Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Boris Brezillon | 5445 | 99.78% | 3 | 60.00% |
Adrian Larumbe | 11 | 0.20% | 1 | 20.00% |
Dan Carpenter | 1 | 0.02% | 1 | 20.00% |
Total | 5457 | 5 |
// SPDX-License-Identifier: GPL-2.0 or MIT /* Copyright 2023 Collabora ltd. */ #ifdef CONFIG_ARM_ARCH_TIMER #include <asm/arch_timer.h> #endif #include <linux/clk.h> #include <linux/dma-mapping.h> #include <linux/firmware.h> #include <linux/iopoll.h> #include <linux/iosys-map.h> #include <linux/mutex.h> #include <linux/platform_device.h> #include <drm/drm_drv.h> #include <drm/drm_managed.h> #include "panthor_device.h" #include "panthor_fw.h" #include "panthor_gem.h" #include "panthor_gpu.h" #include "panthor_mmu.h" #include "panthor_regs.h" #include "panthor_sched.h" #define CSF_FW_NAME "mali_csffw.bin" #define PING_INTERVAL_MS 12000 #define PROGRESS_TIMEOUT_CYCLES (5ull * 500 * 1024 * 1024) #define PROGRESS_TIMEOUT_SCALE_SHIFT 10 #define IDLE_HYSTERESIS_US 800 #define PWROFF_HYSTERESIS_US 10000 /** * struct panthor_fw_binary_hdr - Firmware binary header. */ struct panthor_fw_binary_hdr { /** @magic: Magic value to check binary validity. */ u32 magic; #define CSF_FW_BINARY_HEADER_MAGIC 0xc3f13a6e /** @minor: Minor FW version. */ u8 minor; /** @major: Major FW version. */ u8 major; #define CSF_FW_BINARY_HEADER_MAJOR_MAX 0 /** @padding1: MBZ. */ u16 padding1; /** @version_hash: FW version hash. */ u32 version_hash; /** @padding2: MBZ. */ u32 padding2; /** @size: FW binary size. */ u32 size; }; /** * enum panthor_fw_binary_entry_type - Firmware binary entry type */ enum panthor_fw_binary_entry_type { /** @CSF_FW_BINARY_ENTRY_TYPE_IFACE: Host <-> FW interface. */ CSF_FW_BINARY_ENTRY_TYPE_IFACE = 0, /** @CSF_FW_BINARY_ENTRY_TYPE_CONFIG: FW config. */ CSF_FW_BINARY_ENTRY_TYPE_CONFIG = 1, /** @CSF_FW_BINARY_ENTRY_TYPE_FUTF_TEST: Unit-tests. */ CSF_FW_BINARY_ENTRY_TYPE_FUTF_TEST = 2, /** @CSF_FW_BINARY_ENTRY_TYPE_TRACE_BUFFER: Trace buffer interface. */ CSF_FW_BINARY_ENTRY_TYPE_TRACE_BUFFER = 3, /** @CSF_FW_BINARY_ENTRY_TYPE_TIMELINE_METADATA: Timeline metadata interface. */ CSF_FW_BINARY_ENTRY_TYPE_TIMELINE_METADATA = 4, }; #define CSF_FW_BINARY_ENTRY_TYPE(ehdr) ((ehdr) & 0xff) #define CSF_FW_BINARY_ENTRY_SIZE(ehdr) (((ehdr) >> 8) & 0xff) #define CSF_FW_BINARY_ENTRY_UPDATE BIT(30) #define CSF_FW_BINARY_ENTRY_OPTIONAL BIT(31) #define CSF_FW_BINARY_IFACE_ENTRY_RD_RD BIT(0) #define CSF_FW_BINARY_IFACE_ENTRY_RD_WR BIT(1) #define CSF_FW_BINARY_IFACE_ENTRY_RD_EX BIT(2) #define CSF_FW_BINARY_IFACE_ENTRY_RD_CACHE_MODE_NONE (0 << 3) #define CSF_FW_BINARY_IFACE_ENTRY_RD_CACHE_MODE_CACHED (1 << 3) #define CSF_FW_BINARY_IFACE_ENTRY_RD_CACHE_MODE_UNCACHED_COHERENT (2 << 3) #define CSF_FW_BINARY_IFACE_ENTRY_RD_CACHE_MODE_CACHED_COHERENT (3 << 3) #define CSF_FW_BINARY_IFACE_ENTRY_RD_CACHE_MODE_MASK GENMASK(4, 3) #define CSF_FW_BINARY_IFACE_ENTRY_RD_PROT BIT(5) #define CSF_FW_BINARY_IFACE_ENTRY_RD_SHARED BIT(30) #define CSF_FW_BINARY_IFACE_ENTRY_RD_ZERO BIT(31) #define CSF_FW_BINARY_IFACE_ENTRY_RD_SUPPORTED_FLAGS \ (CSF_FW_BINARY_IFACE_ENTRY_RD_RD | \ CSF_FW_BINARY_IFACE_ENTRY_RD_WR | \ CSF_FW_BINARY_IFACE_ENTRY_RD_EX | \ CSF_FW_BINARY_IFACE_ENTRY_RD_CACHE_MODE_MASK | \ CSF_FW_BINARY_IFACE_ENTRY_RD_PROT | \ CSF_FW_BINARY_IFACE_ENTRY_RD_SHARED | \ CSF_FW_BINARY_IFACE_ENTRY_RD_ZERO) /** * struct panthor_fw_binary_section_entry_hdr - Describes a section of FW binary */ struct panthor_fw_binary_section_entry_hdr { /** @flags: Section flags. */ u32 flags; /** @va: MCU virtual range to map this binary section to. */ struct { /** @start: Start address. */ u32 start; /** @end: End address. */ u32 end; } va; /** @data: Data to initialize the FW section with. */ struct { /** @start: Start offset in the FW binary. */ u32 start; /** @end: End offset in the FW binary. */ u32 end; } data; }; /** * struct panthor_fw_binary_iter - Firmware binary iterator * * Used to parse a firmware binary. */ struct panthor_fw_binary_iter { /** @data: FW binary data. */ const void *data; /** @size: FW binary size. */ size_t size; /** @offset: Iterator offset. */ size_t offset; }; /** * struct panthor_fw_section - FW section */ struct panthor_fw_section { /** @node: Used to keep track of FW sections. */ struct list_head node; /** @flags: Section flags, as encoded in the FW binary. */ u32 flags; /** @mem: Section memory. */ struct panthor_kernel_bo *mem; /** * @name: Name of the section, as specified in the binary. * * Can be NULL. */ const char *name; /** * @data: Initial data copied to the FW memory. * * We keep data around so we can reload sections after a reset. */ struct { /** @buf: Buffed used to store init data. */ const void *buf; /** @size: Size of @buf in bytes. */ size_t size; } data; }; #define CSF_MCU_SHARED_REGION_START 0x04000000ULL #define CSF_MCU_SHARED_REGION_SIZE 0x04000000ULL #define MIN_CS_PER_CSG 8 #define MIN_CSGS 3 #define MAX_CSG_PRIO 0xf #define CSF_IFACE_VERSION(major, minor, patch) \ (((major) << 24) | ((minor) << 16) | (patch)) #define CSF_IFACE_VERSION_MAJOR(v) ((v) >> 24) #define CSF_IFACE_VERSION_MINOR(v) (((v) >> 16) & 0xff) #define CSF_IFACE_VERSION_PATCH(v) ((v) & 0xffff) #define CSF_GROUP_CONTROL_OFFSET 0x1000 #define CSF_STREAM_CONTROL_OFFSET 0x40 #define CSF_UNPRESERVED_REG_COUNT 4 /** * struct panthor_fw_iface - FW interfaces */ struct panthor_fw_iface { /** @global: Global interface. */ struct panthor_fw_global_iface global; /** @groups: Group slot interfaces. */ struct panthor_fw_csg_iface groups[MAX_CSGS]; /** @streams: Command stream slot interfaces. */ struct panthor_fw_cs_iface streams[MAX_CSGS][MAX_CS_PER_CSG]; }; /** * struct panthor_fw - Firmware management */ struct panthor_fw { /** @vm: MCU VM. */ struct panthor_vm *vm; /** @sections: List of FW sections. */ struct list_head sections; /** @shared_section: The section containing the FW interfaces. */ struct panthor_fw_section *shared_section; /** @iface: FW interfaces. */ struct panthor_fw_iface iface; /** @watchdog: Collection of fields relating to the FW watchdog. */ struct { /** @ping_work: Delayed work used to ping the FW. */ struct delayed_work ping_work; } watchdog; /** * @req_waitqueue: FW request waitqueue. * * Everytime a request is sent to a command stream group or the global * interface, the caller will first busy wait for the request to be * acknowledged, and then fallback to a sleeping wait. * * This wait queue is here to support the sleeping wait flavor. */ wait_queue_head_t req_waitqueue; /** @booted: True is the FW is booted */ bool booted; /** * @fast_reset: True if the post_reset logic can proceed with a fast reset. * * A fast reset is just a reset where the driver doesn't reload the FW sections. * * Any time the firmware is properly suspended, a fast reset can take place. * On the other hand, if the halt operation failed, the driver will reload * all sections to make sure we start from a fresh state. */ bool fast_reset; /** @irq: Job irq data. */ struct panthor_irq irq; }; struct panthor_vm *panthor_fw_vm(struct panthor_device *ptdev) { return ptdev->fw->vm; } /** * panthor_fw_get_glb_iface() - Get the global interface * @ptdev: Device. * * Return: The global interface. */ struct panthor_fw_global_iface * panthor_fw_get_glb_iface(struct panthor_device *ptdev) { return &ptdev->fw->iface.global; } /** * panthor_fw_get_csg_iface() - Get a command stream group slot interface * @ptdev: Device. * @csg_slot: Index of the command stream group slot. * * Return: The command stream group slot interface. */ struct panthor_fw_csg_iface * panthor_fw_get_csg_iface(struct panthor_device *ptdev, u32 csg_slot) { if (drm_WARN_ON(&ptdev->base, csg_slot >= MAX_CSGS)) return NULL; return &ptdev->fw->iface.groups[csg_slot]; } /** * panthor_fw_get_cs_iface() - Get a command stream slot interface * @ptdev: Device. * @csg_slot: Index of the command stream group slot. * @cs_slot: Index of the command stream slot. * * Return: The command stream slot interface. */ struct panthor_fw_cs_iface * panthor_fw_get_cs_iface(struct panthor_device *ptdev, u32 csg_slot, u32 cs_slot) { if (drm_WARN_ON(&ptdev->base, csg_slot >= MAX_CSGS || cs_slot >= MAX_CS_PER_CSG)) return NULL; return &ptdev->fw->iface.streams[csg_slot][cs_slot]; } /** * panthor_fw_conv_timeout() - Convert a timeout into a cycle-count * @ptdev: Device. * @timeout_us: Timeout expressed in micro-seconds. * * The FW has two timer sources: the GPU counter or arch-timer. We need * to express timeouts in term of number of cycles and specify which * timer source should be used. * * Return: A value suitable for timeout fields in the global interface. */ static u32 panthor_fw_conv_timeout(struct panthor_device *ptdev, u32 timeout_us) { bool use_cycle_counter = false; u32 timer_rate = 0; u64 mod_cycles; #ifdef CONFIG_ARM_ARCH_TIMER timer_rate = arch_timer_get_cntfrq(); #endif if (!timer_rate) { use_cycle_counter = true; timer_rate = clk_get_rate(ptdev->clks.core); } if (drm_WARN_ON(&ptdev->base, !timer_rate)) { /* We couldn't get a valid clock rate, let's just pick the * maximum value so the FW still handles the core * power on/off requests. */ return GLB_TIMER_VAL(~0) | GLB_TIMER_SOURCE_GPU_COUNTER; } mod_cycles = DIV_ROUND_UP_ULL((u64)timeout_us * timer_rate, 1000000ull << 10); if (drm_WARN_ON(&ptdev->base, mod_cycles > GLB_TIMER_VAL(~0))) mod_cycles = GLB_TIMER_VAL(~0); return GLB_TIMER_VAL(mod_cycles) | (use_cycle_counter ? GLB_TIMER_SOURCE_GPU_COUNTER : 0); } static int panthor_fw_binary_iter_read(struct panthor_device *ptdev, struct panthor_fw_binary_iter *iter, void *out, size_t size) { size_t new_offset = iter->offset + size; if (new_offset > iter->size || new_offset < iter->offset) { drm_err(&ptdev->base, "Firmware too small\n"); return -EINVAL; } memcpy(out, iter->data + iter->offset, size); iter->offset = new_offset; return 0; } static int panthor_fw_binary_sub_iter_init(struct panthor_device *ptdev, struct panthor_fw_binary_iter *iter, struct panthor_fw_binary_iter *sub_iter, size_t size) { size_t new_offset = iter->offset + size; if (new_offset > iter->size || new_offset < iter->offset) { drm_err(&ptdev->base, "Firmware entry too long\n"); return -EINVAL; } sub_iter->offset = 0; sub_iter->data = iter->data + iter->offset; sub_iter->size = size; iter->offset = new_offset; return 0; } static void panthor_fw_init_section_mem(struct panthor_device *ptdev, struct panthor_fw_section *section) { bool was_mapped = !!section->mem->kmap; int ret; if (!section->data.size && !(section->flags & CSF_FW_BINARY_IFACE_ENTRY_RD_ZERO)) return; ret = panthor_kernel_bo_vmap(section->mem); if (drm_WARN_ON(&ptdev->base, ret)) return; memcpy(section->mem->kmap, section->data.buf, section->data.size); if (section->flags & CSF_FW_BINARY_IFACE_ENTRY_RD_ZERO) { memset(section->mem->kmap + section->data.size, 0, panthor_kernel_bo_size(section->mem) - section->data.size); } if (!was_mapped) panthor_kernel_bo_vunmap(section->mem); } /** * panthor_fw_alloc_queue_iface_mem() - Allocate a ring-buffer interfaces. * @ptdev: Device. * @input: Pointer holding the input interface on success. * Should be ignored on failure. * @output: Pointer holding the output interface on success. * Should be ignored on failure. * @input_fw_va: Pointer holding the input interface FW VA on success. * Should be ignored on failure. * @output_fw_va: Pointer holding the output interface FW VA on success. * Should be ignored on failure. * * Allocates panthor_fw_ringbuf_{input,out}_iface interfaces. The input * interface is at offset 0, and the output interface at offset 4096. * * Return: A valid pointer in case of success, an ERR_PTR() otherwise. */ struct panthor_kernel_bo * panthor_fw_alloc_queue_iface_mem(struct panthor_device *ptdev, struct panthor_fw_ringbuf_input_iface **input, const struct panthor_fw_ringbuf_output_iface **output, u32 *input_fw_va, u32 *output_fw_va) { struct panthor_kernel_bo *mem; int ret; mem = panthor_kernel_bo_create(ptdev, ptdev->fw->vm, SZ_8K, DRM_PANTHOR_BO_NO_MMAP, DRM_PANTHOR_VM_BIND_OP_MAP_NOEXEC | DRM_PANTHOR_VM_BIND_OP_MAP_UNCACHED, PANTHOR_VM_KERNEL_AUTO_VA); if (IS_ERR(mem)) return mem; ret = panthor_kernel_bo_vmap(mem); if (ret) { panthor_kernel_bo_destroy(mem); return ERR_PTR(ret); } memset(mem->kmap, 0, panthor_kernel_bo_size(mem)); *input = mem->kmap; *output = mem->kmap + SZ_4K; *input_fw_va = panthor_kernel_bo_gpuva(mem); *output_fw_va = *input_fw_va + SZ_4K; return mem; } /** * panthor_fw_alloc_suspend_buf_mem() - Allocate a suspend buffer for a command stream group. * @ptdev: Device. * @size: Size of the suspend buffer. * * Return: A valid pointer in case of success, an ERR_PTR() otherwise. */ struct panthor_kernel_bo * panthor_fw_alloc_suspend_buf_mem(struct panthor_device *ptdev, size_t size) { return panthor_kernel_bo_create(ptdev, panthor_fw_vm(ptdev), size, DRM_PANTHOR_BO_NO_MMAP, DRM_PANTHOR_VM_BIND_OP_MAP_NOEXEC, PANTHOR_VM_KERNEL_AUTO_VA); } static int panthor_fw_load_section_entry(struct panthor_device *ptdev, const struct firmware *fw, struct panthor_fw_binary_iter *iter, u32 ehdr) { struct panthor_fw_binary_section_entry_hdr hdr; struct panthor_fw_section *section; u32 section_size; u32 name_len; int ret; ret = panthor_fw_binary_iter_read(ptdev, iter, &hdr, sizeof(hdr)); if (ret) return ret; if (hdr.data.end < hdr.data.start) { drm_err(&ptdev->base, "Firmware corrupted, data.end < data.start (0x%x < 0x%x)\n", hdr.data.end, hdr.data.start); return -EINVAL; } if (hdr.va.end < hdr.va.start) { drm_err(&ptdev->base, "Firmware corrupted, hdr.va.end < hdr.va.start (0x%x < 0x%x)\n", hdr.va.end, hdr.va.start); return -EINVAL; } if (hdr.data.end > fw->size) { drm_err(&ptdev->base, "Firmware corrupted, file truncated? data_end=0x%x > fw size=0x%zx\n", hdr.data.end, fw->size); return -EINVAL; } if ((hdr.va.start & ~PAGE_MASK) != 0 || (hdr.va.end & ~PAGE_MASK) != 0) { drm_err(&ptdev->base, "Firmware corrupted, virtual addresses not page aligned: 0x%x-0x%x\n", hdr.va.start, hdr.va.end); return -EINVAL; } if (hdr.flags & ~CSF_FW_BINARY_IFACE_ENTRY_RD_SUPPORTED_FLAGS) { drm_err(&ptdev->base, "Firmware contains interface with unsupported flags (0x%x)\n", hdr.flags); return -EINVAL; } if (hdr.flags & CSF_FW_BINARY_IFACE_ENTRY_RD_PROT) { drm_warn(&ptdev->base, "Firmware protected mode entry not be supported, ignoring"); return 0; } if (hdr.va.start == CSF_MCU_SHARED_REGION_START && !(hdr.flags & CSF_FW_BINARY_IFACE_ENTRY_RD_SHARED)) { drm_err(&ptdev->base, "Interface at 0x%llx must be shared", CSF_MCU_SHARED_REGION_START); return -EINVAL; } name_len = iter->size - iter->offset; section = drmm_kzalloc(&ptdev->base, sizeof(*section), GFP_KERNEL); if (!section) return -ENOMEM; list_add_tail(§ion->node, &ptdev->fw->sections); section->flags = hdr.flags; section->data.size = hdr.data.end - hdr.data.start; if (section->data.size > 0) { void *data = drmm_kmalloc(&ptdev->base, section->data.size, GFP_KERNEL); if (!data) return -ENOMEM; memcpy(data, fw->data + hdr.data.start, section->data.size); section->data.buf = data; } if (name_len > 0) { char *name = drmm_kmalloc(&ptdev->base, name_len + 1, GFP_KERNEL); if (!name) return -ENOMEM; memcpy(name, iter->data + iter->offset, name_len); name[name_len] = '\0'; section->name = name; } section_size = hdr.va.end - hdr.va.start; if (section_size) { u32 cache_mode = hdr.flags & CSF_FW_BINARY_IFACE_ENTRY_RD_CACHE_MODE_MASK; struct panthor_gem_object *bo; u32 vm_map_flags = 0; struct sg_table *sgt; u64 va = hdr.va.start; if (!(hdr.flags & CSF_FW_BINARY_IFACE_ENTRY_RD_WR)) vm_map_flags |= DRM_PANTHOR_VM_BIND_OP_MAP_READONLY; if (!(hdr.flags & CSF_FW_BINARY_IFACE_ENTRY_RD_EX)) vm_map_flags |= DRM_PANTHOR_VM_BIND_OP_MAP_NOEXEC; /* TODO: CSF_FW_BINARY_IFACE_ENTRY_RD_CACHE_MODE_*_COHERENT are mapped to * non-cacheable for now. We might want to introduce a new * IOMMU_xxx flag (or abuse IOMMU_MMIO, which maps to device * memory and is currently not used by our driver) for * AS_MEMATTR_AARCH64_SHARED memory, so we can take benefit * of IO-coherent systems. */ if (cache_mode != CSF_FW_BINARY_IFACE_ENTRY_RD_CACHE_MODE_CACHED) vm_map_flags |= DRM_PANTHOR_VM_BIND_OP_MAP_UNCACHED; section->mem = panthor_kernel_bo_create(ptdev, panthor_fw_vm(ptdev), section_size, DRM_PANTHOR_BO_NO_MMAP, vm_map_flags, va); if (IS_ERR(section->mem)) return PTR_ERR(section->mem); if (drm_WARN_ON(&ptdev->base, section->mem->va_node.start != hdr.va.start)) return -EINVAL; if (section->flags & CSF_FW_BINARY_IFACE_ENTRY_RD_SHARED) { ret = panthor_kernel_bo_vmap(section->mem); if (ret) return ret; } panthor_fw_init_section_mem(ptdev, section); bo = to_panthor_bo(section->mem->obj); sgt = drm_gem_shmem_get_pages_sgt(&bo->base); if (IS_ERR(sgt)) return PTR_ERR(sgt); dma_sync_sgtable_for_device(ptdev->base.dev, sgt, DMA_TO_DEVICE); } if (hdr.va.start == CSF_MCU_SHARED_REGION_START) ptdev->fw->shared_section = section; return 0; } static void panthor_reload_fw_sections(struct panthor_device *ptdev, bool full_reload) { struct panthor_fw_section *section; list_for_each_entry(section, &ptdev->fw->sections, node) { struct sg_table *sgt; if (!full_reload && !(section->flags & CSF_FW_BINARY_IFACE_ENTRY_RD_WR)) continue; panthor_fw_init_section_mem(ptdev, section); sgt = drm_gem_shmem_get_pages_sgt(&to_panthor_bo(section->mem->obj)->base); if (!drm_WARN_ON(&ptdev->base, IS_ERR_OR_NULL(sgt))) dma_sync_sgtable_for_device(ptdev->base.dev, sgt, DMA_TO_DEVICE); } } static int panthor_fw_load_entry(struct panthor_device *ptdev, const struct firmware *fw, struct panthor_fw_binary_iter *iter) { struct panthor_fw_binary_iter eiter; u32 ehdr; int ret; ret = panthor_fw_binary_iter_read(ptdev, iter, &ehdr, sizeof(ehdr)); if (ret) return ret; if ((iter->offset % sizeof(u32)) || (CSF_FW_BINARY_ENTRY_SIZE(ehdr) % sizeof(u32))) { drm_err(&ptdev->base, "Firmware entry isn't 32 bit aligned, offset=0x%x size=0x%x\n", (u32)(iter->offset - sizeof(u32)), CSF_FW_BINARY_ENTRY_SIZE(ehdr)); return -EINVAL; } if (panthor_fw_binary_sub_iter_init(ptdev, iter, &eiter, CSF_FW_BINARY_ENTRY_SIZE(ehdr) - sizeof(ehdr))) return -EINVAL; switch (CSF_FW_BINARY_ENTRY_TYPE(ehdr)) { case CSF_FW_BINARY_ENTRY_TYPE_IFACE: return panthor_fw_load_section_entry(ptdev, fw, &eiter, ehdr); /* FIXME: handle those entry types? */ case CSF_FW_BINARY_ENTRY_TYPE_CONFIG: case CSF_FW_BINARY_ENTRY_TYPE_FUTF_TEST: case CSF_FW_BINARY_ENTRY_TYPE_TRACE_BUFFER: case CSF_FW_BINARY_ENTRY_TYPE_TIMELINE_METADATA: return 0; default: break; } if (ehdr & CSF_FW_BINARY_ENTRY_OPTIONAL) return 0; drm_err(&ptdev->base, "Unsupported non-optional entry type %u in firmware\n", CSF_FW_BINARY_ENTRY_TYPE(ehdr)); return -EINVAL; } static int panthor_fw_load(struct panthor_device *ptdev) { const struct firmware *fw = NULL; struct panthor_fw_binary_iter iter = {}; struct panthor_fw_binary_hdr hdr; char fw_path[128]; int ret; snprintf(fw_path, sizeof(fw_path), "arm/mali/arch%d.%d/%s", (u32)GPU_ARCH_MAJOR(ptdev->gpu_info.gpu_id), (u32)GPU_ARCH_MINOR(ptdev->gpu_info.gpu_id), CSF_FW_NAME); ret = request_firmware(&fw, fw_path, ptdev->base.dev); if (ret) { drm_err(&ptdev->base, "Failed to load firmware image '%s'\n", CSF_FW_NAME); return ret; } iter.data = fw->data; iter.size = fw->size; ret = panthor_fw_binary_iter_read(ptdev, &iter, &hdr, sizeof(hdr)); if (ret) goto out; if (hdr.magic != CSF_FW_BINARY_HEADER_MAGIC) { ret = -EINVAL; drm_err(&ptdev->base, "Invalid firmware magic\n"); goto out; } if (hdr.major != CSF_FW_BINARY_HEADER_MAJOR_MAX) { ret = -EINVAL; drm_err(&ptdev->base, "Unsupported firmware binary header version %d.%d (expected %d.x)\n", hdr.major, hdr.minor, CSF_FW_BINARY_HEADER_MAJOR_MAX); goto out; } if (hdr.size > iter.size) { drm_err(&ptdev->base, "Firmware image is truncated\n"); goto out; } iter.size = hdr.size; while (iter.offset < hdr.size) { ret = panthor_fw_load_entry(ptdev, fw, &iter); if (ret) goto out; } if (!ptdev->fw->shared_section) { drm_err(&ptdev->base, "Shared interface region not found\n"); ret = -EINVAL; goto out; } out: release_firmware(fw); return ret; } /** * iface_fw_to_cpu_addr() - Turn an MCU address into a CPU address * @ptdev: Device. * @mcu_va: MCU address. * * Return: NULL if the address is not part of the shared section, non-NULL otherwise. */ static void *iface_fw_to_cpu_addr(struct panthor_device *ptdev, u32 mcu_va) { u64 shared_mem_start = panthor_kernel_bo_gpuva(ptdev->fw->shared_section->mem); u64 shared_mem_end = shared_mem_start + panthor_kernel_bo_size(ptdev->fw->shared_section->mem); if (mcu_va < shared_mem_start || mcu_va >= shared_mem_end) return NULL; return ptdev->fw->shared_section->mem->kmap + (mcu_va - shared_mem_start); } static int panthor_init_cs_iface(struct panthor_device *ptdev, unsigned int csg_idx, unsigned int cs_idx) { struct panthor_fw_global_iface *glb_iface = panthor_fw_get_glb_iface(ptdev); struct panthor_fw_csg_iface *csg_iface = panthor_fw_get_csg_iface(ptdev, csg_idx); struct panthor_fw_cs_iface *cs_iface = &ptdev->fw->iface.streams[csg_idx][cs_idx]; u64 shared_section_sz = panthor_kernel_bo_size(ptdev->fw->shared_section->mem); u32 iface_offset = CSF_GROUP_CONTROL_OFFSET + (csg_idx * glb_iface->control->group_stride) + CSF_STREAM_CONTROL_OFFSET + (cs_idx * csg_iface->control->stream_stride); struct panthor_fw_cs_iface *first_cs_iface = panthor_fw_get_cs_iface(ptdev, 0, 0); if (iface_offset + sizeof(*cs_iface) >= shared_section_sz) return -EINVAL; spin_lock_init(&cs_iface->lock); cs_iface->control = ptdev->fw->shared_section->mem->kmap + iface_offset; cs_iface->input = iface_fw_to_cpu_addr(ptdev, cs_iface->control->input_va); cs_iface->output = iface_fw_to_cpu_addr(ptdev, cs_iface->control->output_va); if (!cs_iface->input || !cs_iface->output) { drm_err(&ptdev->base, "Invalid stream control interface input/output VA"); return -EINVAL; } if (cs_iface != first_cs_iface) { if (cs_iface->control->features != first_cs_iface->control->features) { drm_err(&ptdev->base, "Expecting identical CS slots"); return -EINVAL; } } else { u32 reg_count = CS_FEATURES_WORK_REGS(cs_iface->control->features); ptdev->csif_info.cs_reg_count = reg_count; ptdev->csif_info.unpreserved_cs_reg_count = CSF_UNPRESERVED_REG_COUNT; } return 0; } static bool compare_csg(const struct panthor_fw_csg_control_iface *a, const struct panthor_fw_csg_control_iface *b) { if (a->features != b->features) return false; if (a->suspend_size != b->suspend_size) return false; if (a->protm_suspend_size != b->protm_suspend_size) return false; if (a->stream_num != b->stream_num) return false; return true; } static int panthor_init_csg_iface(struct panthor_device *ptdev, unsigned int csg_idx) { struct panthor_fw_global_iface *glb_iface = panthor_fw_get_glb_iface(ptdev); struct panthor_fw_csg_iface *csg_iface = &ptdev->fw->iface.groups[csg_idx]; u64 shared_section_sz = panthor_kernel_bo_size(ptdev->fw->shared_section->mem); u32 iface_offset = CSF_GROUP_CONTROL_OFFSET + (csg_idx * glb_iface->control->group_stride); unsigned int i; if (iface_offset + sizeof(*csg_iface) >= shared_section_sz) return -EINVAL; spin_lock_init(&csg_iface->lock); csg_iface->control = ptdev->fw->shared_section->mem->kmap + iface_offset; csg_iface->input = iface_fw_to_cpu_addr(ptdev, csg_iface->control->input_va); csg_iface->output = iface_fw_to_cpu_addr(ptdev, csg_iface->control->output_va); if (csg_iface->control->stream_num < MIN_CS_PER_CSG || csg_iface->control->stream_num > MAX_CS_PER_CSG) return -EINVAL; if (!csg_iface->input || !csg_iface->output) { drm_err(&ptdev->base, "Invalid group control interface input/output VA"); return -EINVAL; } if (csg_idx > 0) { struct panthor_fw_csg_iface *first_csg_iface = panthor_fw_get_csg_iface(ptdev, 0); if (!compare_csg(first_csg_iface->control, csg_iface->control)) { drm_err(&ptdev->base, "Expecting identical CSG slots"); return -EINVAL; } } for (i = 0; i < csg_iface->control->stream_num; i++) { int ret = panthor_init_cs_iface(ptdev, csg_idx, i); if (ret) return ret; } return 0; } static u32 panthor_get_instr_features(struct panthor_device *ptdev) { struct panthor_fw_global_iface *glb_iface = panthor_fw_get_glb_iface(ptdev); if (glb_iface->control->version < CSF_IFACE_VERSION(1, 1, 0)) return 0; return glb_iface->control->instr_features; } static int panthor_fw_init_ifaces(struct panthor_device *ptdev) { struct panthor_fw_global_iface *glb_iface = &ptdev->fw->iface.global; unsigned int i; if (!ptdev->fw->shared_section->mem->kmap) return -EINVAL; spin_lock_init(&glb_iface->lock); glb_iface->control = ptdev->fw->shared_section->mem->kmap; if (!glb_iface->control->version) { drm_err(&ptdev->base, "Firmware version is 0. Firmware may have failed to boot"); return -EINVAL; } glb_iface->input = iface_fw_to_cpu_addr(ptdev, glb_iface->control->input_va); glb_iface->output = iface_fw_to_cpu_addr(ptdev, glb_iface->control->output_va); if (!glb_iface->input || !glb_iface->output) { drm_err(&ptdev->base, "Invalid global control interface input/output VA"); return -EINVAL; } if (glb_iface->control->group_num > MAX_CSGS || glb_iface->control->group_num < MIN_CSGS) { drm_err(&ptdev->base, "Invalid number of control groups"); return -EINVAL; } for (i = 0; i < glb_iface->control->group_num; i++) { int ret = panthor_init_csg_iface(ptdev, i); if (ret) return ret; } drm_info(&ptdev->base, "CSF FW v%d.%d.%d, Features %#x Instrumentation features %#x", CSF_IFACE_VERSION_MAJOR(glb_iface->control->version), CSF_IFACE_VERSION_MINOR(glb_iface->control->version), CSF_IFACE_VERSION_PATCH(glb_iface->control->version), glb_iface->control->features, panthor_get_instr_features(ptdev)); return 0; } static void panthor_fw_init_global_iface(struct panthor_device *ptdev) { struct panthor_fw_global_iface *glb_iface = panthor_fw_get_glb_iface(ptdev); /* Enable all cores. */ glb_iface->input->core_en_mask = ptdev->gpu_info.shader_present; /* Setup timers. */ glb_iface->input->poweroff_timer = panthor_fw_conv_timeout(ptdev, PWROFF_HYSTERESIS_US); glb_iface->input->progress_timer = PROGRESS_TIMEOUT_CYCLES >> PROGRESS_TIMEOUT_SCALE_SHIFT; glb_iface->input->idle_timer = panthor_fw_conv_timeout(ptdev, IDLE_HYSTERESIS_US); /* Enable interrupts we care about. */ glb_iface->input->ack_irq_mask = GLB_CFG_ALLOC_EN | GLB_PING | GLB_CFG_PROGRESS_TIMER | GLB_CFG_POWEROFF_TIMER | GLB_IDLE_EN | GLB_IDLE; panthor_fw_update_reqs(glb_iface, req, GLB_IDLE_EN, GLB_IDLE_EN); panthor_fw_toggle_reqs(glb_iface, req, ack, GLB_CFG_ALLOC_EN | GLB_CFG_POWEROFF_TIMER | GLB_CFG_PROGRESS_TIMER); gpu_write(ptdev, CSF_DOORBELL(CSF_GLB_DOORBELL_ID), 1); /* Kick the watchdog. */ mod_delayed_work(ptdev->reset.wq, &ptdev->fw->watchdog.ping_work, msecs_to_jiffies(PING_INTERVAL_MS)); } static void panthor_job_irq_handler(struct panthor_device *ptdev, u32 status) { if (!ptdev->fw->booted && (status & JOB_INT_GLOBAL_IF)) ptdev->fw->booted = true; wake_up_all(&ptdev->fw->req_waitqueue); /* If the FW is not booted, don't process IRQs, just flag the FW as booted. */ if (!ptdev->fw->booted) return; panthor_sched_report_fw_events(ptdev, status); } PANTHOR_IRQ_HANDLER(job, JOB, panthor_job_irq_handler); static int panthor_fw_start(struct panthor_device *ptdev) { bool timedout = false; ptdev->fw->booted = false; panthor_job_irq_resume(&ptdev->fw->irq, ~0); gpu_write(ptdev, MCU_CONTROL, MCU_CONTROL_AUTO); if (!wait_event_timeout(ptdev->fw->req_waitqueue, ptdev->fw->booted, msecs_to_jiffies(1000))) { if (!ptdev->fw->booted && !(gpu_read(ptdev, JOB_INT_STAT) & JOB_INT_GLOBAL_IF)) timedout = true; } if (timedout) { static const char * const status_str[] = { [MCU_STATUS_DISABLED] = "disabled", [MCU_STATUS_ENABLED] = "enabled", [MCU_STATUS_HALT] = "halt", [MCU_STATUS_FATAL] = "fatal", }; u32 status = gpu_read(ptdev, MCU_STATUS); drm_err(&ptdev->base, "Failed to boot MCU (status=%s)", status < ARRAY_SIZE(status_str) ? status_str[status] : "unknown"); return -ETIMEDOUT; } return 0; } static void panthor_fw_stop(struct panthor_device *ptdev) { u32 status; gpu_write(ptdev, MCU_CONTROL, MCU_CONTROL_DISABLE); if (readl_poll_timeout(ptdev->iomem + MCU_STATUS, status, status == MCU_STATUS_DISABLED, 10, 100000)) drm_err(&ptdev->base, "Failed to stop MCU"); } /** * panthor_fw_pre_reset() - Call before a reset. * @ptdev: Device. * @on_hang: true if the reset was triggered on a GPU hang. * * If the reset is not triggered on a hang, we try to gracefully halt the * MCU, so we can do a fast-reset when panthor_fw_post_reset() is called. */ void panthor_fw_pre_reset(struct panthor_device *ptdev, bool on_hang) { /* Make sure we won't be woken up by a ping. */ cancel_delayed_work_sync(&ptdev->fw->watchdog.ping_work); ptdev->fw->fast_reset = false; if (!on_hang) { struct panthor_fw_global_iface *glb_iface = panthor_fw_get_glb_iface(ptdev); u32 status; panthor_fw_update_reqs(glb_iface, req, GLB_HALT, GLB_HALT); gpu_write(ptdev, CSF_DOORBELL(CSF_GLB_DOORBELL_ID), 1); if (!readl_poll_timeout(ptdev->iomem + MCU_STATUS, status, status == MCU_STATUS_HALT, 10, 100000) && glb_iface->output->halt_status == PANTHOR_FW_HALT_OK) { ptdev->fw->fast_reset = true; } else { drm_warn(&ptdev->base, "Failed to cleanly suspend MCU"); } /* The FW detects 0 -> 1 transitions. Make sure we reset * the HALT bit before the FW is rebooted. */ panthor_fw_update_reqs(glb_iface, req, 0, GLB_HALT); } panthor_job_irq_suspend(&ptdev->fw->irq); } /** * panthor_fw_post_reset() - Call after a reset. * @ptdev: Device. * * Start the FW. If this is not a fast reset, all FW sections are reloaded to * make sure we can recover from a memory corruption. */ int panthor_fw_post_reset(struct panthor_device *ptdev) { int ret; /* Make the MCU VM active. */ ret = panthor_vm_active(ptdev->fw->vm); if (ret) return ret; /* If this is a fast reset, try to start the MCU without reloading * the FW sections. If it fails, go for a full reset. */ if (ptdev->fw->fast_reset) { ret = panthor_fw_start(ptdev); if (!ret) goto out; /* Forcibly reset the MCU and force a slow reset, so we get a * fresh boot on the next panthor_fw_start() call. */ panthor_fw_stop(ptdev); ptdev->fw->fast_reset = false; drm_err(&ptdev->base, "FW fast reset failed, trying a slow reset"); ret = panthor_vm_flush_all(ptdev->fw->vm); if (ret) { drm_err(&ptdev->base, "FW slow reset failed (couldn't flush FW's AS l2cache)"); return ret; } } /* Reload all sections, including RO ones. We're not supposed * to end up here anyway, let's just assume the overhead of * reloading everything is acceptable. */ panthor_reload_fw_sections(ptdev, true); ret = panthor_fw_start(ptdev); if (ret) { drm_err(&ptdev->base, "FW slow reset failed (couldn't start the FW )"); return ret; } out: /* We must re-initialize the global interface even on fast-reset. */ panthor_fw_init_global_iface(ptdev); return 0; } /** * panthor_fw_unplug() - Called when the device is unplugged. * @ptdev: Device. * * This function must make sure all pending operations are flushed before * will release device resources, thus preventing any interaction with * the HW. * * If there is still FW-related work running after this function returns, * they must use drm_dev_{enter,exit}() and skip any HW access when * drm_dev_enter() returns false. */ void panthor_fw_unplug(struct panthor_device *ptdev) { struct panthor_fw_section *section; cancel_delayed_work_sync(&ptdev->fw->watchdog.ping_work); /* Make sure the IRQ handler can be called after that point. */ if (ptdev->fw->irq.irq) panthor_job_irq_suspend(&ptdev->fw->irq); panthor_fw_stop(ptdev); list_for_each_entry(section, &ptdev->fw->sections, node) panthor_kernel_bo_destroy(section->mem); /* We intentionally don't call panthor_vm_idle() and let * panthor_mmu_unplug() release the AS we acquired with * panthor_vm_active() so we don't have to track the VM active/idle * state to keep the active_refcnt balanced. */ panthor_vm_put(ptdev->fw->vm); ptdev->fw->vm = NULL; panthor_gpu_power_off(ptdev, L2, ptdev->gpu_info.l2_present, 20000); } /** * panthor_fw_wait_acks() - Wait for requests to be acknowledged by the FW. * @req_ptr: Pointer to the req register. * @ack_ptr: Pointer to the ack register. * @wq: Wait queue to use for the sleeping wait. * @req_mask: Mask of requests to wait for. * @acked: Pointer to field that's updated with the acked requests. * If the function returns 0, *acked == req_mask. * @timeout_ms: Timeout expressed in milliseconds. * * Return: 0 on success, -ETIMEDOUT otherwise. */ static int panthor_fw_wait_acks(const u32 *req_ptr, const u32 *ack_ptr, wait_queue_head_t *wq, u32 req_mask, u32 *acked, u32 timeout_ms) { u32 ack, req = READ_ONCE(*req_ptr) & req_mask; int ret; /* Busy wait for a few µsecs before falling back to a sleeping wait. */ *acked = req_mask; ret = read_poll_timeout_atomic(READ_ONCE, ack, (ack & req_mask) == req, 0, 10, 0, *ack_ptr); if (!ret) return 0; if (wait_event_timeout(*wq, (READ_ONCE(*ack_ptr) & req_mask) == req, msecs_to_jiffies(timeout_ms))) return 0; /* Check one last time, in case we were not woken up for some reason. */ ack = READ_ONCE(*ack_ptr); if ((ack & req_mask) == req) return 0; *acked = ~(req ^ ack) & req_mask; return -ETIMEDOUT; } /** * panthor_fw_glb_wait_acks() - Wait for global requests to be acknowledged. * @ptdev: Device. * @req_mask: Mask of requests to wait for. * @acked: Pointer to field that's updated with the acked requests. * If the function returns 0, *acked == req_mask. * @timeout_ms: Timeout expressed in milliseconds. * * Return: 0 on success, -ETIMEDOUT otherwise. */ int panthor_fw_glb_wait_acks(struct panthor_device *ptdev, u32 req_mask, u32 *acked, u32 timeout_ms) { struct panthor_fw_global_iface *glb_iface = panthor_fw_get_glb_iface(ptdev); /* GLB_HALT doesn't get acked through the FW interface. */ if (drm_WARN_ON(&ptdev->base, req_mask & (~GLB_REQ_MASK | GLB_HALT))) return -EINVAL; return panthor_fw_wait_acks(&glb_iface->input->req, &glb_iface->output->ack, &ptdev->fw->req_waitqueue, req_mask, acked, timeout_ms); } /** * panthor_fw_csg_wait_acks() - Wait for command stream group requests to be acknowledged. * @ptdev: Device. * @csg_slot: CSG slot ID. * @req_mask: Mask of requests to wait for. * @acked: Pointer to field that's updated with the acked requests. * If the function returns 0, *acked == req_mask. * @timeout_ms: Timeout expressed in milliseconds. * * Return: 0 on success, -ETIMEDOUT otherwise. */ int panthor_fw_csg_wait_acks(struct panthor_device *ptdev, u32 csg_slot, u32 req_mask, u32 *acked, u32 timeout_ms) { struct panthor_fw_csg_iface *csg_iface = panthor_fw_get_csg_iface(ptdev, csg_slot); int ret; if (drm_WARN_ON(&ptdev->base, req_mask & ~CSG_REQ_MASK)) return -EINVAL; ret = panthor_fw_wait_acks(&csg_iface->input->req, &csg_iface->output->ack, &ptdev->fw->req_waitqueue, req_mask, acked, timeout_ms); /* * Check that all bits in the state field were updated, if any mismatch * then clear all bits in the state field. This allows code to do * (acked & CSG_STATE_MASK) and get the right value. */ if ((*acked & CSG_STATE_MASK) != CSG_STATE_MASK) *acked &= ~CSG_STATE_MASK; return ret; } /** * panthor_fw_ring_csg_doorbells() - Ring command stream group doorbells. * @ptdev: Device. * @csg_mask: Bitmask encoding the command stream group doorbells to ring. * * This function is toggling bits in the doorbell_req and ringing the * global doorbell. It doesn't require a user doorbell to be attached to * the group. */ void panthor_fw_ring_csg_doorbells(struct panthor_device *ptdev, u32 csg_mask) { struct panthor_fw_global_iface *glb_iface = panthor_fw_get_glb_iface(ptdev); panthor_fw_toggle_reqs(glb_iface, doorbell_req, doorbell_ack, csg_mask); gpu_write(ptdev, CSF_DOORBELL(CSF_GLB_DOORBELL_ID), 1); } static void panthor_fw_ping_work(struct work_struct *work) { struct panthor_fw *fw = container_of(work, struct panthor_fw, watchdog.ping_work.work); struct panthor_device *ptdev = fw->irq.ptdev; struct panthor_fw_global_iface *glb_iface = panthor_fw_get_glb_iface(ptdev); u32 acked; int ret; if (panthor_device_reset_is_pending(ptdev)) return; panthor_fw_toggle_reqs(glb_iface, req, ack, GLB_PING); gpu_write(ptdev, CSF_DOORBELL(CSF_GLB_DOORBELL_ID), 1); ret = panthor_fw_glb_wait_acks(ptdev, GLB_PING, &acked, 100); if (ret) { panthor_device_schedule_reset(ptdev); drm_err(&ptdev->base, "FW ping timeout, scheduling a reset"); } else { mod_delayed_work(ptdev->reset.wq, &fw->watchdog.ping_work, msecs_to_jiffies(PING_INTERVAL_MS)); } } /** * panthor_fw_init() - Initialize FW related data. * @ptdev: Device. * * Return: 0 on success, a negative error code otherwise. */ int panthor_fw_init(struct panthor_device *ptdev) { struct panthor_fw *fw; int ret, irq; fw = drmm_kzalloc(&ptdev->base, sizeof(*fw), GFP_KERNEL); if (!fw) return -ENOMEM; ptdev->fw = fw; init_waitqueue_head(&fw->req_waitqueue); INIT_LIST_HEAD(&fw->sections); INIT_DELAYED_WORK(&fw->watchdog.ping_work, panthor_fw_ping_work); irq = platform_get_irq_byname(to_platform_device(ptdev->base.dev), "job"); if (irq <= 0) return -ENODEV; ret = panthor_request_job_irq(ptdev, &fw->irq, irq, 0); if (ret) { drm_err(&ptdev->base, "failed to request job irq"); return ret; } ret = panthor_gpu_l2_power_on(ptdev); if (ret) return ret; fw->vm = panthor_vm_create(ptdev, true, 0, SZ_4G, CSF_MCU_SHARED_REGION_START, CSF_MCU_SHARED_REGION_SIZE); if (IS_ERR(fw->vm)) { ret = PTR_ERR(fw->vm); fw->vm = NULL; goto err_unplug_fw; } ret = panthor_fw_load(ptdev); if (ret) goto err_unplug_fw; ret = panthor_vm_active(fw->vm); if (ret) goto err_unplug_fw; ret = panthor_fw_start(ptdev); if (ret) goto err_unplug_fw; ret = panthor_fw_init_ifaces(ptdev); if (ret) goto err_unplug_fw; panthor_fw_init_global_iface(ptdev); return 0; err_unplug_fw: panthor_fw_unplug(ptdev); return ret; } MODULE_FIRMWARE("arm/mali/arch10.8/mali_csffw.bin");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1