Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Thierry Reding | 11228 | 76.65% | 118 | 62.43% |
Dmitry Osipenko | 3077 | 21.01% | 23 | 12.17% |
Maxime Ripard | 121 | 0.83% | 10 | 5.29% |
Ville Syrjälä | 25 | 0.17% | 5 | 2.65% |
Christian König | 24 | 0.16% | 1 | 0.53% |
Stephen Warren | 23 | 0.16% | 2 | 1.06% |
Daniel Vetter | 22 | 0.15% | 4 | 2.12% |
Maarten Lankhorst | 21 | 0.14% | 1 | 0.53% |
Arnd Bergmann | 17 | 0.12% | 1 | 0.53% |
Mikko Perttunen | 14 | 0.10% | 2 | 1.06% |
Jyri Sarha | 12 | 0.08% | 1 | 0.53% |
Laurent Pinchart | 10 | 0.07% | 2 | 1.06% |
Julia Lawall | 7 | 0.05% | 1 | 0.53% |
Sam Ravnborg | 6 | 0.04% | 1 | 0.53% |
Arto Merilainen | 6 | 0.04% | 2 | 1.06% |
Suzuki K. Poulose | 5 | 0.03% | 1 | 0.53% |
Dhinakaran Pandiyan | 3 | 0.02% | 1 | 0.53% |
Sascha Hauer | 3 | 0.02% | 1 | 0.53% |
Shawn Guo | 3 | 0.02% | 1 | 0.53% |
Robin Murphy | 3 | 0.02% | 1 | 0.53% |
Ben Widawsky | 3 | 0.02% | 1 | 0.53% |
Gustavo A. R. Silva | 2 | 0.01% | 1 | 0.53% |
Terje Bergstrom | 2 | 0.01% | 1 | 0.53% |
Uwe Kleine-König | 2 | 0.01% | 1 | 0.53% |
Zhang Zekun | 2 | 0.01% | 1 | 0.53% |
Stefan Agner | 2 | 0.01% | 1 | 0.53% |
Thomas Gleixner | 2 | 0.01% | 1 | 0.53% |
Sean Paul | 1 | 0.01% | 1 | 0.53% |
Qinglang Miao | 1 | 0.01% | 1 | 0.53% |
Rob Herring | 1 | 0.01% | 1 | 0.53% |
Total | 14648 | 189 |
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2012 Avionic Design GmbH * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved. */ #include <linux/clk.h> #include <linux/debugfs.h> #include <linux/delay.h> #include <linux/dma-mapping.h> #include <linux/iommu.h> #include <linux/interconnect.h> #include <linux/module.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/pm_domain.h> #include <linux/pm_opp.h> #include <linux/pm_runtime.h> #include <linux/reset.h> #include <soc/tegra/common.h> #include <soc/tegra/pmc.h> #include <drm/drm_atomic.h> #include <drm/drm_atomic_helper.h> #include <drm/drm_blend.h> #include <drm/drm_debugfs.h> #include <drm/drm_fourcc.h> #include <drm/drm_framebuffer.h> #include <drm/drm_vblank.h> #include "dc.h" #include "drm.h" #include "gem.h" #include "hub.h" #include "plane.h" static void tegra_crtc_atomic_destroy_state(struct drm_crtc *crtc, struct drm_crtc_state *state); static void tegra_dc_stats_reset(struct tegra_dc_stats *stats) { stats->frames = 0; stats->vblank = 0; stats->underflow = 0; stats->overflow = 0; } /* Reads the active copy of a register. */ static u32 tegra_dc_readl_active(struct tegra_dc *dc, unsigned long offset) { u32 value; tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS); value = tegra_dc_readl(dc, offset); tegra_dc_writel(dc, 0, DC_CMD_STATE_ACCESS); return value; } static inline unsigned int tegra_plane_offset(struct tegra_plane *plane, unsigned int offset) { if (offset >= 0x500 && offset <= 0x638) { offset = 0x000 + (offset - 0x500); return plane->offset + offset; } if (offset >= 0x700 && offset <= 0x719) { offset = 0x180 + (offset - 0x700); return plane->offset + offset; } if (offset >= 0x800 && offset <= 0x839) { offset = 0x1c0 + (offset - 0x800); return plane->offset + offset; } dev_WARN(plane->dc->dev, "invalid offset: %x\n", offset); return plane->offset + offset; } static inline u32 tegra_plane_readl(struct tegra_plane *plane, unsigned int offset) { return tegra_dc_readl(plane->dc, tegra_plane_offset(plane, offset)); } static inline void tegra_plane_writel(struct tegra_plane *plane, u32 value, unsigned int offset) { tegra_dc_writel(plane->dc, value, tegra_plane_offset(plane, offset)); } bool tegra_dc_has_output(struct tegra_dc *dc, struct device *dev) { struct device_node *np = dc->dev->of_node; struct of_phandle_iterator it; int err; of_for_each_phandle(&it, err, np, "nvidia,outputs", NULL, 0) if (it.node == dev->of_node) return true; return false; } /* * Double-buffered registers have two copies: ASSEMBLY and ACTIVE. When the * *_ACT_REQ bits are set the ASSEMBLY copy is latched into the ACTIVE copy. * Latching happens mmediately if the display controller is in STOP mode or * on the next frame boundary otherwise. * * Triple-buffered registers have three copies: ASSEMBLY, ARM and ACTIVE. The * ASSEMBLY copy is latched into the ARM copy immediately after *_UPDATE bits * are written. When the *_ACT_REQ bits are written, the ARM copy is latched * into the ACTIVE copy, either immediately if the display controller is in * STOP mode, or at the next frame boundary otherwise. */ void tegra_dc_commit(struct tegra_dc *dc) { tegra_dc_writel(dc, GENERAL_ACT_REQ << 8, DC_CMD_STATE_CONTROL); tegra_dc_writel(dc, GENERAL_ACT_REQ, DC_CMD_STATE_CONTROL); } static inline u32 compute_dda_inc(unsigned int in, unsigned int out, bool v, unsigned int bpp) { fixed20_12 outf = dfixed_init(out); fixed20_12 inf = dfixed_init(in); u32 dda_inc; int max; if (v) max = 15; else { switch (bpp) { case 2: max = 8; break; default: WARN_ON_ONCE(1); fallthrough; case 4: max = 4; break; } } outf.full = max_t(u32, outf.full - dfixed_const(1), dfixed_const(1)); inf.full -= dfixed_const(1); dda_inc = dfixed_div(inf, outf); dda_inc = min_t(u32, dda_inc, dfixed_const(max)); return dda_inc; } static inline u32 compute_initial_dda(unsigned int in) { fixed20_12 inf = dfixed_init(in); return dfixed_frac(inf); } static void tegra_plane_setup_blending_legacy(struct tegra_plane *plane) { u32 background[3] = { BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE, BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE, BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE, }; u32 foreground = BLEND_WEIGHT1(255) | BLEND_WEIGHT0(255) | BLEND_COLOR_KEY_NONE; u32 blendnokey = BLEND_WEIGHT1(255) | BLEND_WEIGHT0(255); struct tegra_plane_state *state; u32 blending[2]; unsigned int i; /* disable blending for non-overlapping case */ tegra_plane_writel(plane, blendnokey, DC_WIN_BLEND_NOKEY); tegra_plane_writel(plane, foreground, DC_WIN_BLEND_1WIN); state = to_tegra_plane_state(plane->base.state); if (state->opaque) { /* * Since custom fix-weight blending isn't utilized and weight * of top window is set to max, we can enforce dependent * blending which in this case results in transparent bottom * window if top window is opaque and if top window enables * alpha blending, then bottom window is getting alpha value * of 1 minus the sum of alpha components of the overlapping * plane. */ background[0] |= BLEND_CONTROL_DEPENDENT; background[1] |= BLEND_CONTROL_DEPENDENT; /* * The region where three windows overlap is the intersection * of the two regions where two windows overlap. It contributes * to the area if all of the windows on top of it have an alpha * component. */ switch (state->base.normalized_zpos) { case 0: if (state->blending[0].alpha && state->blending[1].alpha) background[2] |= BLEND_CONTROL_DEPENDENT; break; case 1: background[2] |= BLEND_CONTROL_DEPENDENT; break; } } else { /* * Enable alpha blending if pixel format has an alpha * component. */ foreground |= BLEND_CONTROL_ALPHA; /* * If any of the windows on top of this window is opaque, it * will completely conceal this window within that area. If * top window has an alpha component, it is blended over the * bottom window. */ for (i = 0; i < 2; i++) { if (state->blending[i].alpha && state->blending[i].top) background[i] |= BLEND_CONTROL_DEPENDENT; } switch (state->base.normalized_zpos) { case 0: if (state->blending[0].alpha && state->blending[1].alpha) background[2] |= BLEND_CONTROL_DEPENDENT; break; case 1: /* * When both middle and topmost windows have an alpha, * these windows a mixed together and then the result * is blended over the bottom window. */ if (state->blending[0].alpha && state->blending[0].top) background[2] |= BLEND_CONTROL_ALPHA; if (state->blending[1].alpha && state->blending[1].top) background[2] |= BLEND_CONTROL_ALPHA; break; } } switch (state->base.normalized_zpos) { case 0: tegra_plane_writel(plane, background[0], DC_WIN_BLEND_2WIN_X); tegra_plane_writel(plane, background[1], DC_WIN_BLEND_2WIN_Y); tegra_plane_writel(plane, background[2], DC_WIN_BLEND_3WIN_XY); break; case 1: /* * If window B / C is topmost, then X / Y registers are * matching the order of blending[...] state indices, * otherwise a swap is required. */ if (!state->blending[0].top && state->blending[1].top) { blending[0] = foreground; blending[1] = background[1]; } else { blending[0] = background[0]; blending[1] = foreground; } tegra_plane_writel(plane, blending[0], DC_WIN_BLEND_2WIN_X); tegra_plane_writel(plane, blending[1], DC_WIN_BLEND_2WIN_Y); tegra_plane_writel(plane, background[2], DC_WIN_BLEND_3WIN_XY); break; case 2: tegra_plane_writel(plane, foreground, DC_WIN_BLEND_2WIN_X); tegra_plane_writel(plane, foreground, DC_WIN_BLEND_2WIN_Y); tegra_plane_writel(plane, foreground, DC_WIN_BLEND_3WIN_XY); break; } } static void tegra_plane_setup_blending(struct tegra_plane *plane, const struct tegra_dc_window *window) { u32 value; value = BLEND_FACTOR_DST_ALPHA_ZERO | BLEND_FACTOR_SRC_ALPHA_K2 | BLEND_FACTOR_DST_COLOR_NEG_K1_TIMES_SRC | BLEND_FACTOR_SRC_COLOR_K1_TIMES_SRC; tegra_plane_writel(plane, value, DC_WIN_BLEND_MATCH_SELECT); value = BLEND_FACTOR_DST_ALPHA_ZERO | BLEND_FACTOR_SRC_ALPHA_K2 | BLEND_FACTOR_DST_COLOR_NEG_K1_TIMES_SRC | BLEND_FACTOR_SRC_COLOR_K1_TIMES_SRC; tegra_plane_writel(plane, value, DC_WIN_BLEND_NOMATCH_SELECT); value = K2(255) | K1(255) | WINDOW_LAYER_DEPTH(255 - window->zpos); tegra_plane_writel(plane, value, DC_WIN_BLEND_LAYER_CONTROL); } static bool tegra_plane_use_horizontal_filtering(struct tegra_plane *plane, const struct tegra_dc_window *window) { struct tegra_dc *dc = plane->dc; if (window->src.w == window->dst.w) return false; if (plane->index == 0 && dc->soc->has_win_a_without_filters) return false; return true; } static bool tegra_plane_use_vertical_filtering(struct tegra_plane *plane, const struct tegra_dc_window *window) { struct tegra_dc *dc = plane->dc; if (window->src.h == window->dst.h) return false; if (plane->index == 0 && dc->soc->has_win_a_without_filters) return false; if (plane->index == 2 && dc->soc->has_win_c_without_vert_filter) return false; return true; } static void tegra_dc_setup_window(struct tegra_plane *plane, const struct tegra_dc_window *window) { unsigned h_offset, v_offset, h_size, v_size, h_dda, v_dda, bpp; struct tegra_dc *dc = plane->dc; unsigned int planes; u32 value; bool yuv; /* * For YUV planar modes, the number of bytes per pixel takes into * account only the luma component and therefore is 1. */ yuv = tegra_plane_format_is_yuv(window->format, &planes, NULL); if (!yuv) bpp = window->bits_per_pixel / 8; else bpp = (planes > 1) ? 1 : 2; tegra_plane_writel(plane, window->format, DC_WIN_COLOR_DEPTH); tegra_plane_writel(plane, window->swap, DC_WIN_BYTE_SWAP); value = V_POSITION(window->dst.y) | H_POSITION(window->dst.x); tegra_plane_writel(plane, value, DC_WIN_POSITION); value = V_SIZE(window->dst.h) | H_SIZE(window->dst.w); tegra_plane_writel(plane, value, DC_WIN_SIZE); h_offset = window->src.x * bpp; v_offset = window->src.y; h_size = window->src.w * bpp; v_size = window->src.h; if (window->reflect_x) h_offset += (window->src.w - 1) * bpp; if (window->reflect_y) v_offset += window->src.h - 1; value = V_PRESCALED_SIZE(v_size) | H_PRESCALED_SIZE(h_size); tegra_plane_writel(plane, value, DC_WIN_PRESCALED_SIZE); /* * For DDA computations the number of bytes per pixel for YUV planar * modes needs to take into account all Y, U and V components. */ if (yuv && planes > 1) bpp = 2; h_dda = compute_dda_inc(window->src.w, window->dst.w, false, bpp); v_dda = compute_dda_inc(window->src.h, window->dst.h, true, bpp); value = V_DDA_INC(v_dda) | H_DDA_INC(h_dda); tegra_plane_writel(plane, value, DC_WIN_DDA_INC); h_dda = compute_initial_dda(window->src.x); v_dda = compute_initial_dda(window->src.y); tegra_plane_writel(plane, h_dda, DC_WIN_H_INITIAL_DDA); tegra_plane_writel(plane, v_dda, DC_WIN_V_INITIAL_DDA); tegra_plane_writel(plane, 0, DC_WIN_UV_BUF_STRIDE); tegra_plane_writel(plane, 0, DC_WIN_BUF_STRIDE); tegra_plane_writel(plane, window->base[0], DC_WINBUF_START_ADDR); if (yuv && planes > 1) { tegra_plane_writel(plane, window->base[1], DC_WINBUF_START_ADDR_U); if (planes > 2) tegra_plane_writel(plane, window->base[2], DC_WINBUF_START_ADDR_V); value = window->stride[1] << 16 | window->stride[0]; tegra_plane_writel(plane, value, DC_WIN_LINE_STRIDE); } else { tegra_plane_writel(plane, window->stride[0], DC_WIN_LINE_STRIDE); } tegra_plane_writel(plane, h_offset, DC_WINBUF_ADDR_H_OFFSET); tegra_plane_writel(plane, v_offset, DC_WINBUF_ADDR_V_OFFSET); if (dc->soc->supports_block_linear) { unsigned long height = window->tiling.value; switch (window->tiling.mode) { case TEGRA_BO_TILING_MODE_PITCH: value = DC_WINBUF_SURFACE_KIND_PITCH; break; case TEGRA_BO_TILING_MODE_TILED: value = DC_WINBUF_SURFACE_KIND_TILED; break; case TEGRA_BO_TILING_MODE_BLOCK: value = DC_WINBUF_SURFACE_KIND_BLOCK_HEIGHT(height) | DC_WINBUF_SURFACE_KIND_BLOCK; break; } tegra_plane_writel(plane, value, DC_WINBUF_SURFACE_KIND); } else { switch (window->tiling.mode) { case TEGRA_BO_TILING_MODE_PITCH: value = DC_WIN_BUFFER_ADDR_MODE_LINEAR_UV | DC_WIN_BUFFER_ADDR_MODE_LINEAR; break; case TEGRA_BO_TILING_MODE_TILED: value = DC_WIN_BUFFER_ADDR_MODE_TILE_UV | DC_WIN_BUFFER_ADDR_MODE_TILE; break; case TEGRA_BO_TILING_MODE_BLOCK: /* * No need to handle this here because ->atomic_check * will already have filtered it out. */ break; } tegra_plane_writel(plane, value, DC_WIN_BUFFER_ADDR_MODE); } value = WIN_ENABLE; if (yuv) { /* setup default colorspace conversion coefficients */ tegra_plane_writel(plane, 0x00f0, DC_WIN_CSC_YOF); tegra_plane_writel(plane, 0x012a, DC_WIN_CSC_KYRGB); tegra_plane_writel(plane, 0x0000, DC_WIN_CSC_KUR); tegra_plane_writel(plane, 0x0198, DC_WIN_CSC_KVR); tegra_plane_writel(plane, 0x039b, DC_WIN_CSC_KUG); tegra_plane_writel(plane, 0x032f, DC_WIN_CSC_KVG); tegra_plane_writel(plane, 0x0204, DC_WIN_CSC_KUB); tegra_plane_writel(plane, 0x0000, DC_WIN_CSC_KVB); value |= CSC_ENABLE; } else if (window->bits_per_pixel < 24) { value |= COLOR_EXPAND; } if (window->reflect_x) value |= H_DIRECTION; if (window->reflect_y) value |= V_DIRECTION; if (tegra_plane_use_horizontal_filtering(plane, window)) { /* * Enable horizontal 6-tap filter and set filtering * coefficients to the default values defined in TRM. */ tegra_plane_writel(plane, 0x00008000, DC_WIN_H_FILTER_P(0)); tegra_plane_writel(plane, 0x3e087ce1, DC_WIN_H_FILTER_P(1)); tegra_plane_writel(plane, 0x3b117ac1, DC_WIN_H_FILTER_P(2)); tegra_plane_writel(plane, 0x591b73aa, DC_WIN_H_FILTER_P(3)); tegra_plane_writel(plane, 0x57256d9a, DC_WIN_H_FILTER_P(4)); tegra_plane_writel(plane, 0x552f668b, DC_WIN_H_FILTER_P(5)); tegra_plane_writel(plane, 0x73385e8b, DC_WIN_H_FILTER_P(6)); tegra_plane_writel(plane, 0x72435583, DC_WIN_H_FILTER_P(7)); tegra_plane_writel(plane, 0x714c4c8b, DC_WIN_H_FILTER_P(8)); tegra_plane_writel(plane, 0x70554393, DC_WIN_H_FILTER_P(9)); tegra_plane_writel(plane, 0x715e389b, DC_WIN_H_FILTER_P(10)); tegra_plane_writel(plane, 0x71662faa, DC_WIN_H_FILTER_P(11)); tegra_plane_writel(plane, 0x536d25ba, DC_WIN_H_FILTER_P(12)); tegra_plane_writel(plane, 0x55731bca, DC_WIN_H_FILTER_P(13)); tegra_plane_writel(plane, 0x387a11d9, DC_WIN_H_FILTER_P(14)); tegra_plane_writel(plane, 0x3c7c08f1, DC_WIN_H_FILTER_P(15)); value |= H_FILTER; } if (tegra_plane_use_vertical_filtering(plane, window)) { unsigned int i, k; /* * Enable vertical 2-tap filter and set filtering * coefficients to the default values defined in TRM. */ for (i = 0, k = 128; i < 16; i++, k -= 8) tegra_plane_writel(plane, k, DC_WIN_V_FILTER_P(i)); value |= V_FILTER; } tegra_plane_writel(plane, value, DC_WIN_WIN_OPTIONS); if (dc->soc->has_legacy_blending) tegra_plane_setup_blending_legacy(plane); else tegra_plane_setup_blending(plane, window); } static const u32 tegra20_primary_formats[] = { DRM_FORMAT_ARGB4444, DRM_FORMAT_ARGB1555, DRM_FORMAT_RGB565, DRM_FORMAT_RGBA5551, DRM_FORMAT_ABGR8888, DRM_FORMAT_ARGB8888, /* non-native formats */ DRM_FORMAT_XRGB1555, DRM_FORMAT_RGBX5551, DRM_FORMAT_XBGR8888, DRM_FORMAT_XRGB8888, }; static const u64 tegra20_modifiers[] = { DRM_FORMAT_MOD_LINEAR, DRM_FORMAT_MOD_NVIDIA_TEGRA_TILED, DRM_FORMAT_MOD_INVALID }; static const u32 tegra114_primary_formats[] = { DRM_FORMAT_ARGB4444, DRM_FORMAT_ARGB1555, DRM_FORMAT_RGB565, DRM_FORMAT_RGBA5551, DRM_FORMAT_ABGR8888, DRM_FORMAT_ARGB8888, /* new on Tegra114 */ DRM_FORMAT_ABGR4444, DRM_FORMAT_ABGR1555, DRM_FORMAT_BGRA5551, DRM_FORMAT_XRGB1555, DRM_FORMAT_RGBX5551, DRM_FORMAT_XBGR1555, DRM_FORMAT_BGRX5551, DRM_FORMAT_BGR565, DRM_FORMAT_BGRA8888, DRM_FORMAT_RGBA8888, DRM_FORMAT_XRGB8888, DRM_FORMAT_XBGR8888, }; static const u32 tegra124_primary_formats[] = { DRM_FORMAT_ARGB4444, DRM_FORMAT_ARGB1555, DRM_FORMAT_RGB565, DRM_FORMAT_RGBA5551, DRM_FORMAT_ABGR8888, DRM_FORMAT_ARGB8888, /* new on Tegra114 */ DRM_FORMAT_ABGR4444, DRM_FORMAT_ABGR1555, DRM_FORMAT_BGRA5551, DRM_FORMAT_XRGB1555, DRM_FORMAT_RGBX5551, DRM_FORMAT_XBGR1555, DRM_FORMAT_BGRX5551, DRM_FORMAT_BGR565, DRM_FORMAT_BGRA8888, DRM_FORMAT_RGBA8888, DRM_FORMAT_XRGB8888, DRM_FORMAT_XBGR8888, /* new on Tegra124 */ DRM_FORMAT_RGBX8888, DRM_FORMAT_BGRX8888, }; static const u64 tegra124_modifiers[] = { DRM_FORMAT_MOD_LINEAR, DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(0), DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(1), DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(2), DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(3), DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(4), DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(5), DRM_FORMAT_MOD_INVALID }; static int tegra_plane_atomic_check(struct drm_plane *plane, struct drm_atomic_state *state) { struct drm_plane_state *new_plane_state = drm_atomic_get_new_plane_state(state, plane); struct tegra_plane_state *plane_state = to_tegra_plane_state(new_plane_state); unsigned int supported_rotation = DRM_MODE_ROTATE_0 | DRM_MODE_REFLECT_X | DRM_MODE_REFLECT_Y; unsigned int rotation = new_plane_state->rotation; struct tegra_bo_tiling *tiling = &plane_state->tiling; struct tegra_plane *tegra = to_tegra_plane(plane); struct tegra_dc *dc = to_tegra_dc(new_plane_state->crtc); int err; plane_state->peak_memory_bandwidth = 0; plane_state->avg_memory_bandwidth = 0; /* no need for further checks if the plane is being disabled */ if (!new_plane_state->crtc) { plane_state->total_peak_memory_bandwidth = 0; return 0; } err = tegra_plane_format(new_plane_state->fb->format->format, &plane_state->format, &plane_state->swap); if (err < 0) return err; /* * Tegra20 and Tegra30 are special cases here because they support * only variants of specific formats with an alpha component, but not * the corresponding opaque formats. However, the opaque formats can * be emulated by disabling alpha blending for the plane. */ if (dc->soc->has_legacy_blending) { err = tegra_plane_setup_legacy_state(tegra, plane_state); if (err < 0) return err; } err = tegra_fb_get_tiling(new_plane_state->fb, tiling); if (err < 0) return err; if (tiling->mode == TEGRA_BO_TILING_MODE_BLOCK && !dc->soc->supports_block_linear) { DRM_ERROR("hardware doesn't support block linear mode\n"); return -EINVAL; } /* * Older userspace used custom BO flag in order to specify the Y * reflection, while modern userspace uses the generic DRM rotation * property in order to achieve the same result. The legacy BO flag * duplicates the DRM rotation property when both are set. */ if (tegra_fb_is_bottom_up(new_plane_state->fb)) rotation |= DRM_MODE_REFLECT_Y; rotation = drm_rotation_simplify(rotation, supported_rotation); if (rotation & DRM_MODE_REFLECT_X) plane_state->reflect_x = true; else plane_state->reflect_x = false; if (rotation & DRM_MODE_REFLECT_Y) plane_state->reflect_y = true; else plane_state->reflect_y = false; /* * Tegra doesn't support different strides for U and V planes so we * error out if the user tries to display a framebuffer with such a * configuration. */ if (new_plane_state->fb->format->num_planes > 2) { if (new_plane_state->fb->pitches[2] != new_plane_state->fb->pitches[1]) { DRM_ERROR("unsupported UV-plane configuration\n"); return -EINVAL; } } err = tegra_plane_state_add(tegra, new_plane_state); if (err < 0) return err; return 0; } static void tegra_plane_atomic_disable(struct drm_plane *plane, struct drm_atomic_state *state) { struct drm_plane_state *old_state = drm_atomic_get_old_plane_state(state, plane); struct tegra_plane *p = to_tegra_plane(plane); u32 value; /* rien ne va plus */ if (!old_state || !old_state->crtc) return; value = tegra_plane_readl(p, DC_WIN_WIN_OPTIONS); value &= ~WIN_ENABLE; tegra_plane_writel(p, value, DC_WIN_WIN_OPTIONS); } static void tegra_plane_atomic_update(struct drm_plane *plane, struct drm_atomic_state *state) { struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state, plane); struct tegra_plane_state *tegra_plane_state = to_tegra_plane_state(new_state); struct drm_framebuffer *fb = new_state->fb; struct tegra_plane *p = to_tegra_plane(plane); struct tegra_dc_window window; unsigned int i; /* rien ne va plus */ if (!new_state->crtc || !new_state->fb) return; if (!new_state->visible) return tegra_plane_atomic_disable(plane, state); memset(&window, 0, sizeof(window)); window.src.x = new_state->src.x1 >> 16; window.src.y = new_state->src.y1 >> 16; window.src.w = drm_rect_width(&new_state->src) >> 16; window.src.h = drm_rect_height(&new_state->src) >> 16; window.dst.x = new_state->dst.x1; window.dst.y = new_state->dst.y1; window.dst.w = drm_rect_width(&new_state->dst); window.dst.h = drm_rect_height(&new_state->dst); window.bits_per_pixel = fb->format->cpp[0] * 8; window.reflect_x = tegra_plane_state->reflect_x; window.reflect_y = tegra_plane_state->reflect_y; /* copy from state */ window.zpos = new_state->normalized_zpos; window.tiling = tegra_plane_state->tiling; window.format = tegra_plane_state->format; window.swap = tegra_plane_state->swap; for (i = 0; i < fb->format->num_planes; i++) { window.base[i] = tegra_plane_state->iova[i] + fb->offsets[i]; /* * Tegra uses a shared stride for UV planes. Framebuffers are * already checked for this in the tegra_plane_atomic_check() * function, so it's safe to ignore the V-plane pitch here. */ if (i < 2) window.stride[i] = fb->pitches[i]; } tegra_dc_setup_window(p, &window); } static const struct drm_plane_helper_funcs tegra_plane_helper_funcs = { .prepare_fb = tegra_plane_prepare_fb, .cleanup_fb = tegra_plane_cleanup_fb, .atomic_check = tegra_plane_atomic_check, .atomic_disable = tegra_plane_atomic_disable, .atomic_update = tegra_plane_atomic_update, }; static unsigned long tegra_plane_get_possible_crtcs(struct drm_device *drm) { /* * Ideally this would use drm_crtc_mask(), but that would require the * CRTC to already be in the mode_config's list of CRTCs. However, it * will only be added to that list in the drm_crtc_init_with_planes() * (in tegra_dc_init()), which in turn requires registration of these * planes. So we have ourselves a nice little chicken and egg problem * here. * * We work around this by manually creating the mask from the number * of CRTCs that have been registered, and should therefore always be * the same as drm_crtc_index() after registration. */ return 1 << drm->mode_config.num_crtc; } static struct drm_plane *tegra_primary_plane_create(struct drm_device *drm, struct tegra_dc *dc) { unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm); enum drm_plane_type type = DRM_PLANE_TYPE_PRIMARY; struct tegra_plane *plane; unsigned int num_formats; const u64 *modifiers; const u32 *formats; int err; plane = kzalloc(sizeof(*plane), GFP_KERNEL); if (!plane) return ERR_PTR(-ENOMEM); /* Always use window A as primary window */ plane->offset = 0xa00; plane->index = 0; plane->dc = dc; num_formats = dc->soc->num_primary_formats; formats = dc->soc->primary_formats; modifiers = dc->soc->modifiers; err = tegra_plane_interconnect_init(plane); if (err) { kfree(plane); return ERR_PTR(err); } err = drm_universal_plane_init(drm, &plane->base, possible_crtcs, &tegra_plane_funcs, formats, num_formats, modifiers, type, NULL); if (err < 0) { kfree(plane); return ERR_PTR(err); } drm_plane_helper_add(&plane->base, &tegra_plane_helper_funcs); drm_plane_create_zpos_property(&plane->base, plane->index, 0, 255); err = drm_plane_create_rotation_property(&plane->base, DRM_MODE_ROTATE_0, DRM_MODE_ROTATE_0 | DRM_MODE_ROTATE_180 | DRM_MODE_REFLECT_X | DRM_MODE_REFLECT_Y); if (err < 0) dev_err(dc->dev, "failed to create rotation property: %d\n", err); return &plane->base; } static const u32 tegra_legacy_cursor_plane_formats[] = { DRM_FORMAT_RGBA8888, }; static const u32 tegra_cursor_plane_formats[] = { DRM_FORMAT_ARGB8888, }; static int tegra_cursor_atomic_check(struct drm_plane *plane, struct drm_atomic_state *state) { struct drm_plane_state *new_plane_state = drm_atomic_get_new_plane_state(state, plane); struct tegra_plane_state *plane_state = to_tegra_plane_state(new_plane_state); struct tegra_plane *tegra = to_tegra_plane(plane); int err; plane_state->peak_memory_bandwidth = 0; plane_state->avg_memory_bandwidth = 0; /* no need for further checks if the plane is being disabled */ if (!new_plane_state->crtc) { plane_state->total_peak_memory_bandwidth = 0; return 0; } /* scaling not supported for cursor */ if ((new_plane_state->src_w >> 16 != new_plane_state->crtc_w) || (new_plane_state->src_h >> 16 != new_plane_state->crtc_h)) return -EINVAL; /* only square cursors supported */ if (new_plane_state->src_w != new_plane_state->src_h) return -EINVAL; if (new_plane_state->crtc_w != 32 && new_plane_state->crtc_w != 64 && new_plane_state->crtc_w != 128 && new_plane_state->crtc_w != 256) return -EINVAL; err = tegra_plane_state_add(tegra, new_plane_state); if (err < 0) return err; return 0; } static void __tegra_cursor_atomic_update(struct drm_plane *plane, struct drm_plane_state *new_state) { struct tegra_plane_state *tegra_plane_state = to_tegra_plane_state(new_state); struct tegra_dc *dc = to_tegra_dc(new_state->crtc); struct tegra_drm *tegra = plane->dev->dev_private; #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT u64 dma_mask = *dc->dev->dma_mask; #endif unsigned int x, y; u32 value = 0; /* rien ne va plus */ if (!new_state->crtc || !new_state->fb) return; /* * Legacy display supports hardware clipping of the cursor, but * nvdisplay relies on software to clip the cursor to the screen. */ if (!dc->soc->has_nvdisplay) value |= CURSOR_CLIP_DISPLAY; switch (new_state->crtc_w) { case 32: value |= CURSOR_SIZE_32x32; break; case 64: value |= CURSOR_SIZE_64x64; break; case 128: value |= CURSOR_SIZE_128x128; break; case 256: value |= CURSOR_SIZE_256x256; break; default: WARN(1, "cursor size %ux%u not supported\n", new_state->crtc_w, new_state->crtc_h); return; } value |= (tegra_plane_state->iova[0] >> 10) & 0x3fffff; tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR); #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT value = (tegra_plane_state->iova[0] >> 32) & (dma_mask >> 32); tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR_HI); #endif /* enable cursor and set blend mode */ value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS); value |= CURSOR_ENABLE; tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS); value = tegra_dc_readl(dc, DC_DISP_BLEND_CURSOR_CONTROL); value &= ~CURSOR_DST_BLEND_MASK; value &= ~CURSOR_SRC_BLEND_MASK; if (dc->soc->has_nvdisplay) value &= ~CURSOR_COMPOSITION_MODE_XOR; else value |= CURSOR_MODE_NORMAL; value |= CURSOR_DST_BLEND_NEG_K1_TIMES_SRC; value |= CURSOR_SRC_BLEND_K1_TIMES_SRC; value |= CURSOR_ALPHA; tegra_dc_writel(dc, value, DC_DISP_BLEND_CURSOR_CONTROL); /* nvdisplay relies on software for clipping */ if (dc->soc->has_nvdisplay) { struct drm_rect src; x = new_state->dst.x1; y = new_state->dst.y1; drm_rect_fp_to_int(&src, &new_state->src); value = (src.y1 & tegra->vmask) << 16 | (src.x1 & tegra->hmask); tegra_dc_writel(dc, value, DC_DISP_PCALC_HEAD_SET_CROPPED_POINT_IN_CURSOR); value = (drm_rect_height(&src) & tegra->vmask) << 16 | (drm_rect_width(&src) & tegra->hmask); tegra_dc_writel(dc, value, DC_DISP_PCALC_HEAD_SET_CROPPED_SIZE_IN_CURSOR); } else { x = new_state->crtc_x; y = new_state->crtc_y; } /* position the cursor */ value = ((y & tegra->vmask) << 16) | (x & tegra->hmask); tegra_dc_writel(dc, value, DC_DISP_CURSOR_POSITION); } static void tegra_cursor_atomic_update(struct drm_plane *plane, struct drm_atomic_state *state) { struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state, plane); __tegra_cursor_atomic_update(plane, new_state); } static void tegra_cursor_atomic_disable(struct drm_plane *plane, struct drm_atomic_state *state) { struct drm_plane_state *old_state = drm_atomic_get_old_plane_state(state, plane); struct tegra_dc *dc; u32 value; /* rien ne va plus */ if (!old_state || !old_state->crtc) return; dc = to_tegra_dc(old_state->crtc); value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS); value &= ~CURSOR_ENABLE; tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS); } static int tegra_cursor_atomic_async_check(struct drm_plane *plane, struct drm_atomic_state *state) { struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state, plane); struct drm_crtc_state *crtc_state; int min_scale, max_scale; int err; crtc_state = drm_atomic_get_existing_crtc_state(state, new_state->crtc); if (WARN_ON(!crtc_state)) return -EINVAL; if (!crtc_state->active) return -EINVAL; if (plane->state->crtc != new_state->crtc || plane->state->src_w != new_state->src_w || plane->state->src_h != new_state->src_h || plane->state->crtc_w != new_state->crtc_w || plane->state->crtc_h != new_state->crtc_h || plane->state->fb != new_state->fb || plane->state->fb == NULL) return -EINVAL; min_scale = (1 << 16) / 8; max_scale = (8 << 16) / 1; err = drm_atomic_helper_check_plane_state(new_state, crtc_state, min_scale, max_scale, true, true); if (err < 0) return err; if (new_state->visible != plane->state->visible) return -EINVAL; return 0; } static void tegra_cursor_atomic_async_update(struct drm_plane *plane, struct drm_atomic_state *state) { struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state, plane); struct tegra_dc *dc = to_tegra_dc(new_state->crtc); plane->state->src_x = new_state->src_x; plane->state->src_y = new_state->src_y; plane->state->crtc_x = new_state->crtc_x; plane->state->crtc_y = new_state->crtc_y; if (new_state->visible) { struct tegra_plane *p = to_tegra_plane(plane); u32 value; __tegra_cursor_atomic_update(plane, new_state); value = (WIN_A_ACT_REQ << p->index) << 8 | GENERAL_UPDATE; tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL); (void)tegra_dc_readl(dc, DC_CMD_STATE_CONTROL); value = (WIN_A_ACT_REQ << p->index) | GENERAL_ACT_REQ; tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL); (void)tegra_dc_readl(dc, DC_CMD_STATE_CONTROL); } } static const struct drm_plane_helper_funcs tegra_cursor_plane_helper_funcs = { .prepare_fb = tegra_plane_prepare_fb, .cleanup_fb = tegra_plane_cleanup_fb, .atomic_check = tegra_cursor_atomic_check, .atomic_update = tegra_cursor_atomic_update, .atomic_disable = tegra_cursor_atomic_disable, .atomic_async_check = tegra_cursor_atomic_async_check, .atomic_async_update = tegra_cursor_atomic_async_update, }; static const uint64_t linear_modifiers[] = { DRM_FORMAT_MOD_LINEAR, DRM_FORMAT_MOD_INVALID }; static struct drm_plane *tegra_dc_cursor_plane_create(struct drm_device *drm, struct tegra_dc *dc) { unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm); struct tegra_plane *plane; unsigned int num_formats; const u32 *formats; int err; plane = kzalloc(sizeof(*plane), GFP_KERNEL); if (!plane) return ERR_PTR(-ENOMEM); /* * This index is kind of fake. The cursor isn't a regular plane, but * its update and activation request bits in DC_CMD_STATE_CONTROL do * use the same programming. Setting this fake index here allows the * code in tegra_add_plane_state() to do the right thing without the * need to special-casing the cursor plane. */ plane->index = 6; plane->dc = dc; if (!dc->soc->has_nvdisplay) { num_formats = ARRAY_SIZE(tegra_legacy_cursor_plane_formats); formats = tegra_legacy_cursor_plane_formats; err = tegra_plane_interconnect_init(plane); if (err) { kfree(plane); return ERR_PTR(err); } } else { num_formats = ARRAY_SIZE(tegra_cursor_plane_formats); formats = tegra_cursor_plane_formats; } err = drm_universal_plane_init(drm, &plane->base, possible_crtcs, &tegra_plane_funcs, formats, num_formats, linear_modifiers, DRM_PLANE_TYPE_CURSOR, NULL); if (err < 0) { kfree(plane); return ERR_PTR(err); } drm_plane_helper_add(&plane->base, &tegra_cursor_plane_helper_funcs); drm_plane_create_zpos_immutable_property(&plane->base, 255); return &plane->base; } static const u32 tegra20_overlay_formats[] = { DRM_FORMAT_ARGB4444, DRM_FORMAT_ARGB1555, DRM_FORMAT_RGB565, DRM_FORMAT_RGBA5551, DRM_FORMAT_ABGR8888, DRM_FORMAT_ARGB8888, /* non-native formats */ DRM_FORMAT_XRGB1555, DRM_FORMAT_RGBX5551, DRM_FORMAT_XBGR8888, DRM_FORMAT_XRGB8888, /* planar formats */ DRM_FORMAT_UYVY, DRM_FORMAT_YUYV, DRM_FORMAT_YUV420, DRM_FORMAT_YUV422, }; static const u32 tegra114_overlay_formats[] = { DRM_FORMAT_ARGB4444, DRM_FORMAT_ARGB1555, DRM_FORMAT_RGB565, DRM_FORMAT_RGBA5551, DRM_FORMAT_ABGR8888, DRM_FORMAT_ARGB8888, /* new on Tegra114 */ DRM_FORMAT_ABGR4444, DRM_FORMAT_ABGR1555, DRM_FORMAT_BGRA5551, DRM_FORMAT_XRGB1555, DRM_FORMAT_RGBX5551, DRM_FORMAT_XBGR1555, DRM_FORMAT_BGRX5551, DRM_FORMAT_BGR565, DRM_FORMAT_BGRA8888, DRM_FORMAT_RGBA8888, DRM_FORMAT_XRGB8888, DRM_FORMAT_XBGR8888, /* planar formats */ DRM_FORMAT_UYVY, DRM_FORMAT_YUYV, DRM_FORMAT_YUV420, DRM_FORMAT_YUV422, /* semi-planar formats */ DRM_FORMAT_NV12, DRM_FORMAT_NV21, DRM_FORMAT_NV16, DRM_FORMAT_NV61, DRM_FORMAT_NV24, DRM_FORMAT_NV42, }; static const u32 tegra124_overlay_formats[] = { DRM_FORMAT_ARGB4444, DRM_FORMAT_ARGB1555, DRM_FORMAT_RGB565, DRM_FORMAT_RGBA5551, DRM_FORMAT_ABGR8888, DRM_FORMAT_ARGB8888, /* new on Tegra114 */ DRM_FORMAT_ABGR4444, DRM_FORMAT_ABGR1555, DRM_FORMAT_BGRA5551, DRM_FORMAT_XRGB1555, DRM_FORMAT_RGBX5551, DRM_FORMAT_XBGR1555, DRM_FORMAT_BGRX5551, DRM_FORMAT_BGR565, DRM_FORMAT_BGRA8888, DRM_FORMAT_RGBA8888, DRM_FORMAT_XRGB8888, DRM_FORMAT_XBGR8888, /* new on Tegra124 */ DRM_FORMAT_RGBX8888, DRM_FORMAT_BGRX8888, /* planar formats */ DRM_FORMAT_UYVY, DRM_FORMAT_YUYV, DRM_FORMAT_YVYU, DRM_FORMAT_VYUY, DRM_FORMAT_YUV420, /* YU12 */ DRM_FORMAT_YUV422, /* YU16 */ DRM_FORMAT_YUV444, /* YU24 */ /* semi-planar formats */ DRM_FORMAT_NV12, DRM_FORMAT_NV21, DRM_FORMAT_NV16, DRM_FORMAT_NV61, DRM_FORMAT_NV24, DRM_FORMAT_NV42, }; static struct drm_plane *tegra_dc_overlay_plane_create(struct drm_device *drm, struct tegra_dc *dc, unsigned int index, bool cursor) { unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm); struct tegra_plane *plane; unsigned int num_formats; enum drm_plane_type type; const u32 *formats; int err; plane = kzalloc(sizeof(*plane), GFP_KERNEL); if (!plane) return ERR_PTR(-ENOMEM); plane->offset = 0xa00 + 0x200 * index; plane->index = index; plane->dc = dc; num_formats = dc->soc->num_overlay_formats; formats = dc->soc->overlay_formats; err = tegra_plane_interconnect_init(plane); if (err) { kfree(plane); return ERR_PTR(err); } if (!cursor) type = DRM_PLANE_TYPE_OVERLAY; else type = DRM_PLANE_TYPE_CURSOR; err = drm_universal_plane_init(drm, &plane->base, possible_crtcs, &tegra_plane_funcs, formats, num_formats, linear_modifiers, type, NULL); if (err < 0) { kfree(plane); return ERR_PTR(err); } drm_plane_helper_add(&plane->base, &tegra_plane_helper_funcs); drm_plane_create_zpos_property(&plane->base, plane->index, 0, 255); err = drm_plane_create_rotation_property(&plane->base, DRM_MODE_ROTATE_0, DRM_MODE_ROTATE_0 | DRM_MODE_ROTATE_180 | DRM_MODE_REFLECT_X | DRM_MODE_REFLECT_Y); if (err < 0) dev_err(dc->dev, "failed to create rotation property: %d\n", err); return &plane->base; } static struct drm_plane *tegra_dc_add_shared_planes(struct drm_device *drm, struct tegra_dc *dc) { struct drm_plane *plane, *primary = NULL; unsigned int i, j; for (i = 0; i < dc->soc->num_wgrps; i++) { const struct tegra_windowgroup_soc *wgrp = &dc->soc->wgrps[i]; if (wgrp->dc == dc->pipe) { for (j = 0; j < wgrp->num_windows; j++) { unsigned int index = wgrp->windows[j]; plane = tegra_shared_plane_create(drm, dc, wgrp->index, index); if (IS_ERR(plane)) return plane; /* * Choose the first shared plane owned by this * head as the primary plane. */ if (!primary) { plane->type = DRM_PLANE_TYPE_PRIMARY; primary = plane; } } } } return primary; } static struct drm_plane *tegra_dc_add_planes(struct drm_device *drm, struct tegra_dc *dc) { struct drm_plane *planes[2], *primary; unsigned int planes_num; unsigned int i; int err; primary = tegra_primary_plane_create(drm, dc); if (IS_ERR(primary)) return primary; if (dc->soc->supports_cursor) planes_num = 2; else planes_num = 1; for (i = 0; i < planes_num; i++) { planes[i] = tegra_dc_overlay_plane_create(drm, dc, 1 + i, false); if (IS_ERR(planes[i])) { err = PTR_ERR(planes[i]); while (i--) planes[i]->funcs->destroy(planes[i]); primary->funcs->destroy(primary); return ERR_PTR(err); } } return primary; } static void tegra_dc_destroy(struct drm_crtc *crtc) { drm_crtc_cleanup(crtc); } static void tegra_crtc_reset(struct drm_crtc *crtc) { struct tegra_dc_state *state = kzalloc(sizeof(*state), GFP_KERNEL); if (crtc->state) tegra_crtc_atomic_destroy_state(crtc, crtc->state); __drm_atomic_helper_crtc_reset(crtc, &state->base); } static struct drm_crtc_state * tegra_crtc_atomic_duplicate_state(struct drm_crtc *crtc) { struct tegra_dc_state *state = to_dc_state(crtc->state); struct tegra_dc_state *copy; copy = kmalloc(sizeof(*copy), GFP_KERNEL); if (!copy) return NULL; __drm_atomic_helper_crtc_duplicate_state(crtc, ©->base); copy->clk = state->clk; copy->pclk = state->pclk; copy->div = state->div; copy->planes = state->planes; return ©->base; } static void tegra_crtc_atomic_destroy_state(struct drm_crtc *crtc, struct drm_crtc_state *state) { __drm_atomic_helper_crtc_destroy_state(state); kfree(state); } #define DEBUGFS_REG32(_name) { .name = #_name, .offset = _name } static const struct debugfs_reg32 tegra_dc_regs[] = { DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT), DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT_CNTRL), DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT_ERROR), DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT), DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT_CNTRL), DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT_ERROR), DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT), DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT_CNTRL), DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT_ERROR), DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT), DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT_CNTRL), DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT_ERROR), DEBUGFS_REG32(DC_CMD_CONT_SYNCPT_VSYNC), DEBUGFS_REG32(DC_CMD_DISPLAY_COMMAND_OPTION0), DEBUGFS_REG32(DC_CMD_DISPLAY_COMMAND), DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE), DEBUGFS_REG32(DC_CMD_DISPLAY_POWER_CONTROL), DEBUGFS_REG32(DC_CMD_INT_STATUS), DEBUGFS_REG32(DC_CMD_INT_MASK), DEBUGFS_REG32(DC_CMD_INT_ENABLE), DEBUGFS_REG32(DC_CMD_INT_TYPE), DEBUGFS_REG32(DC_CMD_INT_POLARITY), DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE1), DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE2), DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE3), DEBUGFS_REG32(DC_CMD_STATE_ACCESS), DEBUGFS_REG32(DC_CMD_STATE_CONTROL), DEBUGFS_REG32(DC_CMD_DISPLAY_WINDOW_HEADER), DEBUGFS_REG32(DC_CMD_REG_ACT_CONTROL), DEBUGFS_REG32(DC_COM_CRC_CONTROL), DEBUGFS_REG32(DC_COM_CRC_CHECKSUM), DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(0)), DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(1)), DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(2)), DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(3)), DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(0)), DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(1)), DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(2)), DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(3)), DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(0)), DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(1)), DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(2)), DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(3)), DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(0)), DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(1)), DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(2)), DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(3)), DEBUGFS_REG32(DC_COM_PIN_INPUT_DATA(0)), DEBUGFS_REG32(DC_COM_PIN_INPUT_DATA(1)), DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(0)), DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(1)), DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(2)), DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(3)), DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(4)), DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(5)), DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(6)), DEBUGFS_REG32(DC_COM_PIN_MISC_CONTROL), DEBUGFS_REG32(DC_COM_PIN_PM0_CONTROL), DEBUGFS_REG32(DC_COM_PIN_PM0_DUTY_CYCLE), DEBUGFS_REG32(DC_COM_PIN_PM1_CONTROL), DEBUGFS_REG32(DC_COM_PIN_PM1_DUTY_CYCLE), DEBUGFS_REG32(DC_COM_SPI_CONTROL), DEBUGFS_REG32(DC_COM_SPI_START_BYTE), DEBUGFS_REG32(DC_COM_HSPI_WRITE_DATA_AB), DEBUGFS_REG32(DC_COM_HSPI_WRITE_DATA_CD), DEBUGFS_REG32(DC_COM_HSPI_CS_DC), DEBUGFS_REG32(DC_COM_SCRATCH_REGISTER_A), DEBUGFS_REG32(DC_COM_SCRATCH_REGISTER_B), DEBUGFS_REG32(DC_COM_GPIO_CTRL), DEBUGFS_REG32(DC_COM_GPIO_DEBOUNCE_COUNTER), DEBUGFS_REG32(DC_COM_CRC_CHECKSUM_LATCHED), DEBUGFS_REG32(DC_DISP_DISP_SIGNAL_OPTIONS0), DEBUGFS_REG32(DC_DISP_DISP_SIGNAL_OPTIONS1), DEBUGFS_REG32(DC_DISP_DISP_WIN_OPTIONS), DEBUGFS_REG32(DC_DISP_DISP_MEM_HIGH_PRIORITY), DEBUGFS_REG32(DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER), DEBUGFS_REG32(DC_DISP_DISP_TIMING_OPTIONS), DEBUGFS_REG32(DC_DISP_REF_TO_SYNC), DEBUGFS_REG32(DC_DISP_SYNC_WIDTH), DEBUGFS_REG32(DC_DISP_BACK_PORCH), DEBUGFS_REG32(DC_DISP_ACTIVE), DEBUGFS_REG32(DC_DISP_FRONT_PORCH), DEBUGFS_REG32(DC_DISP_H_PULSE0_CONTROL), DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_A), DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_B), DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_C), DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_D), DEBUGFS_REG32(DC_DISP_H_PULSE1_CONTROL), DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_A), DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_B), DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_C), DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_D), DEBUGFS_REG32(DC_DISP_H_PULSE2_CONTROL), DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_A), DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_B), DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_C), DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_D), DEBUGFS_REG32(DC_DISP_V_PULSE0_CONTROL), DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_A), DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_B), DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_C), DEBUGFS_REG32(DC_DISP_V_PULSE1_CONTROL), DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_A), DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_B), DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_C), DEBUGFS_REG32(DC_DISP_V_PULSE2_CONTROL), DEBUGFS_REG32(DC_DISP_V_PULSE2_POSITION_A), DEBUGFS_REG32(DC_DISP_V_PULSE3_CONTROL), DEBUGFS_REG32(DC_DISP_V_PULSE3_POSITION_A), DEBUGFS_REG32(DC_DISP_M0_CONTROL), DEBUGFS_REG32(DC_DISP_M1_CONTROL), DEBUGFS_REG32(DC_DISP_DI_CONTROL), DEBUGFS_REG32(DC_DISP_PP_CONTROL), DEBUGFS_REG32(DC_DISP_PP_SELECT_A), DEBUGFS_REG32(DC_DISP_PP_SELECT_B), DEBUGFS_REG32(DC_DISP_PP_SELECT_C), DEBUGFS_REG32(DC_DISP_PP_SELECT_D), DEBUGFS_REG32(DC_DISP_DISP_CLOCK_CONTROL), DEBUGFS_REG32(DC_DISP_DISP_INTERFACE_CONTROL), DEBUGFS_REG32(DC_DISP_DISP_COLOR_CONTROL), DEBUGFS_REG32(DC_DISP_SHIFT_CLOCK_OPTIONS), DEBUGFS_REG32(DC_DISP_DATA_ENABLE_OPTIONS), DEBUGFS_REG32(DC_DISP_SERIAL_INTERFACE_OPTIONS), DEBUGFS_REG32(DC_DISP_LCD_SPI_OPTIONS), DEBUGFS_REG32(DC_DISP_BORDER_COLOR), DEBUGFS_REG32(DC_DISP_COLOR_KEY0_LOWER), DEBUGFS_REG32(DC_DISP_COLOR_KEY0_UPPER), DEBUGFS_REG32(DC_DISP_COLOR_KEY1_LOWER), DEBUGFS_REG32(DC_DISP_COLOR_KEY1_UPPER), DEBUGFS_REG32(DC_DISP_CURSOR_FOREGROUND), DEBUGFS_REG32(DC_DISP_CURSOR_BACKGROUND), DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR), DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR_NS), DEBUGFS_REG32(DC_DISP_CURSOR_POSITION), DEBUGFS_REG32(DC_DISP_CURSOR_POSITION_NS), DEBUGFS_REG32(DC_DISP_INIT_SEQ_CONTROL), DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_A), DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_B), DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_C), DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_D), DEBUGFS_REG32(DC_DISP_DC_MCCIF_FIFOCTRL), DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY0A_HYST), DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY0B_HYST), DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY1A_HYST), DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY1B_HYST), DEBUGFS_REG32(DC_DISP_DAC_CRT_CTRL), DEBUGFS_REG32(DC_DISP_DISP_MISC_CONTROL), DEBUGFS_REG32(DC_DISP_SD_CONTROL), DEBUGFS_REG32(DC_DISP_SD_CSC_COEFF), DEBUGFS_REG32(DC_DISP_SD_LUT(0)), DEBUGFS_REG32(DC_DISP_SD_LUT(1)), DEBUGFS_REG32(DC_DISP_SD_LUT(2)), DEBUGFS_REG32(DC_DISP_SD_LUT(3)), DEBUGFS_REG32(DC_DISP_SD_LUT(4)), DEBUGFS_REG32(DC_DISP_SD_LUT(5)), DEBUGFS_REG32(DC_DISP_SD_LUT(6)), DEBUGFS_REG32(DC_DISP_SD_LUT(7)), DEBUGFS_REG32(DC_DISP_SD_LUT(8)), DEBUGFS_REG32(DC_DISP_SD_FLICKER_CONTROL), DEBUGFS_REG32(DC_DISP_DC_PIXEL_COUNT), DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(0)), DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(1)), DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(2)), DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(3)), DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(4)), DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(5)), DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(6)), DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(7)), DEBUGFS_REG32(DC_DISP_SD_BL_TF(0)), DEBUGFS_REG32(DC_DISP_SD_BL_TF(1)), DEBUGFS_REG32(DC_DISP_SD_BL_TF(2)), DEBUGFS_REG32(DC_DISP_SD_BL_TF(3)), DEBUGFS_REG32(DC_DISP_SD_BL_CONTROL), DEBUGFS_REG32(DC_DISP_SD_HW_K_VALUES), DEBUGFS_REG32(DC_DISP_SD_MAN_K_VALUES), DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR_HI), DEBUGFS_REG32(DC_DISP_BLEND_CURSOR_CONTROL), DEBUGFS_REG32(DC_WIN_WIN_OPTIONS), DEBUGFS_REG32(DC_WIN_BYTE_SWAP), DEBUGFS_REG32(DC_WIN_BUFFER_CONTROL), DEBUGFS_REG32(DC_WIN_COLOR_DEPTH), DEBUGFS_REG32(DC_WIN_POSITION), DEBUGFS_REG32(DC_WIN_SIZE), DEBUGFS_REG32(DC_WIN_PRESCALED_SIZE), DEBUGFS_REG32(DC_WIN_H_INITIAL_DDA), DEBUGFS_REG32(DC_WIN_V_INITIAL_DDA), DEBUGFS_REG32(DC_WIN_DDA_INC), DEBUGFS_REG32(DC_WIN_LINE_STRIDE), DEBUGFS_REG32(DC_WIN_BUF_STRIDE), DEBUGFS_REG32(DC_WIN_UV_BUF_STRIDE), DEBUGFS_REG32(DC_WIN_BUFFER_ADDR_MODE), DEBUGFS_REG32(DC_WIN_DV_CONTROL), DEBUGFS_REG32(DC_WIN_BLEND_NOKEY), DEBUGFS_REG32(DC_WIN_BLEND_1WIN), DEBUGFS_REG32(DC_WIN_BLEND_2WIN_X), DEBUGFS_REG32(DC_WIN_BLEND_2WIN_Y), DEBUGFS_REG32(DC_WIN_BLEND_3WIN_XY), DEBUGFS_REG32(DC_WIN_HP_FETCH_CONTROL), DEBUGFS_REG32(DC_WINBUF_START_ADDR), DEBUGFS_REG32(DC_WINBUF_START_ADDR_NS), DEBUGFS_REG32(DC_WINBUF_START_ADDR_U), DEBUGFS_REG32(DC_WINBUF_START_ADDR_U_NS), DEBUGFS_REG32(DC_WINBUF_START_ADDR_V), DEBUGFS_REG32(DC_WINBUF_START_ADDR_V_NS), DEBUGFS_REG32(DC_WINBUF_ADDR_H_OFFSET), DEBUGFS_REG32(DC_WINBUF_ADDR_H_OFFSET_NS), DEBUGFS_REG32(DC_WINBUF_ADDR_V_OFFSET), DEBUGFS_REG32(DC_WINBUF_ADDR_V_OFFSET_NS), DEBUGFS_REG32(DC_WINBUF_UFLOW_STATUS), DEBUGFS_REG32(DC_WINBUF_AD_UFLOW_STATUS), DEBUGFS_REG32(DC_WINBUF_BD_UFLOW_STATUS), DEBUGFS_REG32(DC_WINBUF_CD_UFLOW_STATUS), }; static int tegra_dc_show_regs(struct seq_file *s, void *data) { struct drm_info_node *node = s->private; struct tegra_dc *dc = node->info_ent->data; unsigned int i; int err = 0; drm_modeset_lock(&dc->base.mutex, NULL); if (!dc->base.state->active) { err = -EBUSY; goto unlock; } for (i = 0; i < ARRAY_SIZE(tegra_dc_regs); i++) { unsigned int offset = tegra_dc_regs[i].offset; seq_printf(s, "%-40s %#05x %08x\n", tegra_dc_regs[i].name, offset, tegra_dc_readl(dc, offset)); } unlock: drm_modeset_unlock(&dc->base.mutex); return err; } static int tegra_dc_show_crc(struct seq_file *s, void *data) { struct drm_info_node *node = s->private; struct tegra_dc *dc = node->info_ent->data; int err = 0; u32 value; drm_modeset_lock(&dc->base.mutex, NULL); if (!dc->base.state->active) { err = -EBUSY; goto unlock; } value = DC_COM_CRC_CONTROL_ACTIVE_DATA | DC_COM_CRC_CONTROL_ENABLE; tegra_dc_writel(dc, value, DC_COM_CRC_CONTROL); tegra_dc_commit(dc); drm_crtc_wait_one_vblank(&dc->base); drm_crtc_wait_one_vblank(&dc->base); value = tegra_dc_readl(dc, DC_COM_CRC_CHECKSUM); seq_printf(s, "%08x\n", value); tegra_dc_writel(dc, 0, DC_COM_CRC_CONTROL); unlock: drm_modeset_unlock(&dc->base.mutex); return err; } static int tegra_dc_show_stats(struct seq_file *s, void *data) { struct drm_info_node *node = s->private; struct tegra_dc *dc = node->info_ent->data; seq_printf(s, "frames: %lu\n", dc->stats.frames); seq_printf(s, "vblank: %lu\n", dc->stats.vblank); seq_printf(s, "underflow: %lu\n", dc->stats.underflow); seq_printf(s, "overflow: %lu\n", dc->stats.overflow); seq_printf(s, "frames total: %lu\n", dc->stats.frames_total); seq_printf(s, "vblank total: %lu\n", dc->stats.vblank_total); seq_printf(s, "underflow total: %lu\n", dc->stats.underflow_total); seq_printf(s, "overflow total: %lu\n", dc->stats.overflow_total); return 0; } static struct drm_info_list debugfs_files[] = { { "regs", tegra_dc_show_regs, 0, NULL }, { "crc", tegra_dc_show_crc, 0, NULL }, { "stats", tegra_dc_show_stats, 0, NULL }, }; static int tegra_dc_late_register(struct drm_crtc *crtc) { unsigned int i, count = ARRAY_SIZE(debugfs_files); struct drm_minor *minor = crtc->dev->primary; struct dentry *root; struct tegra_dc *dc = to_tegra_dc(crtc); #ifdef CONFIG_DEBUG_FS root = crtc->debugfs_entry; #else root = NULL; #endif dc->debugfs_files = kmemdup(debugfs_files, sizeof(debugfs_files), GFP_KERNEL); if (!dc->debugfs_files) return -ENOMEM; for (i = 0; i < count; i++) dc->debugfs_files[i].data = dc; drm_debugfs_create_files(dc->debugfs_files, count, root, minor); return 0; } static void tegra_dc_early_unregister(struct drm_crtc *crtc) { unsigned int count = ARRAY_SIZE(debugfs_files); struct drm_minor *minor = crtc->dev->primary; struct tegra_dc *dc = to_tegra_dc(crtc); struct dentry *root; #ifdef CONFIG_DEBUG_FS root = crtc->debugfs_entry; #else root = NULL; #endif drm_debugfs_remove_files(dc->debugfs_files, count, root, minor); kfree(dc->debugfs_files); dc->debugfs_files = NULL; } static u32 tegra_dc_get_vblank_counter(struct drm_crtc *crtc) { struct tegra_dc *dc = to_tegra_dc(crtc); /* XXX vblank syncpoints don't work with nvdisplay yet */ if (dc->syncpt && !dc->soc->has_nvdisplay) return host1x_syncpt_read(dc->syncpt); /* fallback to software emulated VBLANK counter */ return (u32)drm_crtc_vblank_count(&dc->base); } static int tegra_dc_enable_vblank(struct drm_crtc *crtc) { struct tegra_dc *dc = to_tegra_dc(crtc); u32 value; value = tegra_dc_readl(dc, DC_CMD_INT_MASK); value |= VBLANK_INT; tegra_dc_writel(dc, value, DC_CMD_INT_MASK); return 0; } static void tegra_dc_disable_vblank(struct drm_crtc *crtc) { struct tegra_dc *dc = to_tegra_dc(crtc); u32 value; value = tegra_dc_readl(dc, DC_CMD_INT_MASK); value &= ~VBLANK_INT; tegra_dc_writel(dc, value, DC_CMD_INT_MASK); } static const struct drm_crtc_funcs tegra_crtc_funcs = { .page_flip = drm_atomic_helper_page_flip, .set_config = drm_atomic_helper_set_config, .destroy = tegra_dc_destroy, .reset = tegra_crtc_reset, .atomic_duplicate_state = tegra_crtc_atomic_duplicate_state, .atomic_destroy_state = tegra_crtc_atomic_destroy_state, .late_register = tegra_dc_late_register, .early_unregister = tegra_dc_early_unregister, .get_vblank_counter = tegra_dc_get_vblank_counter, .enable_vblank = tegra_dc_enable_vblank, .disable_vblank = tegra_dc_disable_vblank, }; static int tegra_dc_set_timings(struct tegra_dc *dc, struct drm_display_mode *mode) { unsigned int h_ref_to_sync = 1; unsigned int v_ref_to_sync = 1; unsigned long value; if (!dc->soc->has_nvdisplay) { tegra_dc_writel(dc, 0x0, DC_DISP_DISP_TIMING_OPTIONS); value = (v_ref_to_sync << 16) | h_ref_to_sync; tegra_dc_writel(dc, value, DC_DISP_REF_TO_SYNC); } value = ((mode->vsync_end - mode->vsync_start) << 16) | ((mode->hsync_end - mode->hsync_start) << 0); tegra_dc_writel(dc, value, DC_DISP_SYNC_WIDTH); value = ((mode->vtotal - mode->vsync_end) << 16) | ((mode->htotal - mode->hsync_end) << 0); tegra_dc_writel(dc, value, DC_DISP_BACK_PORCH); value = ((mode->vsync_start - mode->vdisplay) << 16) | ((mode->hsync_start - mode->hdisplay) << 0); tegra_dc_writel(dc, value, DC_DISP_FRONT_PORCH); value = (mode->vdisplay << 16) | mode->hdisplay; tegra_dc_writel(dc, value, DC_DISP_ACTIVE); return 0; } /** * tegra_dc_state_setup_clock - check clock settings and store them in atomic * state * @dc: display controller * @crtc_state: CRTC atomic state * @clk: parent clock for display controller * @pclk: pixel clock * @div: shift clock divider * * Returns: * 0 on success or a negative error-code on failure. */ int tegra_dc_state_setup_clock(struct tegra_dc *dc, struct drm_crtc_state *crtc_state, struct clk *clk, unsigned long pclk, unsigned int div) { struct tegra_dc_state *state = to_dc_state(crtc_state); if (!clk_has_parent(dc->clk, clk)) return -EINVAL; state->clk = clk; state->pclk = pclk; state->div = div; return 0; } static void tegra_dc_update_voltage_state(struct tegra_dc *dc, struct tegra_dc_state *state) { unsigned long rate, pstate; struct dev_pm_opp *opp; int err; if (!dc->has_opp_table) return; /* calculate actual pixel clock rate which depends on internal divider */ rate = DIV_ROUND_UP(clk_get_rate(dc->clk) * 2, state->div + 2); /* find suitable OPP for the rate */ opp = dev_pm_opp_find_freq_ceil(dc->dev, &rate); /* * Very high resolution modes may results in a clock rate that is * above the characterized maximum. In this case it's okay to fall * back to the characterized maximum. */ if (opp == ERR_PTR(-ERANGE)) opp = dev_pm_opp_find_freq_floor(dc->dev, &rate); if (IS_ERR(opp)) { dev_err(dc->dev, "failed to find OPP for %luHz: %pe\n", rate, opp); return; } pstate = dev_pm_opp_get_required_pstate(opp, 0); dev_pm_opp_put(opp); /* * The minimum core voltage depends on the pixel clock rate (which * depends on internal clock divider of the CRTC) and not on the * rate of the display controller clock. This is why we're not using * dev_pm_opp_set_rate() API and instead controlling the power domain * directly. */ err = dev_pm_genpd_set_performance_state(dc->dev, pstate); if (err) dev_err(dc->dev, "failed to set power domain state to %lu: %d\n", pstate, err); } static void tegra_dc_set_clock_rate(struct tegra_dc *dc, struct tegra_dc_state *state) { int err; err = clk_set_parent(dc->clk, state->clk); if (err < 0) dev_err(dc->dev, "failed to set parent clock: %d\n", err); /* * Outputs may not want to change the parent clock rate. This is only * relevant to Tegra20 where only a single display PLL is available. * Since that PLL would typically be used for HDMI, an internal LVDS * panel would need to be driven by some other clock such as PLL_P * which is shared with other peripherals. Changing the clock rate * should therefore be avoided. */ if (state->pclk > 0) { err = clk_set_rate(state->clk, state->pclk); if (err < 0) dev_err(dc->dev, "failed to set clock rate to %lu Hz\n", state->pclk); err = clk_set_rate(dc->clk, state->pclk); if (err < 0) dev_err(dc->dev, "failed to set clock %pC to %lu Hz: %d\n", dc->clk, state->pclk, err); } DRM_DEBUG_KMS("rate: %lu, div: %u\n", clk_get_rate(dc->clk), state->div); DRM_DEBUG_KMS("pclk: %lu\n", state->pclk); tegra_dc_update_voltage_state(dc, state); } static void tegra_dc_stop(struct tegra_dc *dc) { u32 value; /* stop the display controller */ value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND); value &= ~DISP_CTRL_MODE_MASK; tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND); tegra_dc_commit(dc); } static bool tegra_dc_idle(struct tegra_dc *dc) { u32 value; value = tegra_dc_readl_active(dc, DC_CMD_DISPLAY_COMMAND); return (value & DISP_CTRL_MODE_MASK) == 0; } static int tegra_dc_wait_idle(struct tegra_dc *dc, unsigned long timeout) { timeout = jiffies + msecs_to_jiffies(timeout); while (time_before(jiffies, timeout)) { if (tegra_dc_idle(dc)) return 0; usleep_range(1000, 2000); } dev_dbg(dc->dev, "timeout waiting for DC to become idle\n"); return -ETIMEDOUT; } static void tegra_crtc_update_memory_bandwidth(struct drm_crtc *crtc, struct drm_atomic_state *state, bool prepare_bandwidth_transition) { const struct tegra_plane_state *old_tegra_state, *new_tegra_state; u32 i, new_avg_bw, old_avg_bw, new_peak_bw, old_peak_bw; const struct drm_plane_state *old_plane_state; const struct drm_crtc_state *old_crtc_state; struct tegra_dc_window window, old_window; struct tegra_dc *dc = to_tegra_dc(crtc); struct tegra_plane *tegra; struct drm_plane *plane; if (dc->soc->has_nvdisplay) return; old_crtc_state = drm_atomic_get_old_crtc_state(state, crtc); if (!crtc->state->active) { if (!old_crtc_state->active) return; /* * When CRTC is disabled on DPMS, the state of attached planes * is kept unchanged. Hence we need to enforce removal of the * bandwidths from the ICC paths. */ drm_atomic_crtc_for_each_plane(plane, crtc) { tegra = to_tegra_plane(plane); icc_set_bw(tegra->icc_mem, 0, 0); icc_set_bw(tegra->icc_mem_vfilter, 0, 0); } return; } for_each_old_plane_in_state(old_crtc_state->state, plane, old_plane_state, i) { old_tegra_state = to_const_tegra_plane_state(old_plane_state); new_tegra_state = to_const_tegra_plane_state(plane->state); tegra = to_tegra_plane(plane); /* * We're iterating over the global atomic state and it contains * planes from another CRTC, hence we need to filter out the * planes unrelated to this CRTC. */ if (tegra->dc != dc) continue; new_avg_bw = new_tegra_state->avg_memory_bandwidth; old_avg_bw = old_tegra_state->avg_memory_bandwidth; new_peak_bw = new_tegra_state->total_peak_memory_bandwidth; old_peak_bw = old_tegra_state->total_peak_memory_bandwidth; /* * See the comment related to !crtc->state->active above, * which explains why bandwidths need to be updated when * CRTC is turning ON. */ if (new_avg_bw == old_avg_bw && new_peak_bw == old_peak_bw && old_crtc_state->active) continue; window.src.h = drm_rect_height(&plane->state->src) >> 16; window.dst.h = drm_rect_height(&plane->state->dst); old_window.src.h = drm_rect_height(&old_plane_state->src) >> 16; old_window.dst.h = drm_rect_height(&old_plane_state->dst); /* * During the preparation phase (atomic_begin), the memory * freq should go high before the DC changes are committed * if bandwidth requirement goes up, otherwise memory freq * should to stay high if BW requirement goes down. The * opposite applies to the completion phase (post_commit). */ if (prepare_bandwidth_transition) { new_avg_bw = max(old_avg_bw, new_avg_bw); new_peak_bw = max(old_peak_bw, new_peak_bw); if (tegra_plane_use_vertical_filtering(tegra, &old_window)) window = old_window; } icc_set_bw(tegra->icc_mem, new_avg_bw, new_peak_bw); if (tegra_plane_use_vertical_filtering(tegra, &window)) icc_set_bw(tegra->icc_mem_vfilter, new_avg_bw, new_peak_bw); else icc_set_bw(tegra->icc_mem_vfilter, 0, 0); } } static void tegra_crtc_atomic_disable(struct drm_crtc *crtc, struct drm_atomic_state *state) { struct tegra_dc *dc = to_tegra_dc(crtc); u32 value; int err; if (!tegra_dc_idle(dc)) { tegra_dc_stop(dc); /* * Ignore the return value, there isn't anything useful to do * in case this fails. */ tegra_dc_wait_idle(dc, 100); } /* * This should really be part of the RGB encoder driver, but clearing * these bits has the side-effect of stopping the display controller. * When that happens no VBLANK interrupts will be raised. At the same * time the encoder is disabled before the display controller, so the * above code is always going to timeout waiting for the controller * to go idle. * * Given the close coupling between the RGB encoder and the display * controller doing it here is still kind of okay. None of the other * encoder drivers require these bits to be cleared. * * XXX: Perhaps given that the display controller is switched off at * this point anyway maybe clearing these bits isn't even useful for * the RGB encoder? */ if (dc->rgb) { value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL); value &= ~(PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE | PW4_ENABLE | PM0_ENABLE | PM1_ENABLE); tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL); } tegra_dc_stats_reset(&dc->stats); drm_crtc_vblank_off(crtc); spin_lock_irq(&crtc->dev->event_lock); if (crtc->state->event) { drm_crtc_send_vblank_event(crtc, crtc->state->event); crtc->state->event = NULL; } spin_unlock_irq(&crtc->dev->event_lock); err = host1x_client_suspend(&dc->client); if (err < 0) dev_err(dc->dev, "failed to suspend: %d\n", err); if (dc->has_opp_table) { err = dev_pm_genpd_set_performance_state(dc->dev, 0); if (err) dev_err(dc->dev, "failed to clear power domain state: %d\n", err); } } static void tegra_crtc_atomic_enable(struct drm_crtc *crtc, struct drm_atomic_state *state) { struct drm_display_mode *mode = &crtc->state->adjusted_mode; struct tegra_dc_state *crtc_state = to_dc_state(crtc->state); struct tegra_dc *dc = to_tegra_dc(crtc); u32 value; int err; /* apply PLL changes */ tegra_dc_set_clock_rate(dc, crtc_state); err = host1x_client_resume(&dc->client); if (err < 0) { dev_err(dc->dev, "failed to resume: %d\n", err); return; } /* initialize display controller */ if (dc->syncpt) { u32 syncpt = host1x_syncpt_id(dc->syncpt), enable; if (dc->soc->has_nvdisplay) enable = 1 << 31; else enable = 1 << 8; value = SYNCPT_CNTRL_NO_STALL; tegra_dc_writel(dc, value, DC_CMD_GENERAL_INCR_SYNCPT_CNTRL); value = enable | syncpt; tegra_dc_writel(dc, value, DC_CMD_CONT_SYNCPT_VSYNC); } if (dc->soc->has_nvdisplay) { value = DSC_TO_UF_INT | DSC_BBUF_UF_INT | DSC_RBUF_UF_INT | DSC_OBUF_UF_INT; tegra_dc_writel(dc, value, DC_CMD_INT_TYPE); value = DSC_TO_UF_INT | DSC_BBUF_UF_INT | DSC_RBUF_UF_INT | DSC_OBUF_UF_INT | SD3_BUCKET_WALK_DONE_INT | HEAD_UF_INT | MSF_INT | REG_TMOUT_INT | REGION_CRC_INT | V_PULSE2_INT | V_PULSE3_INT | VBLANK_INT | FRAME_END_INT; tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY); value = SD3_BUCKET_WALK_DONE_INT | HEAD_UF_INT | VBLANK_INT | FRAME_END_INT; tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE); value = HEAD_UF_INT | REG_TMOUT_INT | FRAME_END_INT; tegra_dc_writel(dc, value, DC_CMD_INT_MASK); tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS); } else { value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT | WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT; tegra_dc_writel(dc, value, DC_CMD_INT_TYPE); value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT | WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT; tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY); /* initialize timer */ value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(0x20) | WINDOW_B_THRESHOLD(0x20) | WINDOW_C_THRESHOLD(0x20); tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY); value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(1) | WINDOW_B_THRESHOLD(1) | WINDOW_C_THRESHOLD(1); tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER); value = VBLANK_INT | WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT | WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT; tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE); value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT | WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT; tegra_dc_writel(dc, value, DC_CMD_INT_MASK); } if (dc->soc->supports_background_color) tegra_dc_writel(dc, 0, DC_DISP_BLEND_BACKGROUND_COLOR); else tegra_dc_writel(dc, 0, DC_DISP_BORDER_COLOR); /* apply pixel clock changes */ if (!dc->soc->has_nvdisplay) { value = SHIFT_CLK_DIVIDER(crtc_state->div) | PIXEL_CLK_DIVIDER_PCD1; tegra_dc_writel(dc, value, DC_DISP_DISP_CLOCK_CONTROL); } /* program display mode */ tegra_dc_set_timings(dc, mode); /* interlacing isn't supported yet, so disable it */ if (dc->soc->supports_interlacing) { value = tegra_dc_readl(dc, DC_DISP_INTERLACE_CONTROL); value &= ~INTERLACE_ENABLE; tegra_dc_writel(dc, value, DC_DISP_INTERLACE_CONTROL); } value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND); value &= ~DISP_CTRL_MODE_MASK; value |= DISP_CTRL_MODE_C_DISPLAY; tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND); if (!dc->soc->has_nvdisplay) { value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL); value |= PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE | PW4_ENABLE | PM0_ENABLE | PM1_ENABLE; tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL); } /* enable underflow reporting and display red for missing pixels */ if (dc->soc->has_nvdisplay) { value = UNDERFLOW_MODE_RED | UNDERFLOW_REPORT_ENABLE; tegra_dc_writel(dc, value, DC_COM_RG_UNDERFLOW); } if (dc->rgb) { /* XXX: parameterize? */ value = SC0_H_QUALIFIER_NONE | SC1_H_QUALIFIER_NONE; tegra_dc_writel(dc, value, DC_DISP_SHIFT_CLOCK_OPTIONS); } tegra_dc_commit(dc); drm_crtc_vblank_on(crtc); } static void tegra_crtc_atomic_begin(struct drm_crtc *crtc, struct drm_atomic_state *state) { unsigned long flags; tegra_crtc_update_memory_bandwidth(crtc, state, true); if (crtc->state->event) { spin_lock_irqsave(&crtc->dev->event_lock, flags); if (drm_crtc_vblank_get(crtc) != 0) drm_crtc_send_vblank_event(crtc, crtc->state->event); else drm_crtc_arm_vblank_event(crtc, crtc->state->event); spin_unlock_irqrestore(&crtc->dev->event_lock, flags); crtc->state->event = NULL; } } static void tegra_crtc_atomic_flush(struct drm_crtc *crtc, struct drm_atomic_state *state) { struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state, crtc); struct tegra_dc_state *dc_state = to_dc_state(crtc_state); struct tegra_dc *dc = to_tegra_dc(crtc); u32 value; value = dc_state->planes << 8 | GENERAL_UPDATE; tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL); value = tegra_dc_readl(dc, DC_CMD_STATE_CONTROL); value = dc_state->planes | GENERAL_ACT_REQ; tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL); value = tegra_dc_readl(dc, DC_CMD_STATE_CONTROL); } static bool tegra_plane_is_cursor(const struct drm_plane_state *state) { const struct tegra_dc_soc_info *soc = to_tegra_dc(state->crtc)->soc; const struct drm_format_info *fmt = state->fb->format; unsigned int src_w = drm_rect_width(&state->src) >> 16; unsigned int dst_w = drm_rect_width(&state->dst); if (state->plane->type != DRM_PLANE_TYPE_CURSOR) return false; if (soc->supports_cursor) return true; if (src_w != dst_w || fmt->num_planes != 1 || src_w * fmt->cpp[0] > 256) return false; return true; } static unsigned long tegra_plane_overlap_mask(struct drm_crtc_state *state, const struct drm_plane_state *plane_state) { const struct drm_plane_state *other_state; const struct tegra_plane *tegra; unsigned long overlap_mask = 0; struct drm_plane *plane; struct drm_rect rect; if (!plane_state->visible || !plane_state->fb) return 0; /* * Data-prefetch FIFO will easily help to overcome temporal memory * pressure if other plane overlaps with the cursor plane. */ if (tegra_plane_is_cursor(plane_state)) return 0; drm_atomic_crtc_state_for_each_plane_state(plane, other_state, state) { rect = plane_state->dst; tegra = to_tegra_plane(other_state->plane); if (!other_state->visible || !other_state->fb) continue; /* * Ignore cursor plane overlaps because it's not practical to * assume that it contributes to the bandwidth in overlapping * area if window width is small. */ if (tegra_plane_is_cursor(other_state)) continue; if (drm_rect_intersect(&rect, &other_state->dst)) overlap_mask |= BIT(tegra->index); } return overlap_mask; } static int tegra_crtc_calculate_memory_bandwidth(struct drm_crtc *crtc, struct drm_atomic_state *state) { ulong overlap_mask[TEGRA_DC_LEGACY_PLANES_NUM] = {}, mask; u32 plane_peak_bw[TEGRA_DC_LEGACY_PLANES_NUM] = {}; bool all_planes_overlap_simultaneously = true; const struct tegra_plane_state *tegra_state; const struct drm_plane_state *plane_state; struct tegra_dc *dc = to_tegra_dc(crtc); struct drm_crtc_state *new_state; struct tegra_plane *tegra; struct drm_plane *plane; /* * The nv-display uses shared planes. The algorithm below assumes * maximum 3 planes per-CRTC, this assumption isn't applicable to * the nv-display. Note that T124 support has additional windows, * but currently they aren't supported by the driver. */ if (dc->soc->has_nvdisplay) return 0; new_state = drm_atomic_get_new_crtc_state(state, crtc); /* * For overlapping planes pixel's data is fetched for each plane at * the same time, hence bandwidths are accumulated in this case. * This needs to be taken into account for calculating total bandwidth * consumed by all planes. * * Here we get the overlapping state of each plane, which is a * bitmask of plane indices telling with what planes there is an * overlap. Note that bitmask[plane] includes BIT(plane) in order * to make further code nicer and simpler. */ drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, new_state) { tegra_state = to_const_tegra_plane_state(plane_state); tegra = to_tegra_plane(plane); if (WARN_ON_ONCE(tegra->index >= TEGRA_DC_LEGACY_PLANES_NUM)) return -EINVAL; plane_peak_bw[tegra->index] = tegra_state->peak_memory_bandwidth; mask = tegra_plane_overlap_mask(new_state, plane_state); overlap_mask[tegra->index] = mask; if (hweight_long(mask) != 3) all_planes_overlap_simultaneously = false; } /* * Then we calculate maximum bandwidth of each plane state. * The bandwidth includes the plane BW + BW of the "simultaneously" * overlapping planes, where "simultaneously" means areas where DC * fetches from the planes simultaneously during of scan-out process. * * For example, if plane A overlaps with planes B and C, but B and C * don't overlap, then the peak bandwidth will be either in area where * A-and-B or A-and-C planes overlap. * * The plane_peak_bw[] contains peak memory bandwidth values of * each plane, this information is needed by interconnect provider * in order to set up latency allowance based on the peak BW, see * tegra_crtc_update_memory_bandwidth(). */ drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, new_state) { u32 i, old_peak_bw, new_peak_bw, overlap_bw = 0; /* * Note that plane's atomic check doesn't touch the * total_peak_memory_bandwidth of enabled plane, hence the * current state contains the old bandwidth state from the * previous CRTC commit. */ tegra_state = to_const_tegra_plane_state(plane_state); tegra = to_tegra_plane(plane); for_each_set_bit(i, &overlap_mask[tegra->index], 3) { if (i == tegra->index) continue; if (all_planes_overlap_simultaneously) overlap_bw += plane_peak_bw[i]; else overlap_bw = max(overlap_bw, plane_peak_bw[i]); } new_peak_bw = plane_peak_bw[tegra->index] + overlap_bw; old_peak_bw = tegra_state->total_peak_memory_bandwidth; /* * If plane's peak bandwidth changed (for example plane isn't * overlapped anymore) and plane isn't in the atomic state, * then add plane to the state in order to have the bandwidth * updated. */ if (old_peak_bw != new_peak_bw) { struct tegra_plane_state *new_tegra_state; struct drm_plane_state *new_plane_state; new_plane_state = drm_atomic_get_plane_state(state, plane); if (IS_ERR(new_plane_state)) return PTR_ERR(new_plane_state); new_tegra_state = to_tegra_plane_state(new_plane_state); new_tegra_state->total_peak_memory_bandwidth = new_peak_bw; } } return 0; } static int tegra_crtc_atomic_check(struct drm_crtc *crtc, struct drm_atomic_state *state) { int err; err = tegra_crtc_calculate_memory_bandwidth(crtc, state); if (err) return err; return 0; } void tegra_crtc_atomic_post_commit(struct drm_crtc *crtc, struct drm_atomic_state *state) { /* * Display bandwidth is allowed to go down only once hardware state * is known to be armed, i.e. state was committed and VBLANK event * received. */ tegra_crtc_update_memory_bandwidth(crtc, state, false); } static const struct drm_crtc_helper_funcs tegra_crtc_helper_funcs = { .atomic_check = tegra_crtc_atomic_check, .atomic_begin = tegra_crtc_atomic_begin, .atomic_flush = tegra_crtc_atomic_flush, .atomic_enable = tegra_crtc_atomic_enable, .atomic_disable = tegra_crtc_atomic_disable, }; static irqreturn_t tegra_dc_irq(int irq, void *data) { struct tegra_dc *dc = data; unsigned long status; status = tegra_dc_readl(dc, DC_CMD_INT_STATUS); tegra_dc_writel(dc, status, DC_CMD_INT_STATUS); if (status & FRAME_END_INT) { /* dev_dbg(dc->dev, "%s(): frame end\n", __func__); */ dc->stats.frames_total++; dc->stats.frames++; } if (status & VBLANK_INT) { /* dev_dbg(dc->dev, "%s(): vertical blank\n", __func__); */ drm_crtc_handle_vblank(&dc->base); dc->stats.vblank_total++; dc->stats.vblank++; } if (status & (WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT)) { /* dev_dbg(dc->dev, "%s(): underflow\n", __func__); */ dc->stats.underflow_total++; dc->stats.underflow++; } if (status & (WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT)) { /* dev_dbg(dc->dev, "%s(): overflow\n", __func__); */ dc->stats.overflow_total++; dc->stats.overflow++; } if (status & HEAD_UF_INT) { dev_dbg_ratelimited(dc->dev, "%s(): head underflow\n", __func__); dc->stats.underflow_total++; dc->stats.underflow++; } return IRQ_HANDLED; } static bool tegra_dc_has_window_groups(struct tegra_dc *dc) { unsigned int i; if (!dc->soc->wgrps) return true; for (i = 0; i < dc->soc->num_wgrps; i++) { const struct tegra_windowgroup_soc *wgrp = &dc->soc->wgrps[i]; if (wgrp->dc == dc->pipe && wgrp->num_windows > 0) return true; } return false; } static int tegra_dc_early_init(struct host1x_client *client) { struct drm_device *drm = dev_get_drvdata(client->host); struct tegra_drm *tegra = drm->dev_private; tegra->num_crtcs++; return 0; } static int tegra_dc_init(struct host1x_client *client) { struct drm_device *drm = dev_get_drvdata(client->host); unsigned long flags = HOST1X_SYNCPT_CLIENT_MANAGED; struct tegra_dc *dc = host1x_client_to_dc(client); struct tegra_drm *tegra = drm->dev_private; struct drm_plane *primary = NULL; struct drm_plane *cursor = NULL; int err; /* * DC has been reset by now, so VBLANK syncpoint can be released * for general use. */ host1x_syncpt_release_vblank_reservation(client, 26 + dc->pipe); /* * XXX do not register DCs with no window groups because we cannot * assign a primary plane to them, which in turn will cause KMS to * crash. */ if (!tegra_dc_has_window_groups(dc)) return 0; /* * Set the display hub as the host1x client parent for the display * controller. This is needed for the runtime reference counting that * ensures the display hub is always powered when any of the display * controllers are. */ if (dc->soc->has_nvdisplay) client->parent = &tegra->hub->client; dc->syncpt = host1x_syncpt_request(client, flags); if (!dc->syncpt) dev_warn(dc->dev, "failed to allocate syncpoint\n"); err = host1x_client_iommu_attach(client); if (err < 0 && err != -ENODEV) { dev_err(client->dev, "failed to attach to domain: %d\n", err); return err; } if (dc->soc->wgrps) primary = tegra_dc_add_shared_planes(drm, dc); else primary = tegra_dc_add_planes(drm, dc); if (IS_ERR(primary)) { err = PTR_ERR(primary); goto cleanup; } if (dc->soc->supports_cursor) { cursor = tegra_dc_cursor_plane_create(drm, dc); if (IS_ERR(cursor)) { err = PTR_ERR(cursor); goto cleanup; } } else { /* dedicate one overlay to mouse cursor */ cursor = tegra_dc_overlay_plane_create(drm, dc, 2, true); if (IS_ERR(cursor)) { err = PTR_ERR(cursor); goto cleanup; } } err = drm_crtc_init_with_planes(drm, &dc->base, primary, cursor, &tegra_crtc_funcs, NULL); if (err < 0) goto cleanup; drm_crtc_helper_add(&dc->base, &tegra_crtc_helper_funcs); /* * Keep track of the minimum pitch alignment across all display * controllers. */ if (dc->soc->pitch_align > tegra->pitch_align) tegra->pitch_align = dc->soc->pitch_align; /* track maximum resolution */ if (dc->soc->has_nvdisplay) drm->mode_config.max_width = drm->mode_config.max_height = 16384; else drm->mode_config.max_width = drm->mode_config.max_height = 4096; err = tegra_dc_rgb_init(drm, dc); if (err < 0 && err != -ENODEV) { dev_err(dc->dev, "failed to initialize RGB output: %d\n", err); goto cleanup; } err = devm_request_irq(dc->dev, dc->irq, tegra_dc_irq, 0, dev_name(dc->dev), dc); if (err < 0) { dev_err(dc->dev, "failed to request IRQ#%u: %d\n", dc->irq, err); goto cleanup; } /* * Inherit the DMA parameters (such as maximum segment size) from the * parent host1x device. */ client->dev->dma_parms = client->host->dma_parms; return 0; cleanup: if (!IS_ERR_OR_NULL(cursor)) drm_plane_cleanup(cursor); if (!IS_ERR(primary)) drm_plane_cleanup(primary); host1x_client_iommu_detach(client); host1x_syncpt_put(dc->syncpt); return err; } static int tegra_dc_exit(struct host1x_client *client) { struct tegra_dc *dc = host1x_client_to_dc(client); int err; if (!tegra_dc_has_window_groups(dc)) return 0; /* avoid a dangling pointer just in case this disappears */ client->dev->dma_parms = NULL; devm_free_irq(dc->dev, dc->irq, dc); err = tegra_dc_rgb_exit(dc); if (err) { dev_err(dc->dev, "failed to shutdown RGB output: %d\n", err); return err; } host1x_client_iommu_detach(client); host1x_syncpt_put(dc->syncpt); return 0; } static int tegra_dc_late_exit(struct host1x_client *client) { struct drm_device *drm = dev_get_drvdata(client->host); struct tegra_drm *tegra = drm->dev_private; tegra->num_crtcs--; return 0; } static int tegra_dc_runtime_suspend(struct host1x_client *client) { struct tegra_dc *dc = host1x_client_to_dc(client); struct device *dev = client->dev; int err; err = reset_control_assert(dc->rst); if (err < 0) { dev_err(dev, "failed to assert reset: %d\n", err); return err; } if (dc->soc->has_powergate) tegra_powergate_power_off(dc->powergate); clk_disable_unprepare(dc->clk); pm_runtime_put_sync(dev); return 0; } static int tegra_dc_runtime_resume(struct host1x_client *client) { struct tegra_dc *dc = host1x_client_to_dc(client); struct device *dev = client->dev; int err; err = pm_runtime_resume_and_get(dev); if (err < 0) { dev_err(dev, "failed to get runtime PM: %d\n", err); return err; } if (dc->soc->has_powergate) { err = tegra_powergate_sequence_power_up(dc->powergate, dc->clk, dc->rst); if (err < 0) { dev_err(dev, "failed to power partition: %d\n", err); goto put_rpm; } } else { err = clk_prepare_enable(dc->clk); if (err < 0) { dev_err(dev, "failed to enable clock: %d\n", err); goto put_rpm; } err = reset_control_deassert(dc->rst); if (err < 0) { dev_err(dev, "failed to deassert reset: %d\n", err); goto disable_clk; } } return 0; disable_clk: clk_disable_unprepare(dc->clk); put_rpm: pm_runtime_put_sync(dev); return err; } static const struct host1x_client_ops dc_client_ops = { .early_init = tegra_dc_early_init, .init = tegra_dc_init, .exit = tegra_dc_exit, .late_exit = tegra_dc_late_exit, .suspend = tegra_dc_runtime_suspend, .resume = tegra_dc_runtime_resume, }; static const struct tegra_dc_soc_info tegra20_dc_soc_info = { .supports_background_color = false, .supports_interlacing = false, .supports_cursor = false, .supports_block_linear = false, .supports_sector_layout = false, .has_legacy_blending = true, .pitch_align = 8, .has_powergate = false, .coupled_pm = true, .has_nvdisplay = false, .num_primary_formats = ARRAY_SIZE(tegra20_primary_formats), .primary_formats = tegra20_primary_formats, .num_overlay_formats = ARRAY_SIZE(tegra20_overlay_formats), .overlay_formats = tegra20_overlay_formats, .modifiers = tegra20_modifiers, .has_win_a_without_filters = true, .has_win_b_vfilter_mem_client = true, .has_win_c_without_vert_filter = true, .plane_tiled_memory_bandwidth_x2 = false, .has_pll_d2_out0 = false, }; static const struct tegra_dc_soc_info tegra30_dc_soc_info = { .supports_background_color = false, .supports_interlacing = false, .supports_cursor = false, .supports_block_linear = false, .supports_sector_layout = false, .has_legacy_blending = true, .pitch_align = 8, .has_powergate = false, .coupled_pm = false, .has_nvdisplay = false, .num_primary_formats = ARRAY_SIZE(tegra20_primary_formats), .primary_formats = tegra20_primary_formats, .num_overlay_formats = ARRAY_SIZE(tegra20_overlay_formats), .overlay_formats = tegra20_overlay_formats, .modifiers = tegra20_modifiers, .has_win_a_without_filters = false, .has_win_b_vfilter_mem_client = true, .has_win_c_without_vert_filter = false, .plane_tiled_memory_bandwidth_x2 = true, .has_pll_d2_out0 = true, }; static const struct tegra_dc_soc_info tegra114_dc_soc_info = { .supports_background_color = false, .supports_interlacing = false, .supports_cursor = false, .supports_block_linear = false, .supports_sector_layout = false, .has_legacy_blending = true, .pitch_align = 64, .has_powergate = true, .coupled_pm = false, .has_nvdisplay = false, .num_primary_formats = ARRAY_SIZE(tegra114_primary_formats), .primary_formats = tegra114_primary_formats, .num_overlay_formats = ARRAY_SIZE(tegra114_overlay_formats), .overlay_formats = tegra114_overlay_formats, .modifiers = tegra20_modifiers, .has_win_a_without_filters = false, .has_win_b_vfilter_mem_client = false, .has_win_c_without_vert_filter = false, .plane_tiled_memory_bandwidth_x2 = true, .has_pll_d2_out0 = true, }; static const struct tegra_dc_soc_info tegra124_dc_soc_info = { .supports_background_color = true, .supports_interlacing = true, .supports_cursor = true, .supports_block_linear = true, .supports_sector_layout = false, .has_legacy_blending = false, .pitch_align = 64, .has_powergate = true, .coupled_pm = false, .has_nvdisplay = false, .num_primary_formats = ARRAY_SIZE(tegra124_primary_formats), .primary_formats = tegra124_primary_formats, .num_overlay_formats = ARRAY_SIZE(tegra124_overlay_formats), .overlay_formats = tegra124_overlay_formats, .modifiers = tegra124_modifiers, .has_win_a_without_filters = false, .has_win_b_vfilter_mem_client = false, .has_win_c_without_vert_filter = false, .plane_tiled_memory_bandwidth_x2 = false, .has_pll_d2_out0 = true, }; static const struct tegra_dc_soc_info tegra210_dc_soc_info = { .supports_background_color = true, .supports_interlacing = true, .supports_cursor = true, .supports_block_linear = true, .supports_sector_layout = false, .has_legacy_blending = false, .pitch_align = 64, .has_powergate = true, .coupled_pm = false, .has_nvdisplay = false, .num_primary_formats = ARRAY_SIZE(tegra114_primary_formats), .primary_formats = tegra114_primary_formats, .num_overlay_formats = ARRAY_SIZE(tegra114_overlay_formats), .overlay_formats = tegra114_overlay_formats, .modifiers = tegra124_modifiers, .has_win_a_without_filters = false, .has_win_b_vfilter_mem_client = false, .has_win_c_without_vert_filter = false, .plane_tiled_memory_bandwidth_x2 = false, .has_pll_d2_out0 = true, }; static const struct tegra_windowgroup_soc tegra186_dc_wgrps[] = { { .index = 0, .dc = 0, .windows = (const unsigned int[]) { 0 }, .num_windows = 1, }, { .index = 1, .dc = 1, .windows = (const unsigned int[]) { 1 }, .num_windows = 1, }, { .index = 2, .dc = 1, .windows = (const unsigned int[]) { 2 }, .num_windows = 1, }, { .index = 3, .dc = 2, .windows = (const unsigned int[]) { 3 }, .num_windows = 1, }, { .index = 4, .dc = 2, .windows = (const unsigned int[]) { 4 }, .num_windows = 1, }, { .index = 5, .dc = 2, .windows = (const unsigned int[]) { 5 }, .num_windows = 1, }, }; static const struct tegra_dc_soc_info tegra186_dc_soc_info = { .supports_background_color = true, .supports_interlacing = true, .supports_cursor = true, .supports_block_linear = true, .supports_sector_layout = false, .has_legacy_blending = false, .pitch_align = 64, .has_powergate = false, .coupled_pm = false, .has_nvdisplay = true, .wgrps = tegra186_dc_wgrps, .num_wgrps = ARRAY_SIZE(tegra186_dc_wgrps), .plane_tiled_memory_bandwidth_x2 = false, .has_pll_d2_out0 = false, }; static const struct tegra_windowgroup_soc tegra194_dc_wgrps[] = { { .index = 0, .dc = 0, .windows = (const unsigned int[]) { 0 }, .num_windows = 1, }, { .index = 1, .dc = 1, .windows = (const unsigned int[]) { 1 }, .num_windows = 1, }, { .index = 2, .dc = 1, .windows = (const unsigned int[]) { 2 }, .num_windows = 1, }, { .index = 3, .dc = 2, .windows = (const unsigned int[]) { 3 }, .num_windows = 1, }, { .index = 4, .dc = 2, .windows = (const unsigned int[]) { 4 }, .num_windows = 1, }, { .index = 5, .dc = 2, .windows = (const unsigned int[]) { 5 }, .num_windows = 1, }, }; static const struct tegra_dc_soc_info tegra194_dc_soc_info = { .supports_background_color = true, .supports_interlacing = true, .supports_cursor = true, .supports_block_linear = true, .supports_sector_layout = true, .has_legacy_blending = false, .pitch_align = 64, .has_powergate = false, .coupled_pm = false, .has_nvdisplay = true, .wgrps = tegra194_dc_wgrps, .num_wgrps = ARRAY_SIZE(tegra194_dc_wgrps), .plane_tiled_memory_bandwidth_x2 = false, .has_pll_d2_out0 = false, }; static const struct of_device_id tegra_dc_of_match[] = { { .compatible = "nvidia,tegra194-dc", .data = &tegra194_dc_soc_info, }, { .compatible = "nvidia,tegra186-dc", .data = &tegra186_dc_soc_info, }, { .compatible = "nvidia,tegra210-dc", .data = &tegra210_dc_soc_info, }, { .compatible = "nvidia,tegra124-dc", .data = &tegra124_dc_soc_info, }, { .compatible = "nvidia,tegra114-dc", .data = &tegra114_dc_soc_info, }, { .compatible = "nvidia,tegra30-dc", .data = &tegra30_dc_soc_info, }, { .compatible = "nvidia,tegra20-dc", .data = &tegra20_dc_soc_info, }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, tegra_dc_of_match); static int tegra_dc_parse_dt(struct tegra_dc *dc) { struct device_node *np; u32 value = 0; int err; err = of_property_read_u32(dc->dev->of_node, "nvidia,head", &value); if (err < 0) { dev_err(dc->dev, "missing \"nvidia,head\" property\n"); /* * If the nvidia,head property isn't present, try to find the * correct head number by looking up the position of this * display controller's node within the device tree. Assuming * that the nodes are ordered properly in the DTS file and * that the translation into a flattened device tree blob * preserves that ordering this will actually yield the right * head number. * * If those assumptions don't hold, this will still work for * cases where only a single display controller is used. */ for_each_matching_node(np, tegra_dc_of_match) { if (np == dc->dev->of_node) { of_node_put(np); break; } value++; } } dc->pipe = value; return 0; } static int tegra_dc_match_by_pipe(struct device *dev, const void *data) { struct tegra_dc *dc = dev_get_drvdata(dev); unsigned int pipe = (unsigned long)(void *)data; return dc->pipe == pipe; } static int tegra_dc_couple(struct tegra_dc *dc) { /* * On Tegra20, DC1 requires DC0 to be taken out of reset in order to * be enabled, otherwise CPU hangs on writing to CMD_DISPLAY_COMMAND / * POWER_CONTROL registers during CRTC enabling. */ if (dc->soc->coupled_pm && dc->pipe == 1) { struct device *companion; struct tegra_dc *parent; companion = driver_find_device(dc->dev->driver, NULL, (const void *)0, tegra_dc_match_by_pipe); if (!companion) return -EPROBE_DEFER; parent = dev_get_drvdata(companion); dc->client.parent = &parent->client; dev_dbg(dc->dev, "coupled to %s\n", dev_name(companion)); } return 0; } static int tegra_dc_init_opp_table(struct tegra_dc *dc) { struct tegra_core_opp_params opp_params = {}; int err; err = devm_tegra_core_dev_init_opp_table(dc->dev, &opp_params); if (err && err != -ENODEV) return err; if (err) dc->has_opp_table = false; else dc->has_opp_table = true; return 0; } static int tegra_dc_probe(struct platform_device *pdev) { u64 dma_mask = dma_get_mask(pdev->dev.parent); struct tegra_dc *dc; int err; err = dma_coerce_mask_and_coherent(&pdev->dev, dma_mask); if (err < 0) { dev_err(&pdev->dev, "failed to set DMA mask: %d\n", err); return err; } dc = devm_kzalloc(&pdev->dev, sizeof(*dc), GFP_KERNEL); if (!dc) return -ENOMEM; dc->soc = of_device_get_match_data(&pdev->dev); INIT_LIST_HEAD(&dc->list); dc->dev = &pdev->dev; err = tegra_dc_parse_dt(dc); if (err < 0) return err; err = tegra_dc_couple(dc); if (err < 0) return err; dc->clk = devm_clk_get(&pdev->dev, NULL); if (IS_ERR(dc->clk)) { dev_err(&pdev->dev, "failed to get clock\n"); return PTR_ERR(dc->clk); } dc->rst = devm_reset_control_get(&pdev->dev, "dc"); if (IS_ERR(dc->rst)) { dev_err(&pdev->dev, "failed to get reset\n"); return PTR_ERR(dc->rst); } /* assert reset and disable clock */ err = clk_prepare_enable(dc->clk); if (err < 0) return err; usleep_range(2000, 4000); err = reset_control_assert(dc->rst); if (err < 0) { clk_disable_unprepare(dc->clk); return err; } usleep_range(2000, 4000); clk_disable_unprepare(dc->clk); if (dc->soc->has_powergate) { if (dc->pipe == 0) dc->powergate = TEGRA_POWERGATE_DIS; else dc->powergate = TEGRA_POWERGATE_DISB; tegra_powergate_power_off(dc->powergate); } err = tegra_dc_init_opp_table(dc); if (err < 0) return err; dc->regs = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(dc->regs)) return PTR_ERR(dc->regs); dc->irq = platform_get_irq(pdev, 0); if (dc->irq < 0) return -ENXIO; err = tegra_dc_rgb_probe(dc); if (err < 0 && err != -ENODEV) return dev_err_probe(&pdev->dev, err, "failed to probe RGB output\n"); platform_set_drvdata(pdev, dc); pm_runtime_enable(&pdev->dev); INIT_LIST_HEAD(&dc->client.list); dc->client.ops = &dc_client_ops; dc->client.dev = &pdev->dev; err = host1x_client_register(&dc->client); if (err < 0) { dev_err(&pdev->dev, "failed to register host1x client: %d\n", err); goto disable_pm; } return 0; disable_pm: pm_runtime_disable(&pdev->dev); tegra_dc_rgb_remove(dc); return err; } static void tegra_dc_remove(struct platform_device *pdev) { struct tegra_dc *dc = platform_get_drvdata(pdev); host1x_client_unregister(&dc->client); tegra_dc_rgb_remove(dc); pm_runtime_disable(&pdev->dev); } struct platform_driver tegra_dc_driver = { .driver = { .name = "tegra-dc", .of_match_table = tegra_dc_of_match, }, .probe = tegra_dc_probe, .remove_new = tegra_dc_remove, };
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1