object * @_obj_name: Object to get the minimum size of. * * Don't use this macro directly, it's automatically called by * PANTHOR_UOBJ_{SET,GET_ARRAY}(). */ #define PANTHOR_UOBJ_MIN_SIZE(_obj_name) \ _Generic(_obj_name, \ PANTHOR_UOBJ_DECL(struct drm_panthor_gpu_info, tiler_present), \ PANTHOR_UOBJ_DECL(struct drm_panthor_csif_info, pad), \ PANTHOR_UOBJ_DECL(struct drm_panthor_sync_op, timeline_value), \ PANTHOR_UOBJ_DECL(struct drm_panthor_queue_submit, syncs), \ PANTHOR_UOBJ_DECL(struct drm_panthor_queue_create, ringbuf_size), \ PANTHOR_UOBJ_DECL(struct drm_panthor_vm_bind_op, syncs)) /** * PANTHOR_UOBJ_SET() - Copy a kernel object to a user object. * @_dest_usr_ptr: User pointer to copy to. * @_usr_size: Size of the user object. * @_src_obj: Kernel object to copy (not a pointer). * * Return: 0 on success, a negative error code otherwise. */ #define PANTHOR_UOBJ_SET(_dest_usr_ptr, _usr_size, _src_obj) \ panthor_set_uobj(_dest_usr_ptr, _usr_size, \ PANTHOR_UOBJ_MIN_SIZE(_src_obj), \ sizeof(_src_obj), &(_src_obj)) /** * PANTHOR_UOBJ_GET_ARRAY() - Copy a user object array to a kernel accessible * object array. * @_dest_array: Local variable that will hold the newly allocated kernel * object array. * @_uobj_array: The drm_panthor_obj_array object describing the user object * array. * * Return: 0 on success, a negative error code otherwise. */ #define PANTHOR_UOBJ_GET_ARRAY(_dest_array, _uobj_array) \ ({ \ typeof(_dest_array) _tmp; \ _tmp = panthor_get_uobj_array(_uobj_array, \ PANTHOR_UOBJ_MIN_SIZE((_dest_array)[0]), \ sizeof((_dest_array)[0])); \ if (!IS_ERR(_tmp)) \ _dest_array = _tmp; \ PTR_ERR_OR_ZERO(_tmp); \ }) /** * struct panthor_sync_signal - Represent a synchronization object point to attach * our job fence to. * * This structure is here to keep track of fences that are currently bound to * a specific syncobj point. * * At the beginning of a job submission, the fence * is retrieved from the syncobj itself, and can be NULL if no fence was attached * to this point. * * At the end, it points to the fence of the last job that had a * %DRM_PANTHOR_SYNC_OP_SIGNAL on this syncobj. * * With jobs being submitted in batches, the fence might change several times during * the process, allowing one job to wait on a job that's part of the same submission * but appears earlier in the drm_panthor_group_submit::queue_submits array. */ struct panthor_sync_signal { /** @node: list_head to track signal ops within a submit operation */ struct list_head node; /** @handle: The syncobj handle. */ u32 handle; /** * @point: The syncobj point. * * Zero for regular syncobjs, and non-zero for timeline syncobjs. */ u64 point; /** * @syncobj: The sync object pointed by @handle. */ struct drm_syncobj *syncobj; /** * @chain: Chain object used to link the new fence to an existing * timeline syncobj. * * NULL for regular syncobj, non-NULL for timeline syncobjs. */ struct dma_fence_chain *chain; /** * @fence: The fence to assign to the syncobj or syncobj-point. */ struct dma_fence *fence; }; /** * struct panthor_job_ctx - Job context */ struct panthor_job_ctx { /** @job: The job that is about to be submitted to drm_sched. */ struct drm_sched_job *job; /** @syncops: Array of sync operations. */ struct drm_panthor_sync_op *syncops; /** @syncop_count: Number of sync operations. */ u32 syncop_count; }; /** * struct panthor_submit_ctx - Submission context * * Anything that's related to a submission (%DRM_IOCTL_PANTHOR_VM_BIND or * %DRM_IOCTL_PANTHOR_GROUP_SUBMIT) is kept here, so we can automate the * initialization and cleanup steps. */ struct panthor_submit_ctx { /** @file: DRM file this submission happens on. */ struct drm_file *file; /** * @signals: List of struct panthor_sync_signal. * * %DRM_PANTHOR_SYNC_OP_SIGNAL operations will be recorded here, * and %DRM_PANTHOR_SYNC_OP_WAIT will first check if an entry * matching the syncobj+point exists before calling * drm_syncobj_find_fence(). This allows us to describe dependencies * existing between jobs that are part of the same batch. */ struct list_head signals; /** @jobs: Array of jobs. */ struct panthor_job_ctx *jobs; /** @job_count: Number of entries in the @jobs array. */ u32 job_count; /** @exec: drm_exec context used to acquire and prepare resv objects. */ struct drm_exec exec; }; #define PANTHOR_SYNC_OP_FLAGS_MASK \ (DRM_PANTHOR_SYNC_OP_HANDLE_TYPE_MASK | DRM_PANTHOR_SYNC_OP_SIGNAL) static bool sync_op_is_signal(const struct drm_panthor_sync_op *sync_op) { return !!(sync_op->flags & DRM_PANTHOR_SYNC_OP_SIGNAL); } static bool sync_op_is_wait(const struct drm_panthor_sync_op *sync_op) { /* Note that DRM_PANTHOR_SYNC_OP_WAIT == 0 */ return !(sync_op->flags & DRM_PANTHOR_SYNC_OP_SIGNAL); } /** * panthor_check_sync_op() - Check drm_panthor_sync_op fields * @sync_op: The sync operation to check. * * Return: 0 on success, -EINVAL otherwise. */ static int panthor_check_sync_op(const struct drm_panthor_sync_op *sync_op) { u8 handle_type; if (sync_op->flags & ~PANTHOR_SYNC_OP_FLAGS_MASK) return -EINVAL; handle_type = sync_op->flags & DRM_PANTHOR_SYNC_OP_HANDLE_TYPE_MASK; if (handle_type != DRM_PANTHOR_SYNC_OP_HANDLE_TYPE_SYNCOBJ && handle_type != DRM_PANTHOR_SYNC_OP_HANDLE_TYPE_TIMELINE_SYNCOBJ) return -EINVAL; if (handle_type == DRM_PANTHOR_SYNC_OP_HANDLE_TYPE_SYNCOBJ && sync_op->timeline_value != 0) return -EINVAL; return 0; } /** * panthor_sync_signal_free() - Release resources and free a panthor_sync_signal object * @sig_sync: Signal object to free. */ static void panthor_sync_signal_free(struct panthor_sync_signal *sig_sync) { if (!sig_sync) return; drm_syncobj_put(sig_sync->syncobj); dma_fence_chain_free(sig_sync->chain); dma_fence_put(sig_sync->fence); kfree(sig_sync); } /** * panthor_submit_ctx_add_sync_signal() - Add a signal operation to a submit context * @ctx: Context to add the signal operation to. * @handle: Syncobj handle. * @point: Syncobj point. * * Return: 0 on success, otherwise negative error value. */ static int panthor_submit_ctx_add_sync_signal(struct panthor_submit_ctx *ctx, u32 handle, u64 point) { struct panthor_sync_signal *sig_sync; struct dma_fence *cur_fence; int ret; sig_sync = kzalloc(sizeof(*sig_sync), GFP_KERNEL); if (!sig_sync) return -ENOMEM; sig_sync->handle = handle; sig_sync->point = point; if (point > 0) { sig_sync->chain = dma_fence_chain_alloc(); if (!sig_sync->chain) { ret = -ENOMEM; goto err_free_sig_sync; } } sig_sync->syncobj = drm_syncobj_find(ctx->file, handle); if (!sig_sync->syncobj) { ret = -EINVAL; goto err_free_sig_sync; } /* Retrieve the current fence attached to that point. It's * perfectly fine to get a NULL fence here, it just means there's * no fence attached to that point yet. */ if (!drm_syncobj_find_fence(ctx->file, handle, point, 0, &cur_fence)) sig_sync->fence = cur_fence; list_add_tail(&sig_sync->node, &ctx->signals); return 0; err_free_sig_sync: panthor_sync_signal_free(sig_sync); return ret; } /** * panthor_submit_ctx_search_sync_signal() - Search an existing signal operation in a * submit context. * @ctx: Context to search the signal operation in. * @handle: Syncobj handle. * @point: Syncobj point. * * Return: A valid panthor_sync_signal object if found, NULL otherwise. */ static struct panthor_sync_signal * panthor_submit_ctx_search_sync_signal(struct panthor_submit_ctx *ctx, u32 handle, u64 point) { struct panthor_sync_signal *sig_sync; list_for_each_entry(sig_sync, &ctx->signals, node) { if (handle == sig_sync->handle && point == sig_sync->point) return sig_sync; } return NULL; } /** * panthor_submit_ctx_add_job() - Add a job to a submit context * @ctx: Context to search the signal operation in. * @idx: Index of the job in the context. * @job: Job to add. * @syncs: Sync operations provided by userspace. * * Return: 0 on success, a negative error code otherwise. */ static int panthor_submit_ctx_add_job(struct panthor_submit_ctx *ctx, u32 idx, struct drm_sched_job *job, const struct drm_panthor_obj_array *syncs) { int ret; ctx->jobs[idx].job = job; ret = PANTHOR_UOBJ_GET_ARRAY(ctx->jobs[idx].syncops, syncs); if (ret) return ret; ctx->jobs[idx].syncop_count = syncs->count; return 0; } /** * panthor_submit_ctx_get_sync_signal() - Search signal operation and add one if none was found. * @ctx: Context to search the signal operation in. * @handle: Syncobj handle. * @point: Syncobj point. * * Return: 0 on success, a negative error code otherwise. */ static int panthor_submit_ctx_get_sync_signal(struct panthor_submit_ctx *ctx, u32 handle, u64 point) { struct panthor_sync_signal *sig_sync; sig_sync = panthor_submit_ctx_search_sync_signal(ctx, handle, point); if (sig_sync) return 0; return panthor_submit_ctx_add_sync_signal(ctx, handle, point); } /** * panthor_submit_ctx_update_job_sync_signal_fences() - Update fences * on the signal operations specified by a job. * @ctx: Context to search the signal operation in. * @job_idx: Index of the job to operate on. * * Return: 0 on success, a negative error code otherwise. */ static int panthor_submit_ctx_update_job_sync_signal_fences(struct panthor_submit_ctx *ctx, u32 job_idx) { struct panthor_device *ptdev = container_of(ctx->file->minor->dev, struct panthor_device, base); struct dma_fence *done_fence = &ctx->jobs[job_idx].job->s_fence->finished; const struct drm_panthor_sync_op *sync_ops = ctx->jobs[job_idx].syncops; u32 sync_op_count = ctx->jobs[job_idx].syncop_count; for (u32 i = 0; i < sync_op_count; i++) { struct dma_fence *old_fence; struct panthor_sync_signal *sig_sync; if (!sync_op_is_signal(&sync_ops[i])) continue; sig_sync = panthor_submit_ctx_search_sync_signal(ctx, sync_ops[i].handle, sync_ops[i].timeline_value); if (drm_WARN_ON(&ptdev->base, !sig_sync)) return -EINVAL; old_fence = sig_sync->fence; sig_sync->fence = dma_fence_get(done_fence); dma_fence_put(old_fence); if (drm_WARN_ON(&ptdev->base, !sig_sync->fence)) return -EINVAL; } return 0; } /** * panthor_submit_ctx_collect_job_signal_ops() - Iterate over all job signal operations * and add them to the context. * @ctx: Context to search the signal operation in. * @job_idx: Index of the job to operate on. * * Return: 0 on success, a negative error code otherwise. */ static int panthor_submit_ctx_collect_job_signal_ops(struct panthor_submit_ctx *ctx, u32 job_idx) { const struct drm_panthor_sync_op *sync_ops = ctx->jobs[job_idx].syncops; u32 sync_op_count = ctx->jobs[job_idx].syncop_count; for (u32 i = 0; i < sync_op_count; i++) { int ret; if (!sync_op_is_signal(&sync_ops[i])) continue; ret = panthor_check_sync_op(&sync_ops[i]); if (ret) return ret; ret = panthor_submit_ctx_get_sync_signal(ctx, sync_ops[i].handle, sync_ops[i].timeline_value); if (ret) return ret; } return 0; } /** * panthor_submit_ctx_push_fences() - Iterate over the signal array, and for each entry, push * the currently assigned fence to the associated syncobj. * @ctx: Context to push fences on. * * This is the last step of a submission procedure, and is done once we know the submission * is effective and job fences are guaranteed to be signaled in finite time. */ static void panthor_submit_ctx_push_fences(struct panthor_submit_ctx *ctx) { struct panthor_sync_signal *sig_sync; list_for_each_entry(sig_sync, &ctx->signals, node) { if (sig_sync->chain) { drm_syncobj_add_point(sig_sync->syncobj, sig_sync->chain, sig_sync->fence, sig_sync->point); sig_sync->chain = NULL; } else { drm_syncobj_replace_fence(sig_sync->syncobj, sig_sync->fence); } } } /** * panthor_submit_ctx_add_sync_deps_to_job() - Add sync wait operations as * job dependencies. * @ctx: Submit context. * @job_idx: Index of the job to operate on. * * Return: 0 on success, a negative error code otherwise. */ static int panthor_submit_ctx_add_sync_deps_to_job(struct panthor_submit_ctx *ctx, u32 job_idx) { struct panthor_device *ptdev = container_of(ctx->file->minor->dev, struct panthor_device, base); const struct drm_panthor_sync_op *sync_ops = ctx->jobs[job_idx].syncops; struct drm_sched_job *job = ctx->jobs[job_idx].job; u32 sync_op_count = ctx->jobs[job_idx].syncop_count; int ret = 0; for (u32 i = 0; i < sync_op_count; i++) { struct panthor_sync_signal *sig_sync; struct dma_fence *fence; if (!sync_op_is_wait(&sync_ops[i])) continue; ret = panthor_check_sync_op(&sync_ops[i]); if (ret) return ret; sig_sync = panthor_submit_ctx_search_sync_signal(ctx, sync_ops[i].handle, sync_ops[i].timeline_value); if (sig_sync) { if (drm_WARN_ON(&ptdev->base, !sig_sync->fence)) return -EINVAL; fence = dma_fence_get(sig_sync->fence); } else { ret = drm_syncobj_find_fence(ctx->file, sync_ops[i].handle, sync_ops[i].timeline_value, 0, &fence); if (ret) return ret; } ret = drm_sched_job_add_dependency(job, fence); if (ret) return ret; } return 0; } /** * panthor_submit_ctx_collect_jobs_signal_ops() - Collect all signal operations * and add them to the submit context. * @ctx: Submit context. * * Return: 0 on success, a negative error code otherwise. */ static int panthor_submit_ctx_collect_jobs_signal_ops(struct panthor_submit_ctx *ctx) { for (u32 i = 0; i < ctx->job_count; i++) { int ret; ret = panthor_submit_ctx_collect_job_signal_ops(ctx, i); if (ret) return ret; } return 0; } /** * panthor_submit_ctx_add_deps_and_arm_jobs() - Add jobs dependencies and arm jobs * @ctx: Submit context. * * Must be called after the resv preparation has been taken care of. * * Return: 0 on success, a negative error code otherwise. */ static int panthor_submit_ctx_add_deps_and_arm_jobs(struct panthor_submit_ctx *ctx) { for (u32 i = 0; i < ctx->job_count; i++) { int ret; ret = panthor_submit_ctx_add_sync_deps_to_job(ctx, i); if (ret) return ret; drm_sched_job_arm(ctx->jobs[i].job); ret = panthor_submit_ctx_update_job_sync_signal_fences(ctx, i); if (ret) return ret; } return 0; } /** * panthor_submit_ctx_push_jobs() - Push jobs to their scheduling entities. * @ctx: Submit context. * @upd_resvs: Callback used to update reservation objects that were previously * preapred. */ static void panthor_submit_ctx_push_jobs(struct panthor_submit_ctx *ctx, void (*upd_resvs)(struct drm_exec *, struct drm_sched_job *)) { for (u32 i = 0; i < ctx->job_count; i++) { upd_resvs(&ctx->exec, ctx->jobs[i].job); drm_sched_entity_push_job(ctx->jobs[i].job); /* Job is owned by the scheduler now. */ ctx->jobs[i].job = NULL; } panthor_submit_ctx_push_fences(ctx); } /** * panthor_submit_ctx_init() - Initializes a submission context * @ctx: Submit context to initialize. * @file: drm_file this submission happens on. * @job_count: Number of jobs that will be submitted. * * Return: 0 on success, a negative error code otherwise. */ static int panthor_submit_ctx_init(struct panthor_submit_ctx *ctx, struct drm_file *file, u32 job_count) { ctx->jobs = kvmalloc_array(job_count, sizeof(*ctx->jobs), GFP_KERNEL | __GFP_ZERO); if (!ctx->jobs) return -ENOMEM; ctx->file = file; ctx->job_count = job_count; INIT_LIST_HEAD(&ctx->signals); drm_exec_init(&ctx->exec, DRM_EXEC_INTERRUPTIBLE_WAIT | DRM_EXEC_IGNORE_DUPLICATES, 0); return 0; } /** * panthor_submit_ctx_cleanup() - Cleanup a submission context * @ctx: Submit context to cleanup. * @job_put: Job put callback. */ static void panthor_submit_ctx_cleanup(struct panthor_submit_ctx *ctx, void (*job_put)(struct drm_sched_job *)) { struct panthor_sync_signal *sig_sync, *tmp; unsigned long i; drm_exec_fini(&ctx->exec); list_for_each_entry_safe(sig_sync, tmp, &ctx->signals, node) panthor_sync_signal_free(sig_sync); for (i = 0; i < ctx->job_count; i++) { job_put(ctx->jobs[i].job); kvfree(ctx->jobs[i].syncops); } kvfree(ctx->jobs); } static int panthor_ioctl_dev_query(struct drm_device *ddev, void *data, struct drm_file *file) { struct panthor_device *ptdev = container_of(ddev, struct panthor_device, base); struct drm_panthor_dev_query *args = data; if (!args->pointer) { switch (args->type) { case DRM_PANTHOR_DEV_QUERY_GPU_INFO: args->size = sizeof(ptdev->gpu_info); return 0; case DRM_PANTHOR_DEV_QUERY_CSIF_INFO: args->size = sizeof(ptdev->csif_info); return 0; default: return -EINVAL; } } switch (args->type) { case DRM_PANTHOR_DEV_QUERY_GPU_INFO: return PANTHOR_UOBJ_SET(args->pointer, args->size, ptdev->gpu_info); case DRM_PANTHOR_DEV_QUERY_CSIF_INFO: return PANTHOR_UOBJ_SET(args->pointer, args->size, ptdev->csif_info); default: return -EINVAL; } } #define PANTHOR_VM_CREATE_FLAGS 0 static int panthor_ioctl_vm_create(struct drm_device *ddev, void *data, struct drm_file *file) { struct panthor_device *ptdev = container_of(ddev, struct panthor_device, base); struct panthor_file *pfile = file->driver_priv; struct drm_panthor_vm_create *args = data; int cookie, ret; if (!drm_dev_enter(ddev, &cookie)) return -ENODEV; ret = panthor_vm_pool_create_vm(ptdev, pfile->vms, args); if (ret >= 0) { args->id = ret; ret = 0; } drm_dev_exit(cookie); return ret; } static int panthor_ioctl_vm_destroy(struct drm_device *ddev, void *data, struct drm_file *file) { struct panthor_file *pfile = file->driver_priv; struct drm_panthor_vm_destroy *args = data; if (args->pad) return -EINVAL; return panthor_vm_pool_destroy_vm(pfile->vms, args->id); } #define PANTHOR_BO_FLAGS DRM_PANTHOR_BO_NO_MMAP static int panthor_ioctl_bo_create(struct drm_device *ddev, void *data, struct drm_file *file) { struct panthor_file *pfile = file->driver_priv; struct drm_panthor_bo_create *args = data; struct panthor_vm *vm = NULL; int cookie, ret; if (!drm_dev_enter(ddev, &cookie)) return -ENODEV; if (!args->size || args->pad || (args->flags & ~PANTHOR_BO_FLAGS)) { ret = -EINVAL; goto out_dev_exit; } if (args->exclusive_vm_id) { vm = panthor_vm_pool_get_vm(pfile->vms, args->exclusive_vm_id); if (!vm) { ret = -EINVAL; goto out_dev_exit; } } ret = panthor_gem_create_with_handle(file, ddev, vm, &args->size, args->flags, &args->handle); panthor_vm_put(vm); out_dev_exit: drm_dev_exit(cookie); return ret; } static int panthor_ioctl_bo_mmap_offset(struct drm_device *ddev, void *data, struct drm_file *file) { struct drm_panthor_bo_mmap_offset *args = data; struct drm_gem_object *obj; int ret; if (args->pad) return -EINVAL; obj = drm_gem_object_lookup(file, args->handle); if (!obj) return -ENOENT; ret = drm_gem_create_mmap_offset(obj); if (ret) goto out; args->offset = drm_vma_node_offset_addr(&obj->vma_node); out: drm_gem_object_put(obj); return ret; } static int panthor_ioctl_group_submit(struct drm_device *ddev, void *data, struct drm_file *file) { struct panthor_file *pfile = file->driver_priv; struct drm_panthor_group_submit *args = data; struct drm_panthor_queue_submit *jobs_args; struct panthor_submit_ctx ctx; int ret = 0, cookie; if (args->pad) return -EINVAL; if (!drm_dev_enter(ddev, &cookie)) return -ENODEV; ret = PANTHOR_UOBJ_GET_ARRAY(jobs_args, &args->queue_submits); if (ret) goto out_dev_exit; ret = panthor_submit_ctx_init(&ctx, file, args->queue_submits.count); if (ret) goto out_free_jobs_args; /* Create jobs and attach sync operations */ for (u32 i = 0; i < args->queue_submits.count; i++) { const struct drm_panthor_queue_submit *qsubmit = &jobs_args[i]; struct drm_sched_job *job; job = panthor_job_create(pfile, args->group_handle, qsubmit); if (IS_ERR(job)) { ret = PTR_ERR(job); goto out_cleanup_submit_ctx; } ret = panthor_submit_ctx_add_job(&ctx, i, job, &qsubmit->syncs); if (ret) goto out_cleanup_submit_ctx; } /* * Collect signal operations on all jobs, such that each job can pick * from it for its dependencies and update the fence to signal when the * job is submitted. */ ret = panthor_submit_ctx_collect_jobs_signal_ops(&ctx); if (ret) goto out_cleanup_submit_ctx; /* * We acquire/prepare revs on all jobs before proceeding with the * dependency registration. * * This is solving two problems: * 1. drm_sched_job_arm() and drm_sched_entity_push_job() must be * protected by a lock to make sure no concurrent access to the same * entity get interleaved, which would mess up with the fence seqno * ordering. Luckily, one of the resv being acquired is the VM resv, * and a scheduling entity is only bound to a single VM. As soon as * we acquire the VM resv, we should be safe. * 2. Jobs might depend on fences that were issued by previous jobs in * the same batch, so we can't add dependencies on all jobs before * arming previous jobs and registering the fence to the signal * array, otherwise we might miss dependencies, or point to an * outdated fence. */ if (args->queue_submits.count > 0) { /* All jobs target the same group, so they also point to the same VM. */ struct panthor_vm *vm = panthor_job_vm(ctx.jobs[0].job); drm_exec_until_all_locked(&ctx.exec) { ret = panthor_vm_prepare_mapped_bos_resvs(&ctx.exec, vm, args->queue_submits.count); } if (ret) goto out_cleanup_submit_ctx; } /* * Now that resvs are locked/prepared, we can iterate over each job to * add the dependencies, arm the job fence, register the job fence to * the signal array. */ ret = panthor_submit_ctx_add_deps_and_arm_jobs(&ctx); if (ret) goto out_cleanup_submit_ctx; /* Nothing can fail after that point, so we can make our job fences * visible to the outside world. Push jobs and set the job fences to * the resv slots we reserved. This also pushes the fences to the * syncobjs that are part of the signal array. */ panthor_submit_ctx_push_jobs(&ctx, panthor_job_update_resvs); out_cleanup_submit_ctx: panthor_submit_ctx_cleanup(&ctx, panthor_job_put); out_free_jobs_args: kvfree(jobs_args); out_dev_exit: drm_dev_exit(cookie); return ret; } static int panthor_ioctl_group_destroy(struct drm_device *ddev, void *data, struct drm_file *file) { struct panthor_file *pfile = file->driver_priv; struct drm_panthor_group_destroy *args = data; if (args->pad) return -EINVAL; return panthor_group_destroy(pfile, args->group_handle); } static int group_priority_permit(struct drm_file *file, u8 priority) { /* Ensure that priority is valid */ if (priority > PANTHOR_GROUP_PRIORITY_HIGH) return -EINVAL; /* Medium priority and below are always allowed */ if (priority <= PANTHOR_GROUP_PRIORITY_MEDIUM) return 0; /* Higher priorities require CAP_SYS_NICE or DRM_MASTER */ if (capable(CAP_SYS_NICE) || drm_is_current_master(file)) return 0; return -EACCES; } static int panthor_ioctl_group_create(struct drm_device *ddev, void *data, struct drm_file *file) { struct panthor_file *pfile = file->driver_priv; struct drm_panthor_group_create *args = data; struct drm_panthor_queue_create *queue_args; int ret; if (!args->queues.count) return -EINVAL; ret = PANTHOR_UOBJ_GET_ARRAY(queue_args, &args->queues); if (ret) return ret; ret = group_priority_permit(file, args->priority); if (ret) return ret; ret = panthor_group_create(pfile, args, queue_args); if (ret >= 0) { args->group_handle = ret; ret = 0; } kvfree(queue_args); return ret; } static int panthor_ioctl_group_get_state(struct drm_device *ddev, void *data, struct drm_file *file) { struct panthor_file *pfile = file->driver_priv; struct drm_panthor_group_get_state *args = data; return panthor_group_get_state(pfile, args); } static int panthor_ioctl_tiler_heap_create(struct drm_device *ddev, void *data, struct drm_file *file) { struct panthor_file *pfile = file->driver_priv; struct drm_panthor_tiler_heap_create *args = data; struct panthor_heap_pool *pool; struct panthor_vm *vm; int ret; vm = panthor_vm_pool_get_vm(pfile->vms, args->vm_id); if (!vm) return -EINVAL; pool = panthor_vm_get_heap_pool(vm, true); if (IS_ERR(pool)) { ret = PTR_ERR(pool); goto out_put_vm; } ret = panthor_heap_create(pool, args->initial_chunk_count, args->chunk_size, args->max_chunks, args->target_in_flight, &args->tiler_heap_ctx_gpu_va, &args->first_heap_chunk_gpu_va); if (ret < 0) goto out_put_heap_pool; /* Heap pools are per-VM. We combine the VM and HEAP id to make * a unique heap handle. */ args->handle = (args->vm_id << 16) | ret; ret = 0; out_put_heap_pool: panthor_heap_pool_put(pool); out_put_vm: panthor_vm_put(vm); return ret; } static int panthor_ioctl_tiler_heap_destroy(struct drm_device *ddev, void *data, struct drm_file *file) { struct panthor_file *pfile = file->driver_priv; struct drm_panthor_tiler_heap_destroy *args = data; struct panthor_heap_pool *pool; struct panthor_vm *vm; int ret; if (args->pad) return -EINVAL; vm = panthor_vm_pool_get_vm(pfile->vms, args->handle >> 16); if (!vm) return -EINVAL; pool = panthor_vm_get_heap_pool(vm, false); if (IS_ERR(pool)) { ret = PTR_ERR(pool); goto out_put_vm; } ret = panthor_heap_destroy(pool, args->handle & GENMASK(15, 0)); panthor_heap_pool_put(pool); out_put_vm: panthor_vm_put(vm); return ret; } static int panthor_ioctl_vm_bind_async(struct drm_device *ddev, struct drm_panthor_vm_bind *args, struct drm_file *file) { struct panthor_file *pfile = file->driver_priv; struct drm_panthor_vm_bind_op *jobs_args; struct panthor_submit_ctx ctx; struct panthor_vm *vm; int ret = 0; vm = panthor_vm_pool_get_vm(pfile->vms, args->vm_id); if (!vm) return -EINVAL; ret = PANTHOR_UOBJ_GET_ARRAY(jobs_args, &args->ops); if (ret) goto out_put_vm; ret = panthor_submit_ctx_init(&ctx, file, args->ops.count); if (ret) goto out_free_jobs_args; for (u32 i = 0; i < args->ops.count; i++) { struct drm_panthor_vm_bind_op *op = &jobs_args[i]; struct drm_sched_job *job; job = panthor_vm_bind_job_create(file, vm, op); if (IS_ERR(job)) { ret = PTR_ERR(job); goto out_cleanup_submit_ctx; } ret = panthor_submit_ctx_add_job(&ctx, i, job, &op->syncs); if (ret) goto out_cleanup_submit_ctx; } ret = panthor_submit_ctx_collect_jobs_signal_ops(&ctx); if (ret) goto out_cleanup_submit_ctx; /* Prepare reservation objects for each VM_BIND job. */ drm_exec_until_all_locked(&ctx.exec) { for (u32 i = 0; i < ctx.job_count; i++) { ret = panthor_vm_bind_job_prepare_resvs(&ctx.exec, ctx.jobs[i].job); drm_exec_retry_on_contention(&ctx.exec); if (ret) goto out_cleanup_submit_ctx; } } ret = panthor_submit_ctx_add_deps_and_arm_jobs(&ctx); if (ret) goto out_cleanup_submit_ctx; /* Nothing can fail after that point. */ panthor_submit_ctx_push_jobs(&ctx, panthor_vm_bind_job_update_resvs); out_cleanup_submit_ctx: panthor_submit_ctx_cleanup(&ctx, panthor_vm_bind_job_put); out_free_jobs_args: kvfree(jobs_args); out_put_vm: panthor_vm_put(vm); return ret; } static int panthor_ioctl_vm_bind_sync(struct drm_device *ddev, struct drm_panthor_vm_bind *args, struct drm_file *file) { struct panthor_file *pfile = file->driver_priv; struct drm_panthor_vm_bind_op *jobs_args; struct panthor_vm *vm; int ret; vm = panthor_vm_pool_get_vm(pfile->vms, args->vm_id); if (!vm) return -EINVAL; ret = PANTHOR_UOBJ_GET_ARRAY(jobs_args, &args->ops); if (ret) goto out_put_vm; for (u32 i = 0; i < args->ops.count; i++) { ret = panthor_vm_bind_exec_sync_op(file, vm, &jobs_args[i]); if (ret) { /* Update ops.count so the user knows where things failed. */ args->ops.count = i; break; } } kvfree(jobs_args); out_put_vm: panthor_vm_put(vm); return ret; } #define PANTHOR_VM_BIND_FLAGS DRM_PANTHOR_VM_BIND_ASYNC static int panthor_ioctl_vm_bind(struct drm_device *ddev, void *data, struct drm_file *file) { struct drm_panthor_vm_bind *args = data; int cookie, ret; if (!drm_dev_enter(ddev, &cookie)) return -ENODEV; if (args->flags & DRM_PANTHOR_VM_BIND_ASYNC) ret = panthor_ioctl_vm_bind_async(ddev, args, file); else ret = panthor_ioctl_vm_bind_sync(ddev, args, file); drm_dev_exit(cookie); return ret; } static int panthor_ioctl_vm_get_state(struct drm_device *ddev, void *data, struct drm_file *file) { struct panthor_file *pfile = file->driver_priv; struct drm_panthor_vm_get_state *args = data; struct panthor_vm *vm; vm = panthor_vm_pool_get_vm(pfile->vms, args->vm_id); if (!vm) return -EINVAL; if (panthor_vm_is_unusable(vm)) args->state = DRM_PANTHOR_VM_STATE_UNUSABLE; else args->state = DRM_PANTHOR_VM_STATE_USABLE; panthor_vm_put(vm); return 0; } static int panthor_open(struct drm_device *ddev, struct drm_file *file) { struct panthor_device *ptdev = container_of(ddev, struct panthor_device, base); struct panthor_file *pfile; int ret; if (!try_module_get(THIS_MODULE)) return -EINVAL; pfile = kzalloc(sizeof(*pfile), GFP_KERNEL); if (!pfile) { ret = -ENOMEM; goto err_put_mod; } pfile->ptdev = ptdev; ret = panthor_vm_pool_create(pfile); if (ret) goto err_free_file; ret = panthor_group_pool_create(pfile); if (ret) goto err_destroy_vm_pool; file->driver_priv = pfile; return 0; err_destroy_vm_pool: panthor_vm_pool_destroy(pfile); err_free_file: kfree(pfile); err_put_mod: module_put(THIS_MODULE); return ret; } static void panthor_postclose(struct drm_device *ddev, struct drm_file *file) { struct panthor_file *pfile = file->driver_priv; panthor_group_pool_destroy(pfile); panthor_vm_pool_destroy(pfile); kfree(pfile); module_put(THIS_MODULE); } static const struct drm_ioctl_desc panthor_drm_driver_ioctls[] = { #define PANTHOR_IOCTL(n, func, flags) \ DRM_IOCTL_DEF_DRV(PANTHOR_##n, panthor_ioctl_##func, flags) PANTHOR_IOCTL(DEV_QUERY, dev_query, DRM_RENDER_ALLOW), PANTHOR_IOCTL(VM_CREATE, vm_create, DRM_RENDER_ALLOW), PANTHOR_IOCTL(VM_DESTROY, vm_destroy, DRM_RENDER_ALLOW), PANTHOR_IOCTL(VM_BIND, vm_bind, DRM_RENDER_ALLOW), PANTHOR_IOCTL(VM_GET_STATE, vm_get_state, DRM_RENDER_ALLOW), PANTHOR_IOCTL(BO_CREATE, bo_create, DRM_RENDER_ALLOW), PANTHOR_IOCTL(BO_MMAP_OFFSET, bo_mmap_offset, DRM_RENDER_ALLOW), PANTHOR_IOCTL(GROUP_CREATE, group_create, DRM_RENDER_ALLOW), PANTHOR_IOCTL(GROUP_DESTROY, group_destroy, DRM_RENDER_ALLOW), PANTHOR_IOCTL(GROUP_GET_STATE, group_get_state, DRM_RENDER_ALLOW), PANTHOR_IOCTL(TILER_HEAP_CREATE, tiler_heap_create, DRM_RENDER_ALLOW), PANTHOR_IOCTL(TILER_HEAP_DESTROY, tiler_heap_destroy, DRM_RENDER_ALLOW), PANTHOR_IOCTL(GROUP_SUBMIT, group_submit, DRM_RENDER_ALLOW), }; static int panthor_mmap(struct file *filp, struct vm_area_struct *vma) { struct drm_file *file = filp->private_data; struct panthor_file *pfile = file->driver_priv; struct panthor_device *ptdev = pfile->ptdev; u64 offset = (u64)vma->vm_pgoff << PAGE_SHIFT; int ret, cookie; if (!drm_dev_enter(file->minor->dev, &cookie)) return -ENODEV; #ifdef CONFIG_ARM64 /* * With 32-bit systems being limited by the 32-bit representation of * mmap2's pgoffset field, we need to make the MMIO offset arch * specific. This converts a user MMIO offset into something the kernel * driver understands. */ if (test_tsk_thread_flag(current, TIF_32BIT) && offset >= DRM_PANTHOR_USER_MMIO_OFFSET_32BIT) { offset += DRM_PANTHOR_USER_MMIO_OFFSET_64BIT - DRM_PANTHOR_USER_MMIO_OFFSET_32BIT; vma->vm_pgoff = offset >> PAGE_SHIFT; } #endif if (offset >= DRM_PANTHOR_USER_MMIO_OFFSET) ret = panthor_device_mmap_io(ptdev, vma); else ret = drm_gem_mmap(filp, vma); drm_dev_exit(cookie); return ret; } static const struct file_operations panthor_drm_driver_fops = { .open = drm_open, .release = drm_release, .unlocked_ioctl = drm_ioctl, .compat_ioctl = drm_compat_ioctl, .poll = drm_poll, .read = drm_read, .llseek = noop_llseek, .mmap = panthor_mmap, }; #ifdef CONFIG_DEBUG_FS static void panthor_debugfs_init(struct drm_minor *minor) { panthor_mmu_debugfs_init(minor); } #endif /* * PanCSF driver version: * - 1.0 - initial interface */ static const struct drm_driver panthor_drm_driver = { .driver_features = DRIVER_RENDER | DRIVER_GEM | DRIVER_SYNCOBJ | DRIVER_SYNCOBJ_TIMELINE | DRIVER_GEM_GPUVA, .open = panthor_open, .postclose = panthor_postclose, .ioctls = panthor_drm_driver_ioctls, .num_ioctls = ARRAY_SIZE(panthor_drm_driver_ioctls), .fops = &panthor_drm_driver_fops, .name = "panthor", .desc = "Panthor DRM driver", .date = "20230801", .major = 1, .minor = 0, .gem_create_object = panthor_gem_create_object, .gem_prime_import_sg_table = drm_gem_shmem_prime_import_sg_table, #ifdef CONFIG_DEBUG_FS .debugfs_init = panthor_debugfs_init, #endif }; static int panthor_probe(struct platform_device *pdev) { struct panthor_device *ptdev; ptdev = devm_drm_dev_alloc(&pdev->dev, &panthor_drm_driver, struct panthor_device, base); if (IS_ERR(ptdev)) return -ENOMEM; platform_set_drvdata(pdev, ptdev); return panthor_device_init(ptdev); } static void panthor_remove(struct platform_device *pdev) { struct panthor_device *ptdev = platform_get_drvdata(pdev); panthor_device_unplug(ptdev); } static const struct of_device_id dt_match[] = { { .compatible = "rockchip,rk3588-mali" }, { .compatible = "arm,mali-valhall-csf" }, {} }; MODULE_DEVICE_TABLE(of, dt_match); static DEFINE_RUNTIME_DEV_PM_OPS(panthor_pm_ops, panthor_device_suspend, panthor_device_resume, NULL); static struct platform_driver panthor_driver = { .probe = panthor_probe, .remove_new = panthor_remove, .driver = { .name = "panthor", .pm = pm_ptr(&panthor_pm_ops), .of_match_table = dt_match, }, }; /* * Workqueue used to cleanup stuff. * * We create a dedicated workqueue so we can drain on unplug and * make sure all resources are freed before the module is unloaded. */ struct workqueue_struct *panthor_cleanup_wq; static int __init panthor_init(void) { int ret; ret = panthor_mmu_pt_cache_init(); if (ret) return ret; panthor_cleanup_wq = alloc_workqueue("panthor-cleanup", WQ_UNBOUND, 0); if (!panthor_cleanup_wq) { pr_err("panthor: Failed to allocate the workqueues"); ret = -ENOMEM; goto err_mmu_pt_cache_fini; } ret = platform_driver_register(&panthor_driver); if (ret) goto err_destroy_cleanup_wq; return 0; err_destroy_cleanup_wq: destroy_workqueue(panthor_cleanup_wq); err_mmu_pt_cache_fini: panthor_mmu_pt_cache_fini(); return ret; } module_init(panthor_init); static void __exit panthor_exit(void) { platform_driver_unregister(&panthor_driver); destroy_workqueue(panthor_cleanup_wq); panthor_mmu_pt_cache_fini(); } module_exit(panthor_exit); MODULE_AUTHOR("Panthor Project Developers"); MODULE_DESCRIPTION("Panthor DRM Driver"); MODULE_LICENSE("Dual MIT/GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1