Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Heiko Stübner | 2642 | 34.56% | 6 | 10.17% |
Nickey Yang | 2315 | 30.28% | 1 | 1.69% |
Chris Zhong | 1651 | 21.60% | 7 | 11.86% |
Brian Norris | 254 | 3.32% | 6 | 10.17% |
John Keeping | 226 | 2.96% | 12 | 20.34% |
Chris Morgan | 137 | 1.79% | 1 | 1.69% |
Mark Yao | 117 | 1.53% | 4 | 6.78% |
Thomas Hebb | 76 | 0.99% | 1 | 1.69% |
Jagan Teki | 52 | 0.68% | 1 | 1.69% |
Alex Bee | 48 | 0.63% | 1 | 1.69% |
Sascha Hauer | 39 | 0.51% | 2 | 3.39% |
Jeffy Chen | 20 | 0.26% | 1 | 1.69% |
Haneen Mohammed | 18 | 0.24% | 1 | 1.69% |
Sam Ravnborg | 12 | 0.16% | 1 | 1.69% |
Yakir Yang | 6 | 0.08% | 1 | 1.69% |
Philippe Cornu | 5 | 0.07% | 1 | 1.69% |
Li Yang | 5 | 0.07% | 1 | 1.69% |
Miquel Raynal | 5 | 0.07% | 1 | 1.69% |
Thomas Zimmermann | 4 | 0.05% | 1 | 1.69% |
Eric Anholt | 3 | 0.04% | 1 | 1.69% |
Lee Jones | 2 | 0.03% | 1 | 1.69% |
Uwe Kleine-König | 2 | 0.03% | 1 | 1.69% |
Yuan Can | 1 | 0.01% | 1 | 1.69% |
Andrzej Hajda | 1 | 0.01% | 1 | 1.69% |
Jiapeng Chong | 1 | 0.01% | 1 | 1.69% |
Wambui Karuga | 1 | 0.01% | 1 | 1.69% |
Mirza Krak | 1 | 0.01% | 1 | 1.69% |
Laurent Pinchart | 1 | 0.01% | 1 | 1.69% |
Total | 7645 | 59 |
// SPDX-License-Identifier: GPL-2.0+ /* * Copyright (C) Fuzhou Rockchip Electronics Co.Ltd * Author: * Chris Zhong <zyw@rock-chips.com> * Nickey Yang <nickey.yang@rock-chips.com> */ #include <linux/clk.h> #include <linux/iopoll.h> #include <linux/math64.h> #include <linux/mfd/syscon.h> #include <linux/module.h> #include <linux/of_device.h> #include <linux/of_platform.h> #include <linux/phy/phy.h> #include <linux/platform_device.h> #include <linux/pm_runtime.h> #include <linux/regmap.h> #include <video/mipi_display.h> #include <drm/bridge/dw_mipi_dsi.h> #include <drm/drm_mipi_dsi.h> #include <drm/drm_of.h> #include <drm/drm_simple_kms_helper.h> #include "rockchip_drm_drv.h" #define DSI_PHY_RSTZ 0xa0 #define PHY_DISFORCEPLL 0 #define PHY_ENFORCEPLL BIT(3) #define PHY_DISABLECLK 0 #define PHY_ENABLECLK BIT(2) #define PHY_RSTZ 0 #define PHY_UNRSTZ BIT(1) #define PHY_SHUTDOWNZ 0 #define PHY_UNSHUTDOWNZ BIT(0) #define DSI_PHY_IF_CFG 0xa4 #define N_LANES(n) ((((n) - 1) & 0x3) << 0) #define PHY_STOP_WAIT_TIME(cycle) (((cycle) & 0xff) << 8) #define DSI_PHY_STATUS 0xb0 #define LOCK BIT(0) #define STOP_STATE_CLK_LANE BIT(2) #define DSI_PHY_TST_CTRL0 0xb4 #define PHY_TESTCLK BIT(1) #define PHY_UNTESTCLK 0 #define PHY_TESTCLR BIT(0) #define PHY_UNTESTCLR 0 #define DSI_PHY_TST_CTRL1 0xb8 #define PHY_TESTEN BIT(16) #define PHY_UNTESTEN 0 #define PHY_TESTDOUT(n) (((n) & 0xff) << 8) #define PHY_TESTDIN(n) (((n) & 0xff) << 0) #define DSI_INT_ST0 0xbc #define DSI_INT_ST1 0xc0 #define DSI_INT_MSK0 0xc4 #define DSI_INT_MSK1 0xc8 #define PHY_STATUS_TIMEOUT_US 10000 #define CMD_PKT_STATUS_TIMEOUT_US 20000 #define BYPASS_VCO_RANGE BIT(7) #define VCO_RANGE_CON_SEL(val) (((val) & 0x7) << 3) #define VCO_IN_CAP_CON_DEFAULT (0x0 << 1) #define VCO_IN_CAP_CON_LOW (0x1 << 1) #define VCO_IN_CAP_CON_HIGH (0x2 << 1) #define REF_BIAS_CUR_SEL BIT(0) #define CP_CURRENT_3UA 0x1 #define CP_CURRENT_4_5UA 0x2 #define CP_CURRENT_7_5UA 0x6 #define CP_CURRENT_6UA 0x9 #define CP_CURRENT_12UA 0xb #define CP_CURRENT_SEL(val) ((val) & 0xf) #define CP_PROGRAM_EN BIT(7) #define LPF_RESISTORS_15_5KOHM 0x1 #define LPF_RESISTORS_13KOHM 0x2 #define LPF_RESISTORS_11_5KOHM 0x4 #define LPF_RESISTORS_10_5KOHM 0x8 #define LPF_RESISTORS_8KOHM 0x10 #define LPF_PROGRAM_EN BIT(6) #define LPF_RESISTORS_SEL(val) ((val) & 0x3f) #define HSFREQRANGE_SEL(val) (((val) & 0x3f) << 1) #define INPUT_DIVIDER(val) (((val) - 1) & 0x7f) #define LOW_PROGRAM_EN 0 #define HIGH_PROGRAM_EN BIT(7) #define LOOP_DIV_LOW_SEL(val) (((val) - 1) & 0x1f) #define LOOP_DIV_HIGH_SEL(val) ((((val) - 1) >> 5) & 0xf) #define PLL_LOOP_DIV_EN BIT(5) #define PLL_INPUT_DIV_EN BIT(4) #define POWER_CONTROL BIT(6) #define INTERNAL_REG_CURRENT BIT(3) #define BIAS_BLOCK_ON BIT(2) #define BANDGAP_ON BIT(0) #define TER_RESISTOR_HIGH BIT(7) #define TER_RESISTOR_LOW 0 #define LEVEL_SHIFTERS_ON BIT(6) #define TER_CAL_DONE BIT(5) #define SETRD_MAX (0x7 << 2) #define POWER_MANAGE BIT(1) #define TER_RESISTORS_ON BIT(0) #define BIASEXTR_SEL(val) ((val) & 0x7) #define BANDGAP_SEL(val) ((val) & 0x7) #define TLP_PROGRAM_EN BIT(7) #define THS_PRE_PROGRAM_EN BIT(7) #define THS_ZERO_PROGRAM_EN BIT(6) #define PLL_BIAS_CUR_SEL_CAP_VCO_CONTROL 0x10 #define PLL_CP_CONTROL_PLL_LOCK_BYPASS 0x11 #define PLL_LPF_AND_CP_CONTROL 0x12 #define PLL_INPUT_DIVIDER_RATIO 0x17 #define PLL_LOOP_DIVIDER_RATIO 0x18 #define PLL_INPUT_AND_LOOP_DIVIDER_RATIOS_CONTROL 0x19 #define BANDGAP_AND_BIAS_CONTROL 0x20 #define TERMINATION_RESISTER_CONTROL 0x21 #define AFE_BIAS_BANDGAP_ANALOG_PROGRAMMABILITY 0x22 #define HS_RX_CONTROL_OF_LANE_CLK 0x34 #define HS_RX_CONTROL_OF_LANE_0 0x44 #define HS_RX_CONTROL_OF_LANE_1 0x54 #define HS_TX_CLOCK_LANE_REQUEST_STATE_TIME_CONTROL 0x60 #define HS_TX_CLOCK_LANE_PREPARE_STATE_TIME_CONTROL 0x61 #define HS_TX_CLOCK_LANE_HS_ZERO_STATE_TIME_CONTROL 0x62 #define HS_TX_CLOCK_LANE_TRAIL_STATE_TIME_CONTROL 0x63 #define HS_TX_CLOCK_LANE_EXIT_STATE_TIME_CONTROL 0x64 #define HS_TX_CLOCK_LANE_POST_TIME_CONTROL 0x65 #define HS_TX_DATA_LANE_REQUEST_STATE_TIME_CONTROL 0x70 #define HS_TX_DATA_LANE_PREPARE_STATE_TIME_CONTROL 0x71 #define HS_TX_DATA_LANE_HS_ZERO_STATE_TIME_CONTROL 0x72 #define HS_TX_DATA_LANE_TRAIL_STATE_TIME_CONTROL 0x73 #define HS_TX_DATA_LANE_EXIT_STATE_TIME_CONTROL 0x74 #define HS_RX_DATA_LANE_THS_SETTLE_CONTROL 0x75 #define HS_RX_CONTROL_OF_LANE_2 0x84 #define HS_RX_CONTROL_OF_LANE_3 0x94 #define DW_MIPI_NEEDS_PHY_CFG_CLK BIT(0) #define DW_MIPI_NEEDS_GRF_CLK BIT(1) #define PX30_GRF_PD_VO_CON1 0x0438 #define PX30_DSI_FORCETXSTOPMODE (0xf << 7) #define PX30_DSI_FORCERXMODE BIT(6) #define PX30_DSI_TURNDISABLE BIT(5) #define PX30_DSI_LCDC_SEL BIT(0) #define RK3128_GRF_LVDS_CON0 0x0150 #define RK3128_DSI_FORCETXSTOPMODE GENMASK(13, 10) #define RK3128_DSI_FORCERXMODE BIT(9) #define RK3128_DSI_TURNDISABLE BIT(8) #define RK3288_GRF_SOC_CON6 0x025c #define RK3288_DSI0_LCDC_SEL BIT(6) #define RK3288_DSI1_LCDC_SEL BIT(9) #define RK3399_GRF_SOC_CON20 0x6250 #define RK3399_DSI0_LCDC_SEL BIT(0) #define RK3399_DSI1_LCDC_SEL BIT(4) #define RK3399_GRF_SOC_CON22 0x6258 #define RK3399_DSI0_TURNREQUEST (0xf << 12) #define RK3399_DSI0_TURNDISABLE (0xf << 8) #define RK3399_DSI0_FORCETXSTOPMODE (0xf << 4) #define RK3399_DSI0_FORCERXMODE (0xf << 0) #define RK3399_GRF_SOC_CON23 0x625c #define RK3399_DSI1_TURNDISABLE (0xf << 12) #define RK3399_DSI1_FORCETXSTOPMODE (0xf << 8) #define RK3399_DSI1_FORCERXMODE (0xf << 4) #define RK3399_DSI1_ENABLE (0xf << 0) #define RK3399_GRF_SOC_CON24 0x6260 #define RK3399_TXRX_MASTERSLAVEZ BIT(7) #define RK3399_TXRX_ENABLECLK BIT(6) #define RK3399_TXRX_BASEDIR BIT(5) #define RK3399_TXRX_SRC_SEL_ISP0 BIT(4) #define RK3399_TXRX_TURNREQUEST GENMASK(3, 0) #define RK3568_GRF_VO_CON2 0x0368 #define RK3568_DSI0_SKEWCALHS (0x1f << 11) #define RK3568_DSI0_FORCETXSTOPMODE (0xf << 4) #define RK3568_DSI0_TURNDISABLE BIT(2) #define RK3568_DSI0_FORCERXMODE BIT(0) /* * Note these registers do not appear in the datasheet, they are * however present in the BSP driver which is where these values * come from. Name GRF_VO_CON3 is assumed. */ #define RK3568_GRF_VO_CON3 0x36c #define RK3568_DSI1_SKEWCALHS (0x1f << 11) #define RK3568_DSI1_FORCETXSTOPMODE (0xf << 4) #define RK3568_DSI1_TURNDISABLE BIT(2) #define RK3568_DSI1_FORCERXMODE BIT(0) #define RV1126_GRF_DSIPHY_CON 0x10220 #define RV1126_DSI_FORCETXSTOPMODE (0xf << 4) #define RV1126_DSI_TURNDISABLE BIT(2) #define RV1126_DSI_FORCERXMODE BIT(0) #define HIWORD_UPDATE(val, mask) (val | (mask) << 16) enum { DW_DSI_USAGE_IDLE, DW_DSI_USAGE_DSI, DW_DSI_USAGE_PHY, }; enum { BANDGAP_97_07, BANDGAP_98_05, BANDGAP_99_02, BANDGAP_100_00, BANDGAP_93_17, BANDGAP_94_15, BANDGAP_95_12, BANDGAP_96_10, }; enum { BIASEXTR_87_1, BIASEXTR_91_5, BIASEXTR_95_9, BIASEXTR_100, BIASEXTR_105_94, BIASEXTR_111_88, BIASEXTR_118_8, BIASEXTR_127_7, }; struct rockchip_dw_dsi_chip_data { u32 reg; u32 lcdsel_grf_reg; u32 lcdsel_big; u32 lcdsel_lit; u32 enable_grf_reg; u32 enable; u32 lanecfg1_grf_reg; u32 lanecfg1; u32 lanecfg2_grf_reg; u32 lanecfg2; int (*dphy_rx_init)(struct phy *phy); int (*dphy_rx_power_on)(struct phy *phy); int (*dphy_rx_power_off)(struct phy *phy); unsigned int flags; unsigned int max_data_lanes; }; struct dw_mipi_dsi_rockchip { struct device *dev; struct rockchip_encoder encoder; void __iomem *base; struct regmap *grf_regmap; struct clk *pclk; struct clk *pllref_clk; struct clk *grf_clk; struct clk *phy_cfg_clk; /* dual-channel */ bool is_slave; struct dw_mipi_dsi_rockchip *slave; /* optional external dphy */ struct phy *phy; union phy_configure_opts phy_opts; /* being a phy for other mipi hosts */ unsigned int usage_mode; struct mutex usage_mutex; struct phy *dphy; struct phy_configure_opts_mipi_dphy dphy_config; unsigned int lane_mbps; /* per lane */ u16 input_div; u16 feedback_div; u32 format; struct dw_mipi_dsi *dmd; const struct rockchip_dw_dsi_chip_data *cdata; struct dw_mipi_dsi_plat_data pdata; bool dsi_bound; }; static struct dw_mipi_dsi_rockchip *to_dsi(struct drm_encoder *encoder) { struct rockchip_encoder *rkencoder = to_rockchip_encoder(encoder); return container_of(rkencoder, struct dw_mipi_dsi_rockchip, encoder); } struct dphy_pll_parameter_map { unsigned int max_mbps; u8 hsfreqrange; u8 icpctrl; u8 lpfctrl; }; /* The table is based on 27MHz DPHY pll reference clock. */ static const struct dphy_pll_parameter_map dppa_map[] = { { 89, 0x00, CP_CURRENT_3UA, LPF_RESISTORS_13KOHM }, { 99, 0x10, CP_CURRENT_3UA, LPF_RESISTORS_13KOHM }, { 109, 0x20, CP_CURRENT_3UA, LPF_RESISTORS_13KOHM }, { 129, 0x01, CP_CURRENT_3UA, LPF_RESISTORS_15_5KOHM }, { 139, 0x11, CP_CURRENT_3UA, LPF_RESISTORS_15_5KOHM }, { 149, 0x21, CP_CURRENT_3UA, LPF_RESISTORS_15_5KOHM }, { 169, 0x02, CP_CURRENT_6UA, LPF_RESISTORS_13KOHM }, { 179, 0x12, CP_CURRENT_6UA, LPF_RESISTORS_13KOHM }, { 199, 0x22, CP_CURRENT_6UA, LPF_RESISTORS_13KOHM }, { 219, 0x03, CP_CURRENT_4_5UA, LPF_RESISTORS_13KOHM }, { 239, 0x13, CP_CURRENT_4_5UA, LPF_RESISTORS_13KOHM }, { 249, 0x23, CP_CURRENT_4_5UA, LPF_RESISTORS_13KOHM }, { 269, 0x04, CP_CURRENT_6UA, LPF_RESISTORS_11_5KOHM }, { 299, 0x14, CP_CURRENT_6UA, LPF_RESISTORS_11_5KOHM }, { 329, 0x05, CP_CURRENT_3UA, LPF_RESISTORS_15_5KOHM }, { 359, 0x15, CP_CURRENT_3UA, LPF_RESISTORS_15_5KOHM }, { 399, 0x25, CP_CURRENT_3UA, LPF_RESISTORS_15_5KOHM }, { 449, 0x06, CP_CURRENT_7_5UA, LPF_RESISTORS_11_5KOHM }, { 499, 0x16, CP_CURRENT_7_5UA, LPF_RESISTORS_11_5KOHM }, { 549, 0x07, CP_CURRENT_7_5UA, LPF_RESISTORS_10_5KOHM }, { 599, 0x17, CP_CURRENT_7_5UA, LPF_RESISTORS_10_5KOHM }, { 649, 0x08, CP_CURRENT_7_5UA, LPF_RESISTORS_11_5KOHM }, { 699, 0x18, CP_CURRENT_7_5UA, LPF_RESISTORS_11_5KOHM }, { 749, 0x09, CP_CURRENT_7_5UA, LPF_RESISTORS_11_5KOHM }, { 799, 0x19, CP_CURRENT_7_5UA, LPF_RESISTORS_11_5KOHM }, { 849, 0x29, CP_CURRENT_7_5UA, LPF_RESISTORS_11_5KOHM }, { 899, 0x39, CP_CURRENT_7_5UA, LPF_RESISTORS_11_5KOHM }, { 949, 0x0a, CP_CURRENT_12UA, LPF_RESISTORS_8KOHM }, { 999, 0x1a, CP_CURRENT_12UA, LPF_RESISTORS_8KOHM }, {1049, 0x2a, CP_CURRENT_12UA, LPF_RESISTORS_8KOHM }, {1099, 0x3a, CP_CURRENT_12UA, LPF_RESISTORS_8KOHM }, {1149, 0x0b, CP_CURRENT_12UA, LPF_RESISTORS_10_5KOHM }, {1199, 0x1b, CP_CURRENT_12UA, LPF_RESISTORS_10_5KOHM }, {1249, 0x2b, CP_CURRENT_12UA, LPF_RESISTORS_10_5KOHM }, {1299, 0x3b, CP_CURRENT_12UA, LPF_RESISTORS_10_5KOHM }, {1349, 0x0c, CP_CURRENT_12UA, LPF_RESISTORS_10_5KOHM }, {1399, 0x1c, CP_CURRENT_12UA, LPF_RESISTORS_10_5KOHM }, {1449, 0x2c, CP_CURRENT_12UA, LPF_RESISTORS_10_5KOHM }, {1500, 0x3c, CP_CURRENT_12UA, LPF_RESISTORS_10_5KOHM } }; static int max_mbps_to_parameter(unsigned int max_mbps) { int i; for (i = 0; i < ARRAY_SIZE(dppa_map); i++) if (dppa_map[i].max_mbps >= max_mbps) return i; return -EINVAL; } static inline void dsi_write(struct dw_mipi_dsi_rockchip *dsi, u32 reg, u32 val) { writel(val, dsi->base + reg); } static void dw_mipi_dsi_phy_write(struct dw_mipi_dsi_rockchip *dsi, u8 test_code, u8 test_data) { /* * With the falling edge on TESTCLK, the TESTDIN[7:0] signal content * is latched internally as the current test code. Test data is * programmed internally by rising edge on TESTCLK. */ dsi_write(dsi, DSI_PHY_TST_CTRL0, PHY_TESTCLK | PHY_UNTESTCLR); dsi_write(dsi, DSI_PHY_TST_CTRL1, PHY_TESTEN | PHY_TESTDOUT(0) | PHY_TESTDIN(test_code)); dsi_write(dsi, DSI_PHY_TST_CTRL0, PHY_UNTESTCLK | PHY_UNTESTCLR); dsi_write(dsi, DSI_PHY_TST_CTRL1, PHY_UNTESTEN | PHY_TESTDOUT(0) | PHY_TESTDIN(test_data)); dsi_write(dsi, DSI_PHY_TST_CTRL0, PHY_TESTCLK | PHY_UNTESTCLR); } /* * ns2bc - Nanoseconds to byte clock cycles */ static inline unsigned int ns2bc(struct dw_mipi_dsi_rockchip *dsi, int ns) { return DIV_ROUND_UP(ns * dsi->lane_mbps / 8, 1000); } /* * ns2ui - Nanoseconds to UI time periods */ static inline unsigned int ns2ui(struct dw_mipi_dsi_rockchip *dsi, int ns) { return DIV_ROUND_UP(ns * dsi->lane_mbps, 1000); } static int dw_mipi_dsi_phy_init(void *priv_data) { struct dw_mipi_dsi_rockchip *dsi = priv_data; int ret, i, vco; if (dsi->phy) return 0; /* * Get vco from frequency(lane_mbps) * vco frequency table * 000 - between 80 and 200 MHz * 001 - between 200 and 300 MHz * 010 - between 300 and 500 MHz * 011 - between 500 and 700 MHz * 100 - between 700 and 900 MHz * 101 - between 900 and 1100 MHz * 110 - between 1100 and 1300 MHz * 111 - between 1300 and 1500 MHz */ vco = (dsi->lane_mbps < 200) ? 0 : (dsi->lane_mbps + 100) / 200; i = max_mbps_to_parameter(dsi->lane_mbps); if (i < 0) { DRM_DEV_ERROR(dsi->dev, "failed to get parameter for %dmbps clock\n", dsi->lane_mbps); return i; } ret = clk_prepare_enable(dsi->phy_cfg_clk); if (ret) { DRM_DEV_ERROR(dsi->dev, "Failed to enable phy_cfg_clk\n"); return ret; } dw_mipi_dsi_phy_write(dsi, PLL_BIAS_CUR_SEL_CAP_VCO_CONTROL, BYPASS_VCO_RANGE | VCO_RANGE_CON_SEL(vco) | VCO_IN_CAP_CON_LOW | REF_BIAS_CUR_SEL); dw_mipi_dsi_phy_write(dsi, PLL_CP_CONTROL_PLL_LOCK_BYPASS, CP_CURRENT_SEL(dppa_map[i].icpctrl)); dw_mipi_dsi_phy_write(dsi, PLL_LPF_AND_CP_CONTROL, CP_PROGRAM_EN | LPF_PROGRAM_EN | LPF_RESISTORS_SEL(dppa_map[i].lpfctrl)); dw_mipi_dsi_phy_write(dsi, HS_RX_CONTROL_OF_LANE_0, HSFREQRANGE_SEL(dppa_map[i].hsfreqrange)); dw_mipi_dsi_phy_write(dsi, PLL_INPUT_DIVIDER_RATIO, INPUT_DIVIDER(dsi->input_div)); dw_mipi_dsi_phy_write(dsi, PLL_LOOP_DIVIDER_RATIO, LOOP_DIV_LOW_SEL(dsi->feedback_div) | LOW_PROGRAM_EN); /* * We need set PLL_INPUT_AND_LOOP_DIVIDER_RATIOS_CONTROL immediately * to make the configured LSB effective according to IP simulation * and lab test results. * Only in this way can we get correct mipi phy pll frequency. */ dw_mipi_dsi_phy_write(dsi, PLL_INPUT_AND_LOOP_DIVIDER_RATIOS_CONTROL, PLL_LOOP_DIV_EN | PLL_INPUT_DIV_EN); dw_mipi_dsi_phy_write(dsi, PLL_LOOP_DIVIDER_RATIO, LOOP_DIV_HIGH_SEL(dsi->feedback_div) | HIGH_PROGRAM_EN); dw_mipi_dsi_phy_write(dsi, PLL_INPUT_AND_LOOP_DIVIDER_RATIOS_CONTROL, PLL_LOOP_DIV_EN | PLL_INPUT_DIV_EN); dw_mipi_dsi_phy_write(dsi, AFE_BIAS_BANDGAP_ANALOG_PROGRAMMABILITY, LOW_PROGRAM_EN | BIASEXTR_SEL(BIASEXTR_127_7)); dw_mipi_dsi_phy_write(dsi, AFE_BIAS_BANDGAP_ANALOG_PROGRAMMABILITY, HIGH_PROGRAM_EN | BANDGAP_SEL(BANDGAP_96_10)); dw_mipi_dsi_phy_write(dsi, BANDGAP_AND_BIAS_CONTROL, POWER_CONTROL | INTERNAL_REG_CURRENT | BIAS_BLOCK_ON | BANDGAP_ON); dw_mipi_dsi_phy_write(dsi, TERMINATION_RESISTER_CONTROL, TER_RESISTOR_LOW | TER_CAL_DONE | SETRD_MAX | TER_RESISTORS_ON); dw_mipi_dsi_phy_write(dsi, TERMINATION_RESISTER_CONTROL, TER_RESISTOR_HIGH | LEVEL_SHIFTERS_ON | SETRD_MAX | POWER_MANAGE | TER_RESISTORS_ON); dw_mipi_dsi_phy_write(dsi, HS_TX_CLOCK_LANE_REQUEST_STATE_TIME_CONTROL, TLP_PROGRAM_EN | ns2bc(dsi, 500)); dw_mipi_dsi_phy_write(dsi, HS_TX_CLOCK_LANE_PREPARE_STATE_TIME_CONTROL, THS_PRE_PROGRAM_EN | ns2ui(dsi, 40)); dw_mipi_dsi_phy_write(dsi, HS_TX_CLOCK_LANE_HS_ZERO_STATE_TIME_CONTROL, THS_ZERO_PROGRAM_EN | ns2bc(dsi, 300)); dw_mipi_dsi_phy_write(dsi, HS_TX_CLOCK_LANE_TRAIL_STATE_TIME_CONTROL, THS_PRE_PROGRAM_EN | ns2ui(dsi, 100)); dw_mipi_dsi_phy_write(dsi, HS_TX_CLOCK_LANE_EXIT_STATE_TIME_CONTROL, BIT(5) | ns2bc(dsi, 100)); dw_mipi_dsi_phy_write(dsi, HS_TX_CLOCK_LANE_POST_TIME_CONTROL, BIT(5) | (ns2bc(dsi, 60) + 7)); dw_mipi_dsi_phy_write(dsi, HS_TX_DATA_LANE_REQUEST_STATE_TIME_CONTROL, TLP_PROGRAM_EN | ns2bc(dsi, 500)); dw_mipi_dsi_phy_write(dsi, HS_TX_DATA_LANE_PREPARE_STATE_TIME_CONTROL, THS_PRE_PROGRAM_EN | (ns2ui(dsi, 50) + 20)); dw_mipi_dsi_phy_write(dsi, HS_TX_DATA_LANE_HS_ZERO_STATE_TIME_CONTROL, THS_ZERO_PROGRAM_EN | (ns2bc(dsi, 140) + 2)); dw_mipi_dsi_phy_write(dsi, HS_TX_DATA_LANE_TRAIL_STATE_TIME_CONTROL, THS_PRE_PROGRAM_EN | (ns2ui(dsi, 60) + 8)); dw_mipi_dsi_phy_write(dsi, HS_TX_DATA_LANE_EXIT_STATE_TIME_CONTROL, BIT(5) | ns2bc(dsi, 100)); clk_disable_unprepare(dsi->phy_cfg_clk); return ret; } static void dw_mipi_dsi_phy_power_on(void *priv_data) { struct dw_mipi_dsi_rockchip *dsi = priv_data; int ret; ret = phy_set_mode(dsi->phy, PHY_MODE_MIPI_DPHY); if (ret) { DRM_DEV_ERROR(dsi->dev, "failed to set phy mode: %d\n", ret); return; } phy_configure(dsi->phy, &dsi->phy_opts); phy_power_on(dsi->phy); } static void dw_mipi_dsi_phy_power_off(void *priv_data) { struct dw_mipi_dsi_rockchip *dsi = priv_data; phy_power_off(dsi->phy); } static int dw_mipi_dsi_get_lane_mbps(void *priv_data, const struct drm_display_mode *mode, unsigned long mode_flags, u32 lanes, u32 format, unsigned int *lane_mbps) { struct dw_mipi_dsi_rockchip *dsi = priv_data; int bpp; unsigned long mpclk, tmp; unsigned int target_mbps = 1000; unsigned int max_mbps = dppa_map[ARRAY_SIZE(dppa_map) - 1].max_mbps; unsigned long best_freq = 0; unsigned long fvco_min, fvco_max, fin, fout; unsigned int min_prediv, max_prediv; unsigned int _prediv, best_prediv; unsigned long _fbdiv, best_fbdiv; unsigned long min_delta = ULONG_MAX; dsi->format = format; bpp = mipi_dsi_pixel_format_to_bpp(dsi->format); if (bpp < 0) { DRM_DEV_ERROR(dsi->dev, "failed to get bpp for pixel format %d\n", dsi->format); return bpp; } mpclk = DIV_ROUND_UP(mode->clock, MSEC_PER_SEC); if (mpclk) { /* take 1 / 0.8, since mbps must big than bandwidth of RGB */ tmp = mpclk * (bpp / lanes) * 10 / 8; if (tmp < max_mbps) target_mbps = tmp; else DRM_DEV_ERROR(dsi->dev, "DPHY clock frequency is out of range\n"); } /* for external phy only a the mipi_dphy_config is necessary */ if (dsi->phy) { phy_mipi_dphy_get_default_config(mode->clock * 1000 * 10 / 8, bpp, lanes, &dsi->phy_opts.mipi_dphy); dsi->lane_mbps = target_mbps; *lane_mbps = dsi->lane_mbps; return 0; } fin = clk_get_rate(dsi->pllref_clk); fout = target_mbps * USEC_PER_SEC; /* constraint: 5Mhz <= Fref / N <= 40MHz */ min_prediv = DIV_ROUND_UP(fin, 40 * USEC_PER_SEC); max_prediv = fin / (5 * USEC_PER_SEC); /* constraint: 80MHz <= Fvco <= 1500Mhz */ fvco_min = 80 * USEC_PER_SEC; fvco_max = 1500 * USEC_PER_SEC; for (_prediv = min_prediv; _prediv <= max_prediv; _prediv++) { u64 tmp; u32 delta; /* Fvco = Fref * M / N */ tmp = (u64)fout * _prediv; do_div(tmp, fin); _fbdiv = tmp; /* * Due to the use of a "by 2 pre-scaler," the range of the * feedback multiplication value M is limited to even division * numbers, and m must be greater than 6, not bigger than 512. */ if (_fbdiv < 6 || _fbdiv > 512) continue; _fbdiv += _fbdiv % 2; tmp = (u64)_fbdiv * fin; do_div(tmp, _prediv); if (tmp < fvco_min || tmp > fvco_max) continue; delta = abs(fout - tmp); if (delta < min_delta) { best_prediv = _prediv; best_fbdiv = _fbdiv; min_delta = delta; best_freq = tmp; } } if (best_freq) { dsi->lane_mbps = DIV_ROUND_UP(best_freq, USEC_PER_SEC); *lane_mbps = dsi->lane_mbps; dsi->input_div = best_prediv; dsi->feedback_div = best_fbdiv; } else { DRM_DEV_ERROR(dsi->dev, "Can not find best_freq for DPHY\n"); return -EINVAL; } return 0; } struct hstt { unsigned int maxfreq; struct dw_mipi_dsi_dphy_timing timing; }; #define HSTT(_maxfreq, _c_lp2hs, _c_hs2lp, _d_lp2hs, _d_hs2lp) \ { \ .maxfreq = _maxfreq, \ .timing = { \ .clk_lp2hs = _c_lp2hs, \ .clk_hs2lp = _c_hs2lp, \ .data_lp2hs = _d_lp2hs, \ .data_hs2lp = _d_hs2lp, \ } \ } /* Table A-3 High-Speed Transition Times */ static struct hstt hstt_table[] = { HSTT( 90, 32, 20, 26, 13), HSTT( 100, 35, 23, 28, 14), HSTT( 110, 32, 22, 26, 13), HSTT( 130, 31, 20, 27, 13), HSTT( 140, 33, 22, 26, 14), HSTT( 150, 33, 21, 26, 14), HSTT( 170, 32, 20, 27, 13), HSTT( 180, 36, 23, 30, 15), HSTT( 200, 40, 22, 33, 15), HSTT( 220, 40, 22, 33, 15), HSTT( 240, 44, 24, 36, 16), HSTT( 250, 48, 24, 38, 17), HSTT( 270, 48, 24, 38, 17), HSTT( 300, 50, 27, 41, 18), HSTT( 330, 56, 28, 45, 18), HSTT( 360, 59, 28, 48, 19), HSTT( 400, 61, 30, 50, 20), HSTT( 450, 67, 31, 55, 21), HSTT( 500, 73, 31, 59, 22), HSTT( 550, 79, 36, 63, 24), HSTT( 600, 83, 37, 68, 25), HSTT( 650, 90, 38, 73, 27), HSTT( 700, 95, 40, 77, 28), HSTT( 750, 102, 40, 84, 28), HSTT( 800, 106, 42, 87, 30), HSTT( 850, 113, 44, 93, 31), HSTT( 900, 118, 47, 98, 32), HSTT( 950, 124, 47, 102, 34), HSTT(1000, 130, 49, 107, 35), HSTT(1050, 135, 51, 111, 37), HSTT(1100, 139, 51, 114, 38), HSTT(1150, 146, 54, 120, 40), HSTT(1200, 153, 57, 125, 41), HSTT(1250, 158, 58, 130, 42), HSTT(1300, 163, 58, 135, 44), HSTT(1350, 168, 60, 140, 45), HSTT(1400, 172, 64, 144, 47), HSTT(1450, 176, 65, 148, 48), HSTT(1500, 181, 66, 153, 50) }; static int dw_mipi_dsi_phy_get_timing(void *priv_data, unsigned int lane_mbps, struct dw_mipi_dsi_dphy_timing *timing) { int i; for (i = 0; i < ARRAY_SIZE(hstt_table); i++) if (lane_mbps < hstt_table[i].maxfreq) break; if (i == ARRAY_SIZE(hstt_table)) i--; *timing = hstt_table[i].timing; return 0; } static const struct dw_mipi_dsi_phy_ops dw_mipi_dsi_rockchip_phy_ops = { .init = dw_mipi_dsi_phy_init, .power_on = dw_mipi_dsi_phy_power_on, .power_off = dw_mipi_dsi_phy_power_off, .get_lane_mbps = dw_mipi_dsi_get_lane_mbps, .get_timing = dw_mipi_dsi_phy_get_timing, }; static void dw_mipi_dsi_rockchip_config(struct dw_mipi_dsi_rockchip *dsi) { if (dsi->cdata->lanecfg1_grf_reg) regmap_write(dsi->grf_regmap, dsi->cdata->lanecfg1_grf_reg, dsi->cdata->lanecfg1); if (dsi->cdata->lanecfg2_grf_reg) regmap_write(dsi->grf_regmap, dsi->cdata->lanecfg2_grf_reg, dsi->cdata->lanecfg2); if (dsi->cdata->enable_grf_reg) regmap_write(dsi->grf_regmap, dsi->cdata->enable_grf_reg, dsi->cdata->enable); } static void dw_mipi_dsi_rockchip_set_lcdsel(struct dw_mipi_dsi_rockchip *dsi, int mux) { if (dsi->cdata->lcdsel_grf_reg) regmap_write(dsi->grf_regmap, dsi->cdata->lcdsel_grf_reg, mux ? dsi->cdata->lcdsel_lit : dsi->cdata->lcdsel_big); } static int dw_mipi_dsi_encoder_atomic_check(struct drm_encoder *encoder, struct drm_crtc_state *crtc_state, struct drm_connector_state *conn_state) { struct rockchip_crtc_state *s = to_rockchip_crtc_state(crtc_state); struct dw_mipi_dsi_rockchip *dsi = to_dsi(encoder); switch (dsi->format) { case MIPI_DSI_FMT_RGB888: s->output_mode = ROCKCHIP_OUT_MODE_P888; break; case MIPI_DSI_FMT_RGB666: s->output_mode = ROCKCHIP_OUT_MODE_P666; break; case MIPI_DSI_FMT_RGB565: s->output_mode = ROCKCHIP_OUT_MODE_P565; break; default: WARN_ON(1); return -EINVAL; } s->output_type = DRM_MODE_CONNECTOR_DSI; if (dsi->slave) s->output_flags = ROCKCHIP_OUTPUT_DSI_DUAL; return 0; } static void dw_mipi_dsi_encoder_enable(struct drm_encoder *encoder) { struct dw_mipi_dsi_rockchip *dsi = to_dsi(encoder); int ret, mux; mux = drm_of_encoder_active_endpoint_id(dsi->dev->of_node, &dsi->encoder.encoder); if (mux < 0) return; /* * For the RK3399, the clk of grf must be enabled before writing grf * register. And for RK3288 or other soc, this grf_clk must be NULL, * the clk_prepare_enable return true directly. */ ret = clk_prepare_enable(dsi->grf_clk); if (ret) { DRM_DEV_ERROR(dsi->dev, "Failed to enable grf_clk: %d\n", ret); return; } dw_mipi_dsi_rockchip_set_lcdsel(dsi, mux); if (dsi->slave) dw_mipi_dsi_rockchip_set_lcdsel(dsi->slave, mux); clk_disable_unprepare(dsi->grf_clk); } static const struct drm_encoder_helper_funcs dw_mipi_dsi_encoder_helper_funcs = { .atomic_check = dw_mipi_dsi_encoder_atomic_check, .enable = dw_mipi_dsi_encoder_enable, }; static int rockchip_dsi_drm_create_encoder(struct dw_mipi_dsi_rockchip *dsi, struct drm_device *drm_dev) { struct drm_encoder *encoder = &dsi->encoder.encoder; int ret; encoder->possible_crtcs = drm_of_find_possible_crtcs(drm_dev, dsi->dev->of_node); ret = drm_simple_encoder_init(drm_dev, encoder, DRM_MODE_ENCODER_DSI); if (ret) { DRM_ERROR("Failed to initialize encoder with drm\n"); return ret; } drm_encoder_helper_add(encoder, &dw_mipi_dsi_encoder_helper_funcs); return 0; } static struct device *dw_mipi_dsi_rockchip_find_second(struct dw_mipi_dsi_rockchip *dsi) { const struct of_device_id *match; struct device_node *node = NULL, *local; match = of_match_device(dsi->dev->driver->of_match_table, dsi->dev); local = of_graph_get_remote_node(dsi->dev->of_node, 1, 0); if (!local) return NULL; while ((node = of_find_compatible_node(node, NULL, match->compatible))) { struct device_node *remote; /* found ourself */ if (node == dsi->dev->of_node) continue; remote = of_graph_get_remote_node(node, 1, 0); if (!remote) continue; /* same display device in port1-ep0 for both */ if (remote == local) { struct dw_mipi_dsi_rockchip *dsi2; struct platform_device *pdev; pdev = of_find_device_by_node(node); /* * we have found the second, so will either return it * or return with an error. In any case won't need the * nodes anymore nor continue the loop. */ of_node_put(remote); of_node_put(node); of_node_put(local); if (!pdev) return ERR_PTR(-EPROBE_DEFER); dsi2 = platform_get_drvdata(pdev); if (!dsi2) { platform_device_put(pdev); return ERR_PTR(-EPROBE_DEFER); } return &pdev->dev; } of_node_put(remote); } of_node_put(local); return NULL; } static int dw_mipi_dsi_rockchip_bind(struct device *dev, struct device *master, void *data) { struct dw_mipi_dsi_rockchip *dsi = dev_get_drvdata(dev); struct drm_device *drm_dev = data; struct device *second; bool master1, master2; int ret; second = dw_mipi_dsi_rockchip_find_second(dsi); if (IS_ERR(second)) return PTR_ERR(second); if (second) { master1 = of_property_read_bool(dsi->dev->of_node, "clock-master"); master2 = of_property_read_bool(second->of_node, "clock-master"); if (master1 && master2) { DRM_DEV_ERROR(dsi->dev, "only one clock-master allowed\n"); return -EINVAL; } if (!master1 && !master2) { DRM_DEV_ERROR(dsi->dev, "no clock-master defined\n"); return -EINVAL; } /* we are the slave in dual-DSI */ if (!master1) { dsi->is_slave = true; return 0; } dsi->slave = dev_get_drvdata(second); if (!dsi->slave) { DRM_DEV_ERROR(dev, "could not get slaves data\n"); return -ENODEV; } dsi->slave->is_slave = true; dw_mipi_dsi_set_slave(dsi->dmd, dsi->slave->dmd); put_device(second); } pm_runtime_get_sync(dsi->dev); if (dsi->slave) pm_runtime_get_sync(dsi->slave->dev); ret = clk_prepare_enable(dsi->pllref_clk); if (ret) { DRM_DEV_ERROR(dev, "Failed to enable pllref_clk: %d\n", ret); goto out_pm_runtime; } /* * With the GRF clock running, write lane and dual-mode configurations * that won't change immediately. If we waited until enable() to do * this, things like panel preparation would not be able to send * commands over DSI. */ ret = clk_prepare_enable(dsi->grf_clk); if (ret) { DRM_DEV_ERROR(dsi->dev, "Failed to enable grf_clk: %d\n", ret); goto out_pll_clk; } dw_mipi_dsi_rockchip_config(dsi); if (dsi->slave) dw_mipi_dsi_rockchip_config(dsi->slave); clk_disable_unprepare(dsi->grf_clk); ret = rockchip_dsi_drm_create_encoder(dsi, drm_dev); if (ret) { DRM_DEV_ERROR(dev, "Failed to create drm encoder\n"); goto out_pll_clk; } rockchip_drm_encoder_set_crtc_endpoint_id(&dsi->encoder, dev->of_node, 0, 0); ret = dw_mipi_dsi_bind(dsi->dmd, &dsi->encoder.encoder); if (ret) { DRM_DEV_ERROR(dev, "Failed to bind: %d\n", ret); goto out_pll_clk; } dsi->dsi_bound = true; return 0; out_pll_clk: clk_disable_unprepare(dsi->pllref_clk); out_pm_runtime: pm_runtime_put(dsi->dev); if (dsi->slave) pm_runtime_put(dsi->slave->dev); return ret; } static void dw_mipi_dsi_rockchip_unbind(struct device *dev, struct device *master, void *data) { struct dw_mipi_dsi_rockchip *dsi = dev_get_drvdata(dev); if (dsi->is_slave) return; dsi->dsi_bound = false; dw_mipi_dsi_unbind(dsi->dmd); clk_disable_unprepare(dsi->pllref_clk); pm_runtime_put(dsi->dev); if (dsi->slave) pm_runtime_put(dsi->slave->dev); } static const struct component_ops dw_mipi_dsi_rockchip_ops = { .bind = dw_mipi_dsi_rockchip_bind, .unbind = dw_mipi_dsi_rockchip_unbind, }; static int dw_mipi_dsi_rockchip_host_attach(void *priv_data, struct mipi_dsi_device *device) { struct dw_mipi_dsi_rockchip *dsi = priv_data; struct device *second; int ret; mutex_lock(&dsi->usage_mutex); if (dsi->usage_mode != DW_DSI_USAGE_IDLE) { DRM_DEV_ERROR(dsi->dev, "dsi controller already in use\n"); mutex_unlock(&dsi->usage_mutex); return -EBUSY; } dsi->usage_mode = DW_DSI_USAGE_DSI; mutex_unlock(&dsi->usage_mutex); ret = component_add(dsi->dev, &dw_mipi_dsi_rockchip_ops); if (ret) { DRM_DEV_ERROR(dsi->dev, "Failed to register component: %d\n", ret); goto out; } second = dw_mipi_dsi_rockchip_find_second(dsi); if (IS_ERR(second)) { ret = PTR_ERR(second); goto out; } if (second) { ret = component_add(second, &dw_mipi_dsi_rockchip_ops); if (ret) { DRM_DEV_ERROR(second, "Failed to register component: %d\n", ret); goto out; } } return 0; out: mutex_lock(&dsi->usage_mutex); dsi->usage_mode = DW_DSI_USAGE_IDLE; mutex_unlock(&dsi->usage_mutex); return ret; } static int dw_mipi_dsi_rockchip_host_detach(void *priv_data, struct mipi_dsi_device *device) { struct dw_mipi_dsi_rockchip *dsi = priv_data; struct device *second; second = dw_mipi_dsi_rockchip_find_second(dsi); if (second && !IS_ERR(second)) component_del(second, &dw_mipi_dsi_rockchip_ops); component_del(dsi->dev, &dw_mipi_dsi_rockchip_ops); mutex_lock(&dsi->usage_mutex); dsi->usage_mode = DW_DSI_USAGE_IDLE; mutex_unlock(&dsi->usage_mutex); return 0; } static const struct dw_mipi_dsi_host_ops dw_mipi_dsi_rockchip_host_ops = { .attach = dw_mipi_dsi_rockchip_host_attach, .detach = dw_mipi_dsi_rockchip_host_detach, }; static int dw_mipi_dsi_rockchip_dphy_bind(struct device *dev, struct device *master, void *data) { /* * Nothing to do when used as a dphy. * Just make the rest of Rockchip-DRM happy * by being here. */ return 0; } static void dw_mipi_dsi_rockchip_dphy_unbind(struct device *dev, struct device *master, void *data) { /* Nothing to do when used as a dphy. */ } static const struct component_ops dw_mipi_dsi_rockchip_dphy_ops = { .bind = dw_mipi_dsi_rockchip_dphy_bind, .unbind = dw_mipi_dsi_rockchip_dphy_unbind, }; static int dw_mipi_dsi_dphy_init(struct phy *phy) { struct dw_mipi_dsi_rockchip *dsi = phy_get_drvdata(phy); int ret; mutex_lock(&dsi->usage_mutex); if (dsi->usage_mode != DW_DSI_USAGE_IDLE) { DRM_DEV_ERROR(dsi->dev, "dsi controller already in use\n"); mutex_unlock(&dsi->usage_mutex); return -EBUSY; } dsi->usage_mode = DW_DSI_USAGE_PHY; mutex_unlock(&dsi->usage_mutex); ret = component_add(dsi->dev, &dw_mipi_dsi_rockchip_dphy_ops); if (ret < 0) goto err_graph; if (dsi->cdata->dphy_rx_init) { ret = clk_prepare_enable(dsi->pclk); if (ret < 0) goto err_init; ret = clk_prepare_enable(dsi->grf_clk); if (ret) { clk_disable_unprepare(dsi->pclk); goto err_init; } ret = dsi->cdata->dphy_rx_init(phy); clk_disable_unprepare(dsi->grf_clk); clk_disable_unprepare(dsi->pclk); if (ret < 0) goto err_init; } return 0; err_init: component_del(dsi->dev, &dw_mipi_dsi_rockchip_dphy_ops); err_graph: mutex_lock(&dsi->usage_mutex); dsi->usage_mode = DW_DSI_USAGE_IDLE; mutex_unlock(&dsi->usage_mutex); return ret; } static int dw_mipi_dsi_dphy_exit(struct phy *phy) { struct dw_mipi_dsi_rockchip *dsi = phy_get_drvdata(phy); component_del(dsi->dev, &dw_mipi_dsi_rockchip_dphy_ops); mutex_lock(&dsi->usage_mutex); dsi->usage_mode = DW_DSI_USAGE_IDLE; mutex_unlock(&dsi->usage_mutex); return 0; } static int dw_mipi_dsi_dphy_configure(struct phy *phy, union phy_configure_opts *opts) { struct phy_configure_opts_mipi_dphy *config = &opts->mipi_dphy; struct dw_mipi_dsi_rockchip *dsi = phy_get_drvdata(phy); int ret; ret = phy_mipi_dphy_config_validate(&opts->mipi_dphy); if (ret) return ret; dsi->dphy_config = *config; dsi->lane_mbps = div_u64(config->hs_clk_rate, 1000 * 1000 * 1); return 0; } static int dw_mipi_dsi_dphy_power_on(struct phy *phy) { struct dw_mipi_dsi_rockchip *dsi = phy_get_drvdata(phy); int i, ret; DRM_DEV_DEBUG(dsi->dev, "lanes %d - data_rate_mbps %u\n", dsi->dphy_config.lanes, dsi->lane_mbps); i = max_mbps_to_parameter(dsi->lane_mbps); if (i < 0) { DRM_DEV_ERROR(dsi->dev, "failed to get parameter for %dmbps clock\n", dsi->lane_mbps); return i; } ret = pm_runtime_resume_and_get(dsi->dev); if (ret < 0) { DRM_DEV_ERROR(dsi->dev, "failed to enable device: %d\n", ret); return ret; } ret = clk_prepare_enable(dsi->pclk); if (ret) { DRM_DEV_ERROR(dsi->dev, "Failed to enable pclk: %d\n", ret); goto err_pclk; } ret = clk_prepare_enable(dsi->grf_clk); if (ret) { DRM_DEV_ERROR(dsi->dev, "Failed to enable grf_clk: %d\n", ret); goto err_grf_clk; } ret = clk_prepare_enable(dsi->phy_cfg_clk); if (ret) { DRM_DEV_ERROR(dsi->dev, "Failed to enable phy_cfg_clk: %d\n", ret); goto err_phy_cfg_clk; } /* do soc-variant specific init */ if (dsi->cdata->dphy_rx_power_on) { ret = dsi->cdata->dphy_rx_power_on(phy); if (ret < 0) { DRM_DEV_ERROR(dsi->dev, "hardware-specific phy bringup failed: %d\n", ret); goto err_pwr_on; } } /* * Configure hsfreqrange according to frequency values * Set clock lane and hsfreqrange by lane0(test code 0x44) */ dw_mipi_dsi_phy_write(dsi, HS_RX_CONTROL_OF_LANE_CLK, 0); dw_mipi_dsi_phy_write(dsi, HS_RX_CONTROL_OF_LANE_0, HSFREQRANGE_SEL(dppa_map[i].hsfreqrange)); dw_mipi_dsi_phy_write(dsi, HS_RX_CONTROL_OF_LANE_1, 0); dw_mipi_dsi_phy_write(dsi, HS_RX_CONTROL_OF_LANE_2, 0); dw_mipi_dsi_phy_write(dsi, HS_RX_CONTROL_OF_LANE_3, 0); /* Normal operation */ dw_mipi_dsi_phy_write(dsi, 0x0, 0); clk_disable_unprepare(dsi->phy_cfg_clk); clk_disable_unprepare(dsi->grf_clk); return ret; err_pwr_on: clk_disable_unprepare(dsi->phy_cfg_clk); err_phy_cfg_clk: clk_disable_unprepare(dsi->grf_clk); err_grf_clk: clk_disable_unprepare(dsi->pclk); err_pclk: pm_runtime_put(dsi->dev); return ret; } static int dw_mipi_dsi_dphy_power_off(struct phy *phy) { struct dw_mipi_dsi_rockchip *dsi = phy_get_drvdata(phy); int ret; ret = clk_prepare_enable(dsi->grf_clk); if (ret) { DRM_DEV_ERROR(dsi->dev, "Failed to enable grf_clk: %d\n", ret); return ret; } if (dsi->cdata->dphy_rx_power_off) { ret = dsi->cdata->dphy_rx_power_off(phy); if (ret < 0) DRM_DEV_ERROR(dsi->dev, "hardware-specific phy shutdown failed: %d\n", ret); } clk_disable_unprepare(dsi->grf_clk); clk_disable_unprepare(dsi->pclk); pm_runtime_put(dsi->dev); return ret; } static const struct phy_ops dw_mipi_dsi_dphy_ops = { .configure = dw_mipi_dsi_dphy_configure, .power_on = dw_mipi_dsi_dphy_power_on, .power_off = dw_mipi_dsi_dphy_power_off, .init = dw_mipi_dsi_dphy_init, .exit = dw_mipi_dsi_dphy_exit, }; static int __maybe_unused dw_mipi_dsi_rockchip_resume(struct device *dev) { struct dw_mipi_dsi_rockchip *dsi = dev_get_drvdata(dev); int ret; /* * Re-configure DSI state, if we were previously initialized. We need * to do this before rockchip_drm_drv tries to re-enable() any panels. */ if (dsi->dsi_bound) { ret = clk_prepare_enable(dsi->grf_clk); if (ret) { DRM_DEV_ERROR(dsi->dev, "Failed to enable grf_clk: %d\n", ret); return ret; } dw_mipi_dsi_rockchip_config(dsi); if (dsi->slave) dw_mipi_dsi_rockchip_config(dsi->slave); clk_disable_unprepare(dsi->grf_clk); } return 0; } static const struct dev_pm_ops dw_mipi_dsi_rockchip_pm_ops = { SET_LATE_SYSTEM_SLEEP_PM_OPS(NULL, dw_mipi_dsi_rockchip_resume) }; static int dw_mipi_dsi_rockchip_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct device_node *np = dev->of_node; struct dw_mipi_dsi_rockchip *dsi; struct phy_provider *phy_provider; struct resource *res; const struct rockchip_dw_dsi_chip_data *cdata = of_device_get_match_data(dev); int ret, i; dsi = devm_kzalloc(dev, sizeof(*dsi), GFP_KERNEL); if (!dsi) return -ENOMEM; dsi->base = devm_platform_get_and_ioremap_resource(pdev, 0, &res); if (IS_ERR(dsi->base)) { DRM_DEV_ERROR(dev, "Unable to get dsi registers\n"); return PTR_ERR(dsi->base); } i = 0; while (cdata[i].reg) { if (cdata[i].reg == res->start) { dsi->cdata = &cdata[i]; break; } i++; } if (!dsi->cdata) { DRM_DEV_ERROR(dev, "no dsi-config for %s node\n", np->name); return -EINVAL; } /* try to get a possible external dphy */ dsi->phy = devm_phy_optional_get(dev, "dphy"); if (IS_ERR(dsi->phy)) { ret = PTR_ERR(dsi->phy); DRM_DEV_ERROR(dev, "failed to get mipi dphy: %d\n", ret); return ret; } dsi->pclk = devm_clk_get(dev, "pclk"); if (IS_ERR(dsi->pclk)) { ret = PTR_ERR(dsi->pclk); DRM_DEV_ERROR(dev, "Unable to get pclk: %d\n", ret); return ret; } dsi->pllref_clk = devm_clk_get(dev, "ref"); if (IS_ERR(dsi->pllref_clk)) { if (dsi->phy) { /* * if external phy is present, pll will be * generated there. */ dsi->pllref_clk = NULL; } else { ret = PTR_ERR(dsi->pllref_clk); DRM_DEV_ERROR(dev, "Unable to get pll reference clock: %d\n", ret); return ret; } } if (dsi->cdata->flags & DW_MIPI_NEEDS_PHY_CFG_CLK) { dsi->phy_cfg_clk = devm_clk_get(dev, "phy_cfg"); if (IS_ERR(dsi->phy_cfg_clk)) { ret = PTR_ERR(dsi->phy_cfg_clk); DRM_DEV_ERROR(dev, "Unable to get phy_cfg_clk: %d\n", ret); return ret; } } if (dsi->cdata->flags & DW_MIPI_NEEDS_GRF_CLK) { dsi->grf_clk = devm_clk_get(dev, "grf"); if (IS_ERR(dsi->grf_clk)) { ret = PTR_ERR(dsi->grf_clk); DRM_DEV_ERROR(dev, "Unable to get grf_clk: %d\n", ret); return ret; } } dsi->grf_regmap = syscon_regmap_lookup_by_phandle(np, "rockchip,grf"); if (IS_ERR(dsi->grf_regmap)) { DRM_DEV_ERROR(dev, "Unable to get rockchip,grf\n"); return PTR_ERR(dsi->grf_regmap); } dsi->dev = dev; dsi->pdata.base = dsi->base; dsi->pdata.max_data_lanes = dsi->cdata->max_data_lanes; dsi->pdata.phy_ops = &dw_mipi_dsi_rockchip_phy_ops; dsi->pdata.host_ops = &dw_mipi_dsi_rockchip_host_ops; dsi->pdata.priv_data = dsi; platform_set_drvdata(pdev, dsi); mutex_init(&dsi->usage_mutex); dsi->dphy = devm_phy_create(dev, NULL, &dw_mipi_dsi_dphy_ops); if (IS_ERR(dsi->dphy)) { DRM_DEV_ERROR(&pdev->dev, "failed to create PHY\n"); return PTR_ERR(dsi->dphy); } phy_set_drvdata(dsi->dphy, dsi); phy_provider = devm_of_phy_provider_register(dev, of_phy_simple_xlate); if (IS_ERR(phy_provider)) return PTR_ERR(phy_provider); dsi->dmd = dw_mipi_dsi_probe(pdev, &dsi->pdata); if (IS_ERR(dsi->dmd)) { ret = PTR_ERR(dsi->dmd); if (ret != -EPROBE_DEFER) DRM_DEV_ERROR(dev, "Failed to probe dw_mipi_dsi: %d\n", ret); return ret; } return 0; } static void dw_mipi_dsi_rockchip_remove(struct platform_device *pdev) { struct dw_mipi_dsi_rockchip *dsi = platform_get_drvdata(pdev); dw_mipi_dsi_remove(dsi->dmd); } static const struct rockchip_dw_dsi_chip_data px30_chip_data[] = { { .reg = 0xff450000, .lcdsel_grf_reg = PX30_GRF_PD_VO_CON1, .lcdsel_big = HIWORD_UPDATE(0, PX30_DSI_LCDC_SEL), .lcdsel_lit = HIWORD_UPDATE(PX30_DSI_LCDC_SEL, PX30_DSI_LCDC_SEL), .lanecfg1_grf_reg = PX30_GRF_PD_VO_CON1, .lanecfg1 = HIWORD_UPDATE(0, PX30_DSI_TURNDISABLE | PX30_DSI_FORCERXMODE | PX30_DSI_FORCETXSTOPMODE), .max_data_lanes = 4, }, { /* sentinel */ } }; static const struct rockchip_dw_dsi_chip_data rk3128_chip_data[] = { { .reg = 0x10110000, .lanecfg1_grf_reg = RK3128_GRF_LVDS_CON0, .lanecfg1 = HIWORD_UPDATE(0, RK3128_DSI_TURNDISABLE | RK3128_DSI_FORCERXMODE | RK3128_DSI_FORCETXSTOPMODE), .max_data_lanes = 4, }, { /* sentinel */ } }; static const struct rockchip_dw_dsi_chip_data rk3288_chip_data[] = { { .reg = 0xff960000, .lcdsel_grf_reg = RK3288_GRF_SOC_CON6, .lcdsel_big = HIWORD_UPDATE(0, RK3288_DSI0_LCDC_SEL), .lcdsel_lit = HIWORD_UPDATE(RK3288_DSI0_LCDC_SEL, RK3288_DSI0_LCDC_SEL), .max_data_lanes = 4, }, { .reg = 0xff964000, .lcdsel_grf_reg = RK3288_GRF_SOC_CON6, .lcdsel_big = HIWORD_UPDATE(0, RK3288_DSI1_LCDC_SEL), .lcdsel_lit = HIWORD_UPDATE(RK3288_DSI1_LCDC_SEL, RK3288_DSI1_LCDC_SEL), .max_data_lanes = 4, }, { /* sentinel */ } }; static int rk3399_dphy_tx1rx1_init(struct phy *phy) { struct dw_mipi_dsi_rockchip *dsi = phy_get_drvdata(phy); /* * Set TX1RX1 source to isp1. * Assume ISP0 is supplied by the RX0 dphy. */ regmap_write(dsi->grf_regmap, RK3399_GRF_SOC_CON24, HIWORD_UPDATE(0, RK3399_TXRX_SRC_SEL_ISP0)); regmap_write(dsi->grf_regmap, RK3399_GRF_SOC_CON24, HIWORD_UPDATE(0, RK3399_TXRX_MASTERSLAVEZ)); regmap_write(dsi->grf_regmap, RK3399_GRF_SOC_CON24, HIWORD_UPDATE(0, RK3399_TXRX_BASEDIR)); regmap_write(dsi->grf_regmap, RK3399_GRF_SOC_CON23, HIWORD_UPDATE(0, RK3399_DSI1_ENABLE)); return 0; } static int rk3399_dphy_tx1rx1_power_on(struct phy *phy) { struct dw_mipi_dsi_rockchip *dsi = phy_get_drvdata(phy); /* tester reset pulse */ dsi_write(dsi, DSI_PHY_TST_CTRL0, PHY_TESTCLK | PHY_TESTCLR); usleep_range(100, 150); regmap_write(dsi->grf_regmap, RK3399_GRF_SOC_CON24, HIWORD_UPDATE(0, RK3399_TXRX_MASTERSLAVEZ)); regmap_write(dsi->grf_regmap, RK3399_GRF_SOC_CON24, HIWORD_UPDATE(RK3399_TXRX_BASEDIR, RK3399_TXRX_BASEDIR)); regmap_write(dsi->grf_regmap, RK3399_GRF_SOC_CON23, HIWORD_UPDATE(0, RK3399_DSI1_FORCERXMODE)); regmap_write(dsi->grf_regmap, RK3399_GRF_SOC_CON23, HIWORD_UPDATE(0, RK3399_DSI1_FORCETXSTOPMODE)); /* Disable lane turn around, which is ignored in receive mode */ regmap_write(dsi->grf_regmap, RK3399_GRF_SOC_CON24, HIWORD_UPDATE(0, RK3399_TXRX_TURNREQUEST)); regmap_write(dsi->grf_regmap, RK3399_GRF_SOC_CON23, HIWORD_UPDATE(RK3399_DSI1_TURNDISABLE, RK3399_DSI1_TURNDISABLE)); usleep_range(100, 150); dsi_write(dsi, DSI_PHY_TST_CTRL0, PHY_TESTCLK | PHY_UNTESTCLR); usleep_range(100, 150); /* Enable dphy lanes */ regmap_write(dsi->grf_regmap, RK3399_GRF_SOC_CON23, HIWORD_UPDATE(GENMASK(dsi->dphy_config.lanes - 1, 0), RK3399_DSI1_ENABLE)); usleep_range(100, 150); return 0; } static int rk3399_dphy_tx1rx1_power_off(struct phy *phy) { struct dw_mipi_dsi_rockchip *dsi = phy_get_drvdata(phy); regmap_write(dsi->grf_regmap, RK3399_GRF_SOC_CON23, HIWORD_UPDATE(0, RK3399_DSI1_ENABLE)); return 0; } static const struct rockchip_dw_dsi_chip_data rk3399_chip_data[] = { { .reg = 0xff960000, .lcdsel_grf_reg = RK3399_GRF_SOC_CON20, .lcdsel_big = HIWORD_UPDATE(0, RK3399_DSI0_LCDC_SEL), .lcdsel_lit = HIWORD_UPDATE(RK3399_DSI0_LCDC_SEL, RK3399_DSI0_LCDC_SEL), .lanecfg1_grf_reg = RK3399_GRF_SOC_CON22, .lanecfg1 = HIWORD_UPDATE(0, RK3399_DSI0_TURNREQUEST | RK3399_DSI0_TURNDISABLE | RK3399_DSI0_FORCETXSTOPMODE | RK3399_DSI0_FORCERXMODE), .flags = DW_MIPI_NEEDS_PHY_CFG_CLK | DW_MIPI_NEEDS_GRF_CLK, .max_data_lanes = 4, }, { .reg = 0xff968000, .lcdsel_grf_reg = RK3399_GRF_SOC_CON20, .lcdsel_big = HIWORD_UPDATE(0, RK3399_DSI1_LCDC_SEL), .lcdsel_lit = HIWORD_UPDATE(RK3399_DSI1_LCDC_SEL, RK3399_DSI1_LCDC_SEL), .lanecfg1_grf_reg = RK3399_GRF_SOC_CON23, .lanecfg1 = HIWORD_UPDATE(0, RK3399_DSI1_TURNDISABLE | RK3399_DSI1_FORCETXSTOPMODE | RK3399_DSI1_FORCERXMODE | RK3399_DSI1_ENABLE), .lanecfg2_grf_reg = RK3399_GRF_SOC_CON24, .lanecfg2 = HIWORD_UPDATE(RK3399_TXRX_MASTERSLAVEZ | RK3399_TXRX_ENABLECLK, RK3399_TXRX_MASTERSLAVEZ | RK3399_TXRX_ENABLECLK | RK3399_TXRX_BASEDIR), .enable_grf_reg = RK3399_GRF_SOC_CON23, .enable = HIWORD_UPDATE(RK3399_DSI1_ENABLE, RK3399_DSI1_ENABLE), .flags = DW_MIPI_NEEDS_PHY_CFG_CLK | DW_MIPI_NEEDS_GRF_CLK, .max_data_lanes = 4, .dphy_rx_init = rk3399_dphy_tx1rx1_init, .dphy_rx_power_on = rk3399_dphy_tx1rx1_power_on, .dphy_rx_power_off = rk3399_dphy_tx1rx1_power_off, }, { /* sentinel */ } }; static const struct rockchip_dw_dsi_chip_data rk3568_chip_data[] = { { .reg = 0xfe060000, .lanecfg1_grf_reg = RK3568_GRF_VO_CON2, .lanecfg1 = HIWORD_UPDATE(0, RK3568_DSI0_SKEWCALHS | RK3568_DSI0_FORCETXSTOPMODE | RK3568_DSI0_TURNDISABLE | RK3568_DSI0_FORCERXMODE), .max_data_lanes = 4, }, { .reg = 0xfe070000, .lanecfg1_grf_reg = RK3568_GRF_VO_CON3, .lanecfg1 = HIWORD_UPDATE(0, RK3568_DSI1_SKEWCALHS | RK3568_DSI1_FORCETXSTOPMODE | RK3568_DSI1_TURNDISABLE | RK3568_DSI1_FORCERXMODE), .max_data_lanes = 4, }, { /* sentinel */ } }; static const struct rockchip_dw_dsi_chip_data rv1126_chip_data[] = { { .reg = 0xffb30000, .lanecfg1_grf_reg = RV1126_GRF_DSIPHY_CON, .lanecfg1 = HIWORD_UPDATE(0, RV1126_DSI_TURNDISABLE | RV1126_DSI_FORCERXMODE | RV1126_DSI_FORCETXSTOPMODE), .max_data_lanes = 4, }, { /* sentinel */ } }; static const struct of_device_id dw_mipi_dsi_rockchip_dt_ids[] = { { .compatible = "rockchip,px30-mipi-dsi", .data = &px30_chip_data, }, { .compatible = "rockchip,rk3128-mipi-dsi", .data = &rk3128_chip_data, }, { .compatible = "rockchip,rk3288-mipi-dsi", .data = &rk3288_chip_data, }, { .compatible = "rockchip,rk3399-mipi-dsi", .data = &rk3399_chip_data, }, { .compatible = "rockchip,rk3568-mipi-dsi", .data = &rk3568_chip_data, }, { .compatible = "rockchip,rv1126-mipi-dsi", .data = &rv1126_chip_data, }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, dw_mipi_dsi_rockchip_dt_ids); struct platform_driver dw_mipi_dsi_rockchip_driver = { .probe = dw_mipi_dsi_rockchip_probe, .remove_new = dw_mipi_dsi_rockchip_remove, .driver = { .of_match_table = dw_mipi_dsi_rockchip_dt_ids, .pm = &dw_mipi_dsi_rockchip_pm_ops, .name = "dw-mipi-dsi-rockchip", /* * For dual-DSI display, one DSI pokes at the other DSI's * drvdata in dw_mipi_dsi_rockchip_find_second(). This is not * safe for asynchronous probe. */ .probe_type = PROBE_FORCE_SYNCHRONOUS, }, };
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1