Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Jyri Sarha | 14504 | 96.47% | 2 | 8.33% |
Tomi Valkeinen | 313 | 2.08% | 6 | 25.00% |
Aradhya Bhatia | 117 | 0.78% | 2 | 8.33% |
Devarsh Thakkar | 59 | 0.39% | 1 | 4.17% |
Danilo Krummrich | 15 | 0.10% | 3 | 12.50% |
Andrew F. Davis | 7 | 0.05% | 1 | 4.17% |
Daniel Vetter | 6 | 0.04% | 2 | 8.33% |
Boris Brezillon | 3 | 0.02% | 1 | 4.17% |
Thomas Zimmermann | 2 | 0.01% | 1 | 4.17% |
Colin Ian King | 2 | 0.01% | 1 | 4.17% |
Wang Xiaojun | 2 | 0.01% | 1 | 4.17% |
Sam Ravnborg | 2 | 0.01% | 1 | 4.17% |
Randolph Sapp | 2 | 0.01% | 1 | 4.17% |
Alexander A. Klimov | 1 | 0.01% | 1 | 4.17% |
Total | 15035 | 24 |
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2016-2018 Texas Instruments Incorporated - https://www.ti.com/ * Author: Jyri Sarha <jsarha@ti.com> */ #include <linux/clk.h> #include <linux/delay.h> #include <linux/dma-mapping.h> #include <linux/err.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/kernel.h> #include <linux/media-bus-format.h> #include <linux/module.h> #include <linux/mfd/syscon.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/pm_runtime.h> #include <linux/regmap.h> #include <linux/sys_soc.h> #include <drm/drm_blend.h> #include <drm/drm_fourcc.h> #include <drm/drm_fb_dma_helper.h> #include <drm/drm_framebuffer.h> #include <drm/drm_gem_dma_helper.h> #include <drm/drm_panel.h> #include "tidss_crtc.h" #include "tidss_dispc.h" #include "tidss_drv.h" #include "tidss_irq.h" #include "tidss_plane.h" #include "tidss_dispc_regs.h" #include "tidss_scale_coefs.h" static const u16 tidss_k2g_common_regs[DISPC_COMMON_REG_TABLE_LEN] = { [DSS_REVISION_OFF] = 0x00, [DSS_SYSCONFIG_OFF] = 0x04, [DSS_SYSSTATUS_OFF] = 0x08, [DISPC_IRQ_EOI_OFF] = 0x20, [DISPC_IRQSTATUS_RAW_OFF] = 0x24, [DISPC_IRQSTATUS_OFF] = 0x28, [DISPC_IRQENABLE_SET_OFF] = 0x2c, [DISPC_IRQENABLE_CLR_OFF] = 0x30, [DISPC_GLOBAL_MFLAG_ATTRIBUTE_OFF] = 0x40, [DISPC_GLOBAL_BUFFER_OFF] = 0x44, [DISPC_DBG_CONTROL_OFF] = 0x4c, [DISPC_DBG_STATUS_OFF] = 0x50, [DISPC_CLKGATING_DISABLE_OFF] = 0x54, }; const struct dispc_features dispc_k2g_feats = { .min_pclk_khz = 4375, .max_pclk_khz = { [DISPC_VP_DPI] = 150000, }, /* * XXX According TRM the RGB input buffer width up to 2560 should * work on 3 taps, but in practice it only works up to 1280. */ .scaling = { .in_width_max_5tap_rgb = 1280, .in_width_max_3tap_rgb = 1280, .in_width_max_5tap_yuv = 2560, .in_width_max_3tap_yuv = 2560, .upscale_limit = 16, .downscale_limit_5tap = 4, .downscale_limit_3tap = 2, /* * The max supported pixel inc value is 255. The value * of pixel inc is calculated like this: 1+(xinc-1)*bpp. * The maximum bpp of all formats supported by the HW * is 8. So the maximum supported xinc value is 32, * because 1+(32-1)*8 < 255 < 1+(33-1)*4. */ .xinc_max = 32, }, .subrev = DISPC_K2G, .common = "common", .common_regs = tidss_k2g_common_regs, .num_vps = 1, .vp_name = { "vp1" }, .ovr_name = { "ovr1" }, .vpclk_name = { "vp1" }, .vp_bus_type = { DISPC_VP_DPI }, .vp_feat = { .color = { .has_ctm = true, .gamma_size = 256, .gamma_type = TIDSS_GAMMA_8BIT, }, }, .num_planes = 1, .vid_name = { "vid1" }, .vid_lite = { false }, .vid_order = { 0 }, }; static const u16 tidss_am65x_common_regs[DISPC_COMMON_REG_TABLE_LEN] = { [DSS_REVISION_OFF] = 0x4, [DSS_SYSCONFIG_OFF] = 0x8, [DSS_SYSSTATUS_OFF] = 0x20, [DISPC_IRQ_EOI_OFF] = 0x24, [DISPC_IRQSTATUS_RAW_OFF] = 0x28, [DISPC_IRQSTATUS_OFF] = 0x2c, [DISPC_IRQENABLE_SET_OFF] = 0x30, [DISPC_IRQENABLE_CLR_OFF] = 0x40, [DISPC_VID_IRQENABLE_OFF] = 0x44, [DISPC_VID_IRQSTATUS_OFF] = 0x58, [DISPC_VP_IRQENABLE_OFF] = 0x70, [DISPC_VP_IRQSTATUS_OFF] = 0x7c, [WB_IRQENABLE_OFF] = 0x88, [WB_IRQSTATUS_OFF] = 0x8c, [DISPC_GLOBAL_MFLAG_ATTRIBUTE_OFF] = 0x90, [DISPC_GLOBAL_OUTPUT_ENABLE_OFF] = 0x94, [DISPC_GLOBAL_BUFFER_OFF] = 0x98, [DSS_CBA_CFG_OFF] = 0x9c, [DISPC_DBG_CONTROL_OFF] = 0xa0, [DISPC_DBG_STATUS_OFF] = 0xa4, [DISPC_CLKGATING_DISABLE_OFF] = 0xa8, [DISPC_SECURE_DISABLE_OFF] = 0xac, }; const struct dispc_features dispc_am65x_feats = { .max_pclk_khz = { [DISPC_VP_DPI] = 165000, [DISPC_VP_OLDI] = 165000, }, .scaling = { .in_width_max_5tap_rgb = 1280, .in_width_max_3tap_rgb = 2560, .in_width_max_5tap_yuv = 2560, .in_width_max_3tap_yuv = 4096, .upscale_limit = 16, .downscale_limit_5tap = 4, .downscale_limit_3tap = 2, /* * The max supported pixel inc value is 255. The value * of pixel inc is calculated like this: 1+(xinc-1)*bpp. * The maximum bpp of all formats supported by the HW * is 8. So the maximum supported xinc value is 32, * because 1+(32-1)*8 < 255 < 1+(33-1)*4. */ .xinc_max = 32, }, .subrev = DISPC_AM65X, .common = "common", .common_regs = tidss_am65x_common_regs, .num_vps = 2, .vp_name = { "vp1", "vp2" }, .ovr_name = { "ovr1", "ovr2" }, .vpclk_name = { "vp1", "vp2" }, .vp_bus_type = { DISPC_VP_OLDI, DISPC_VP_DPI }, .vp_feat = { .color = { .has_ctm = true, .gamma_size = 256, .gamma_type = TIDSS_GAMMA_8BIT, }, }, .num_planes = 2, /* note: vid is plane_id 0 and vidl1 is plane_id 1 */ .vid_name = { "vid", "vidl1" }, .vid_lite = { false, true, }, .vid_order = { 1, 0 }, }; static const u16 tidss_j721e_common_regs[DISPC_COMMON_REG_TABLE_LEN] = { [DSS_REVISION_OFF] = 0x4, [DSS_SYSCONFIG_OFF] = 0x8, [DSS_SYSSTATUS_OFF] = 0x20, [DISPC_IRQ_EOI_OFF] = 0x80, [DISPC_IRQSTATUS_RAW_OFF] = 0x28, [DISPC_IRQSTATUS_OFF] = 0x2c, [DISPC_IRQENABLE_SET_OFF] = 0x30, [DISPC_IRQENABLE_CLR_OFF] = 0x34, [DISPC_VID_IRQENABLE_OFF] = 0x38, [DISPC_VID_IRQSTATUS_OFF] = 0x48, [DISPC_VP_IRQENABLE_OFF] = 0x58, [DISPC_VP_IRQSTATUS_OFF] = 0x68, [WB_IRQENABLE_OFF] = 0x78, [WB_IRQSTATUS_OFF] = 0x7c, [DISPC_GLOBAL_MFLAG_ATTRIBUTE_OFF] = 0x98, [DISPC_GLOBAL_OUTPUT_ENABLE_OFF] = 0x9c, [DISPC_GLOBAL_BUFFER_OFF] = 0xa0, [DSS_CBA_CFG_OFF] = 0xa4, [DISPC_DBG_CONTROL_OFF] = 0xa8, [DISPC_DBG_STATUS_OFF] = 0xac, [DISPC_CLKGATING_DISABLE_OFF] = 0xb0, [DISPC_SECURE_DISABLE_OFF] = 0x90, [FBDC_REVISION_1_OFF] = 0xb8, [FBDC_REVISION_2_OFF] = 0xbc, [FBDC_REVISION_3_OFF] = 0xc0, [FBDC_REVISION_4_OFF] = 0xc4, [FBDC_REVISION_5_OFF] = 0xc8, [FBDC_REVISION_6_OFF] = 0xcc, [FBDC_COMMON_CONTROL_OFF] = 0xd0, [FBDC_CONSTANT_COLOR_0_OFF] = 0xd4, [FBDC_CONSTANT_COLOR_1_OFF] = 0xd8, [DISPC_CONNECTIONS_OFF] = 0xe4, [DISPC_MSS_VP1_OFF] = 0xe8, [DISPC_MSS_VP3_OFF] = 0xec, }; const struct dispc_features dispc_j721e_feats = { .max_pclk_khz = { [DISPC_VP_DPI] = 170000, [DISPC_VP_INTERNAL] = 600000, }, .scaling = { .in_width_max_5tap_rgb = 2048, .in_width_max_3tap_rgb = 4096, .in_width_max_5tap_yuv = 4096, .in_width_max_3tap_yuv = 4096, .upscale_limit = 16, .downscale_limit_5tap = 4, .downscale_limit_3tap = 2, /* * The max supported pixel inc value is 255. The value * of pixel inc is calculated like this: 1+(xinc-1)*bpp. * The maximum bpp of all formats supported by the HW * is 8. So the maximum supported xinc value is 32, * because 1+(32-1)*8 < 255 < 1+(33-1)*4. */ .xinc_max = 32, }, .subrev = DISPC_J721E, .common = "common_m", .common_regs = tidss_j721e_common_regs, .num_vps = 4, .vp_name = { "vp1", "vp2", "vp3", "vp4" }, .ovr_name = { "ovr1", "ovr2", "ovr3", "ovr4" }, .vpclk_name = { "vp1", "vp2", "vp3", "vp4" }, /* Currently hard coded VP routing (see dispc_initial_config()) */ .vp_bus_type = { DISPC_VP_INTERNAL, DISPC_VP_DPI, DISPC_VP_INTERNAL, DISPC_VP_DPI, }, .vp_feat = { .color = { .has_ctm = true, .gamma_size = 1024, .gamma_type = TIDSS_GAMMA_10BIT, }, }, .num_planes = 4, .vid_name = { "vid1", "vidl1", "vid2", "vidl2" }, .vid_lite = { 0, 1, 0, 1, }, .vid_order = { 1, 3, 0, 2 }, }; const struct dispc_features dispc_am625_feats = { .max_pclk_khz = { [DISPC_VP_DPI] = 165000, [DISPC_VP_INTERNAL] = 170000, }, .scaling = { .in_width_max_5tap_rgb = 1280, .in_width_max_3tap_rgb = 2560, .in_width_max_5tap_yuv = 2560, .in_width_max_3tap_yuv = 4096, .upscale_limit = 16, .downscale_limit_5tap = 4, .downscale_limit_3tap = 2, /* * The max supported pixel inc value is 255. The value * of pixel inc is calculated like this: 1+(xinc-1)*bpp. * The maximum bpp of all formats supported by the HW * is 8. So the maximum supported xinc value is 32, * because 1+(32-1)*8 < 255 < 1+(33-1)*4. */ .xinc_max = 32, }, .subrev = DISPC_AM625, .common = "common", .common_regs = tidss_am65x_common_regs, .num_vps = 2, .vp_name = { "vp1", "vp2" }, .ovr_name = { "ovr1", "ovr2" }, .vpclk_name = { "vp1", "vp2" }, .vp_bus_type = { DISPC_VP_INTERNAL, DISPC_VP_DPI }, .vp_feat = { .color = { .has_ctm = true, .gamma_size = 256, .gamma_type = TIDSS_GAMMA_8BIT, }, }, .num_planes = 2, /* note: vid is plane_id 0 and vidl1 is plane_id 1 */ .vid_name = { "vid", "vidl1" }, .vid_lite = { false, true, }, .vid_order = { 1, 0 }, }; const struct dispc_features dispc_am62a7_feats = { /* * if the code reaches dispc_mode_valid with VP1, * it should return MODE_BAD. */ .max_pclk_khz = { [DISPC_VP_TIED_OFF] = 0, [DISPC_VP_DPI] = 165000, }, .scaling = { .in_width_max_5tap_rgb = 1280, .in_width_max_3tap_rgb = 2560, .in_width_max_5tap_yuv = 2560, .in_width_max_3tap_yuv = 4096, .upscale_limit = 16, .downscale_limit_5tap = 4, .downscale_limit_3tap = 2, /* * The max supported pixel inc value is 255. The value * of pixel inc is calculated like this: 1+(xinc-1)*bpp. * The maximum bpp of all formats supported by the HW * is 8. So the maximum supported xinc value is 32, * because 1+(32-1)*8 < 255 < 1+(33-1)*4. */ .xinc_max = 32, }, .subrev = DISPC_AM62A7, .common = "common", .common_regs = tidss_am65x_common_regs, .num_vps = 2, .vp_name = { "vp1", "vp2" }, .ovr_name = { "ovr1", "ovr2" }, .vpclk_name = { "vp1", "vp2" }, /* VP1 of the DSS in AM62A7 SoC is tied off internally */ .vp_bus_type = { DISPC_VP_TIED_OFF, DISPC_VP_DPI }, .vp_feat = { .color = { .has_ctm = true, .gamma_size = 256, .gamma_type = TIDSS_GAMMA_8BIT, }, }, .num_planes = 2, /* note: vid is plane_id 0 and vidl1 is plane_id 1 */ .vid_name = { "vid", "vidl1" }, .vid_lite = { false, true, }, .vid_order = { 1, 0 }, }; static const u16 *dispc_common_regmap; struct dss_vp_data { u32 *gamma_table; }; struct dispc_device { struct tidss_device *tidss; struct device *dev; void __iomem *base_common; void __iomem *base_vid[TIDSS_MAX_PLANES]; void __iomem *base_ovr[TIDSS_MAX_PORTS]; void __iomem *base_vp[TIDSS_MAX_PORTS]; struct regmap *oldi_io_ctrl; struct clk *vp_clk[TIDSS_MAX_PORTS]; const struct dispc_features *feat; struct clk *fclk; bool is_enabled; struct dss_vp_data vp_data[TIDSS_MAX_PORTS]; u32 *fourccs; u32 num_fourccs; u32 memory_bandwidth_limit; struct dispc_errata errata; }; static void dispc_write(struct dispc_device *dispc, u16 reg, u32 val) { iowrite32(val, dispc->base_common + reg); } static u32 dispc_read(struct dispc_device *dispc, u16 reg) { return ioread32(dispc->base_common + reg); } static void dispc_vid_write(struct dispc_device *dispc, u32 hw_plane, u16 reg, u32 val) { void __iomem *base = dispc->base_vid[hw_plane]; iowrite32(val, base + reg); } static u32 dispc_vid_read(struct dispc_device *dispc, u32 hw_plane, u16 reg) { void __iomem *base = dispc->base_vid[hw_plane]; return ioread32(base + reg); } static void dispc_ovr_write(struct dispc_device *dispc, u32 hw_videoport, u16 reg, u32 val) { void __iomem *base = dispc->base_ovr[hw_videoport]; iowrite32(val, base + reg); } static u32 dispc_ovr_read(struct dispc_device *dispc, u32 hw_videoport, u16 reg) { void __iomem *base = dispc->base_ovr[hw_videoport]; return ioread32(base + reg); } static void dispc_vp_write(struct dispc_device *dispc, u32 hw_videoport, u16 reg, u32 val) { void __iomem *base = dispc->base_vp[hw_videoport]; iowrite32(val, base + reg); } static u32 dispc_vp_read(struct dispc_device *dispc, u32 hw_videoport, u16 reg) { void __iomem *base = dispc->base_vp[hw_videoport]; return ioread32(base + reg); } /* * TRM gives bitfields as start:end, where start is the higher bit * number. For example 7:0 */ static u32 FLD_MASK(u32 start, u32 end) { return ((1 << (start - end + 1)) - 1) << end; } static u32 FLD_VAL(u32 val, u32 start, u32 end) { return (val << end) & FLD_MASK(start, end); } static u32 FLD_GET(u32 val, u32 start, u32 end) { return (val & FLD_MASK(start, end)) >> end; } static u32 FLD_MOD(u32 orig, u32 val, u32 start, u32 end) { return (orig & ~FLD_MASK(start, end)) | FLD_VAL(val, start, end); } static u32 REG_GET(struct dispc_device *dispc, u32 idx, u32 start, u32 end) { return FLD_GET(dispc_read(dispc, idx), start, end); } static void REG_FLD_MOD(struct dispc_device *dispc, u32 idx, u32 val, u32 start, u32 end) { dispc_write(dispc, idx, FLD_MOD(dispc_read(dispc, idx), val, start, end)); } static u32 VID_REG_GET(struct dispc_device *dispc, u32 hw_plane, u32 idx, u32 start, u32 end) { return FLD_GET(dispc_vid_read(dispc, hw_plane, idx), start, end); } static void VID_REG_FLD_MOD(struct dispc_device *dispc, u32 hw_plane, u32 idx, u32 val, u32 start, u32 end) { dispc_vid_write(dispc, hw_plane, idx, FLD_MOD(dispc_vid_read(dispc, hw_plane, idx), val, start, end)); } static u32 VP_REG_GET(struct dispc_device *dispc, u32 vp, u32 idx, u32 start, u32 end) { return FLD_GET(dispc_vp_read(dispc, vp, idx), start, end); } static void VP_REG_FLD_MOD(struct dispc_device *dispc, u32 vp, u32 idx, u32 val, u32 start, u32 end) { dispc_vp_write(dispc, vp, idx, FLD_MOD(dispc_vp_read(dispc, vp, idx), val, start, end)); } __maybe_unused static u32 OVR_REG_GET(struct dispc_device *dispc, u32 ovr, u32 idx, u32 start, u32 end) { return FLD_GET(dispc_ovr_read(dispc, ovr, idx), start, end); } static void OVR_REG_FLD_MOD(struct dispc_device *dispc, u32 ovr, u32 idx, u32 val, u32 start, u32 end) { dispc_ovr_write(dispc, ovr, idx, FLD_MOD(dispc_ovr_read(dispc, ovr, idx), val, start, end)); } static dispc_irq_t dispc_vp_irq_from_raw(u32 stat, u32 hw_videoport) { dispc_irq_t vp_stat = 0; if (stat & BIT(0)) vp_stat |= DSS_IRQ_VP_FRAME_DONE(hw_videoport); if (stat & BIT(1)) vp_stat |= DSS_IRQ_VP_VSYNC_EVEN(hw_videoport); if (stat & BIT(2)) vp_stat |= DSS_IRQ_VP_VSYNC_ODD(hw_videoport); if (stat & BIT(4)) vp_stat |= DSS_IRQ_VP_SYNC_LOST(hw_videoport); return vp_stat; } static u32 dispc_vp_irq_to_raw(dispc_irq_t vpstat, u32 hw_videoport) { u32 stat = 0; if (vpstat & DSS_IRQ_VP_FRAME_DONE(hw_videoport)) stat |= BIT(0); if (vpstat & DSS_IRQ_VP_VSYNC_EVEN(hw_videoport)) stat |= BIT(1); if (vpstat & DSS_IRQ_VP_VSYNC_ODD(hw_videoport)) stat |= BIT(2); if (vpstat & DSS_IRQ_VP_SYNC_LOST(hw_videoport)) stat |= BIT(4); return stat; } static dispc_irq_t dispc_vid_irq_from_raw(u32 stat, u32 hw_plane) { dispc_irq_t vid_stat = 0; if (stat & BIT(0)) vid_stat |= DSS_IRQ_PLANE_FIFO_UNDERFLOW(hw_plane); return vid_stat; } static u32 dispc_vid_irq_to_raw(dispc_irq_t vidstat, u32 hw_plane) { u32 stat = 0; if (vidstat & DSS_IRQ_PLANE_FIFO_UNDERFLOW(hw_plane)) stat |= BIT(0); return stat; } static dispc_irq_t dispc_k2g_vp_read_irqstatus(struct dispc_device *dispc, u32 hw_videoport) { u32 stat = dispc_vp_read(dispc, hw_videoport, DISPC_VP_K2G_IRQSTATUS); return dispc_vp_irq_from_raw(stat, hw_videoport); } static void dispc_k2g_vp_write_irqstatus(struct dispc_device *dispc, u32 hw_videoport, dispc_irq_t vpstat) { u32 stat = dispc_vp_irq_to_raw(vpstat, hw_videoport); dispc_vp_write(dispc, hw_videoport, DISPC_VP_K2G_IRQSTATUS, stat); } static dispc_irq_t dispc_k2g_vid_read_irqstatus(struct dispc_device *dispc, u32 hw_plane) { u32 stat = dispc_vid_read(dispc, hw_plane, DISPC_VID_K2G_IRQSTATUS); return dispc_vid_irq_from_raw(stat, hw_plane); } static void dispc_k2g_vid_write_irqstatus(struct dispc_device *dispc, u32 hw_plane, dispc_irq_t vidstat) { u32 stat = dispc_vid_irq_to_raw(vidstat, hw_plane); dispc_vid_write(dispc, hw_plane, DISPC_VID_K2G_IRQSTATUS, stat); } static dispc_irq_t dispc_k2g_vp_read_irqenable(struct dispc_device *dispc, u32 hw_videoport) { u32 stat = dispc_vp_read(dispc, hw_videoport, DISPC_VP_K2G_IRQENABLE); return dispc_vp_irq_from_raw(stat, hw_videoport); } static void dispc_k2g_vp_set_irqenable(struct dispc_device *dispc, u32 hw_videoport, dispc_irq_t vpstat) { u32 stat = dispc_vp_irq_to_raw(vpstat, hw_videoport); dispc_vp_write(dispc, hw_videoport, DISPC_VP_K2G_IRQENABLE, stat); } static dispc_irq_t dispc_k2g_vid_read_irqenable(struct dispc_device *dispc, u32 hw_plane) { u32 stat = dispc_vid_read(dispc, hw_plane, DISPC_VID_K2G_IRQENABLE); return dispc_vid_irq_from_raw(stat, hw_plane); } static void dispc_k2g_vid_set_irqenable(struct dispc_device *dispc, u32 hw_plane, dispc_irq_t vidstat) { u32 stat = dispc_vid_irq_to_raw(vidstat, hw_plane); dispc_vid_write(dispc, hw_plane, DISPC_VID_K2G_IRQENABLE, stat); } static void dispc_k2g_clear_irqstatus(struct dispc_device *dispc, dispc_irq_t mask) { dispc_k2g_vp_write_irqstatus(dispc, 0, mask); dispc_k2g_vid_write_irqstatus(dispc, 0, mask); } static dispc_irq_t dispc_k2g_read_and_clear_irqstatus(struct dispc_device *dispc) { dispc_irq_t stat = 0; /* always clear the top level irqstatus */ dispc_write(dispc, DISPC_IRQSTATUS, dispc_read(dispc, DISPC_IRQSTATUS)); stat |= dispc_k2g_vp_read_irqstatus(dispc, 0); stat |= dispc_k2g_vid_read_irqstatus(dispc, 0); dispc_k2g_clear_irqstatus(dispc, stat); return stat; } static dispc_irq_t dispc_k2g_read_irqenable(struct dispc_device *dispc) { dispc_irq_t stat = 0; stat |= dispc_k2g_vp_read_irqenable(dispc, 0); stat |= dispc_k2g_vid_read_irqenable(dispc, 0); return stat; } static void dispc_k2g_set_irqenable(struct dispc_device *dispc, dispc_irq_t mask) { dispc_irq_t old_mask = dispc_k2g_read_irqenable(dispc); /* clear the irqstatus for newly enabled irqs */ dispc_k2g_clear_irqstatus(dispc, (mask ^ old_mask) & mask); dispc_k2g_vp_set_irqenable(dispc, 0, mask); dispc_k2g_vid_set_irqenable(dispc, 0, mask); dispc_write(dispc, DISPC_IRQENABLE_SET, (1 << 0) | (1 << 7)); /* flush posted write */ dispc_k2g_read_irqenable(dispc); } static dispc_irq_t dispc_k3_vp_read_irqstatus(struct dispc_device *dispc, u32 hw_videoport) { u32 stat = dispc_read(dispc, DISPC_VP_IRQSTATUS(hw_videoport)); return dispc_vp_irq_from_raw(stat, hw_videoport); } static void dispc_k3_vp_write_irqstatus(struct dispc_device *dispc, u32 hw_videoport, dispc_irq_t vpstat) { u32 stat = dispc_vp_irq_to_raw(vpstat, hw_videoport); dispc_write(dispc, DISPC_VP_IRQSTATUS(hw_videoport), stat); } static dispc_irq_t dispc_k3_vid_read_irqstatus(struct dispc_device *dispc, u32 hw_plane) { u32 stat = dispc_read(dispc, DISPC_VID_IRQSTATUS(hw_plane)); return dispc_vid_irq_from_raw(stat, hw_plane); } static void dispc_k3_vid_write_irqstatus(struct dispc_device *dispc, u32 hw_plane, dispc_irq_t vidstat) { u32 stat = dispc_vid_irq_to_raw(vidstat, hw_plane); dispc_write(dispc, DISPC_VID_IRQSTATUS(hw_plane), stat); } static dispc_irq_t dispc_k3_vp_read_irqenable(struct dispc_device *dispc, u32 hw_videoport) { u32 stat = dispc_read(dispc, DISPC_VP_IRQENABLE(hw_videoport)); return dispc_vp_irq_from_raw(stat, hw_videoport); } static void dispc_k3_vp_set_irqenable(struct dispc_device *dispc, u32 hw_videoport, dispc_irq_t vpstat) { u32 stat = dispc_vp_irq_to_raw(vpstat, hw_videoport); dispc_write(dispc, DISPC_VP_IRQENABLE(hw_videoport), stat); } static dispc_irq_t dispc_k3_vid_read_irqenable(struct dispc_device *dispc, u32 hw_plane) { u32 stat = dispc_read(dispc, DISPC_VID_IRQENABLE(hw_plane)); return dispc_vid_irq_from_raw(stat, hw_plane); } static void dispc_k3_vid_set_irqenable(struct dispc_device *dispc, u32 hw_plane, dispc_irq_t vidstat) { u32 stat = dispc_vid_irq_to_raw(vidstat, hw_plane); dispc_write(dispc, DISPC_VID_IRQENABLE(hw_plane), stat); } static void dispc_k3_clear_irqstatus(struct dispc_device *dispc, dispc_irq_t clearmask) { unsigned int i; u32 top_clear = 0; for (i = 0; i < dispc->feat->num_vps; ++i) { if (clearmask & DSS_IRQ_VP_MASK(i)) { dispc_k3_vp_write_irqstatus(dispc, i, clearmask); top_clear |= BIT(i); } } for (i = 0; i < dispc->feat->num_planes; ++i) { if (clearmask & DSS_IRQ_PLANE_MASK(i)) { dispc_k3_vid_write_irqstatus(dispc, i, clearmask); top_clear |= BIT(4 + i); } } if (dispc->feat->subrev == DISPC_K2G) return; dispc_write(dispc, DISPC_IRQSTATUS, top_clear); /* Flush posted writes */ dispc_read(dispc, DISPC_IRQSTATUS); } static dispc_irq_t dispc_k3_read_and_clear_irqstatus(struct dispc_device *dispc) { dispc_irq_t status = 0; unsigned int i; for (i = 0; i < dispc->feat->num_vps; ++i) status |= dispc_k3_vp_read_irqstatus(dispc, i); for (i = 0; i < dispc->feat->num_planes; ++i) status |= dispc_k3_vid_read_irqstatus(dispc, i); dispc_k3_clear_irqstatus(dispc, status); return status; } static dispc_irq_t dispc_k3_read_irqenable(struct dispc_device *dispc) { dispc_irq_t enable = 0; unsigned int i; for (i = 0; i < dispc->feat->num_vps; ++i) enable |= dispc_k3_vp_read_irqenable(dispc, i); for (i = 0; i < dispc->feat->num_planes; ++i) enable |= dispc_k3_vid_read_irqenable(dispc, i); return enable; } static void dispc_k3_set_irqenable(struct dispc_device *dispc, dispc_irq_t mask) { unsigned int i; u32 main_enable = 0, main_disable = 0; dispc_irq_t old_mask; old_mask = dispc_k3_read_irqenable(dispc); /* clear the irqstatus for newly enabled irqs */ dispc_k3_clear_irqstatus(dispc, (old_mask ^ mask) & mask); for (i = 0; i < dispc->feat->num_vps; ++i) { dispc_k3_vp_set_irqenable(dispc, i, mask); if (mask & DSS_IRQ_VP_MASK(i)) main_enable |= BIT(i); /* VP IRQ */ else main_disable |= BIT(i); /* VP IRQ */ } for (i = 0; i < dispc->feat->num_planes; ++i) { dispc_k3_vid_set_irqenable(dispc, i, mask); if (mask & DSS_IRQ_PLANE_MASK(i)) main_enable |= BIT(i + 4); /* VID IRQ */ else main_disable |= BIT(i + 4); /* VID IRQ */ } if (main_enable) dispc_write(dispc, DISPC_IRQENABLE_SET, main_enable); if (main_disable) dispc_write(dispc, DISPC_IRQENABLE_CLR, main_disable); /* Flush posted writes */ dispc_read(dispc, DISPC_IRQENABLE_SET); } dispc_irq_t dispc_read_and_clear_irqstatus(struct dispc_device *dispc) { switch (dispc->feat->subrev) { case DISPC_K2G: return dispc_k2g_read_and_clear_irqstatus(dispc); case DISPC_AM625: case DISPC_AM62A7: case DISPC_AM65X: case DISPC_J721E: return dispc_k3_read_and_clear_irqstatus(dispc); default: WARN_ON(1); return 0; } } void dispc_set_irqenable(struct dispc_device *dispc, dispc_irq_t mask) { switch (dispc->feat->subrev) { case DISPC_K2G: dispc_k2g_set_irqenable(dispc, mask); break; case DISPC_AM625: case DISPC_AM62A7: case DISPC_AM65X: case DISPC_J721E: dispc_k3_set_irqenable(dispc, mask); break; default: WARN_ON(1); break; } } enum dispc_oldi_mode_reg_val { SPWG_18 = 0, JEIDA_24 = 1, SPWG_24 = 2 }; struct dispc_bus_format { u32 bus_fmt; u32 data_width; bool is_oldi_fmt; enum dispc_oldi_mode_reg_val oldi_mode_reg_val; }; static const struct dispc_bus_format dispc_bus_formats[] = { { MEDIA_BUS_FMT_RGB444_1X12, 12, false, 0 }, { MEDIA_BUS_FMT_RGB565_1X16, 16, false, 0 }, { MEDIA_BUS_FMT_RGB666_1X18, 18, false, 0 }, { MEDIA_BUS_FMT_RGB888_1X24, 24, false, 0 }, { MEDIA_BUS_FMT_RGB101010_1X30, 30, false, 0 }, { MEDIA_BUS_FMT_RGB121212_1X36, 36, false, 0 }, { MEDIA_BUS_FMT_RGB666_1X7X3_SPWG, 18, true, SPWG_18 }, { MEDIA_BUS_FMT_RGB888_1X7X4_SPWG, 24, true, SPWG_24 }, { MEDIA_BUS_FMT_RGB888_1X7X4_JEIDA, 24, true, JEIDA_24 }, }; static const struct dispc_bus_format *dispc_vp_find_bus_fmt(struct dispc_device *dispc, u32 hw_videoport, u32 bus_fmt, u32 bus_flags) { unsigned int i; for (i = 0; i < ARRAY_SIZE(dispc_bus_formats); ++i) { if (dispc_bus_formats[i].bus_fmt == bus_fmt) return &dispc_bus_formats[i]; } return NULL; } int dispc_vp_bus_check(struct dispc_device *dispc, u32 hw_videoport, const struct drm_crtc_state *state) { const struct tidss_crtc_state *tstate = to_tidss_crtc_state(state); const struct dispc_bus_format *fmt; fmt = dispc_vp_find_bus_fmt(dispc, hw_videoport, tstate->bus_format, tstate->bus_flags); if (!fmt) { dev_dbg(dispc->dev, "%s: Unsupported bus format: %u\n", __func__, tstate->bus_format); return -EINVAL; } if (dispc->feat->vp_bus_type[hw_videoport] != DISPC_VP_OLDI && fmt->is_oldi_fmt) { dev_dbg(dispc->dev, "%s: %s is not OLDI-port\n", __func__, dispc->feat->vp_name[hw_videoport]); return -EINVAL; } return 0; } static void dispc_oldi_tx_power(struct dispc_device *dispc, bool power) { u32 val = power ? 0 : OLDI_PWRDN_TX; if (WARN_ON(!dispc->oldi_io_ctrl)) return; regmap_update_bits(dispc->oldi_io_ctrl, OLDI_DAT0_IO_CTRL, OLDI_PWRDN_TX, val); regmap_update_bits(dispc->oldi_io_ctrl, OLDI_DAT1_IO_CTRL, OLDI_PWRDN_TX, val); regmap_update_bits(dispc->oldi_io_ctrl, OLDI_DAT2_IO_CTRL, OLDI_PWRDN_TX, val); regmap_update_bits(dispc->oldi_io_ctrl, OLDI_DAT3_IO_CTRL, OLDI_PWRDN_TX, val); regmap_update_bits(dispc->oldi_io_ctrl, OLDI_CLK_IO_CTRL, OLDI_PWRDN_TX, val); } static void dispc_set_num_datalines(struct dispc_device *dispc, u32 hw_videoport, int num_lines) { int v; switch (num_lines) { case 12: v = 0; break; case 16: v = 1; break; case 18: v = 2; break; case 24: v = 3; break; case 30: v = 4; break; case 36: v = 5; break; default: WARN_ON(1); v = 3; } VP_REG_FLD_MOD(dispc, hw_videoport, DISPC_VP_CONTROL, v, 10, 8); } static void dispc_enable_oldi(struct dispc_device *dispc, u32 hw_videoport, const struct dispc_bus_format *fmt) { u32 oldi_cfg = 0; u32 oldi_reset_bit = BIT(5 + hw_videoport); int count = 0; /* * For the moment DUALMODESYNC, MASTERSLAVE, MODE, and SRC * bits of DISPC_VP_DSS_OLDI_CFG are set statically to 0. */ if (fmt->data_width == 24) oldi_cfg |= BIT(8); /* MSB */ else if (fmt->data_width != 18) dev_warn(dispc->dev, "%s: %d port width not supported\n", __func__, fmt->data_width); oldi_cfg |= BIT(7); /* DEPOL */ oldi_cfg = FLD_MOD(oldi_cfg, fmt->oldi_mode_reg_val, 3, 1); oldi_cfg |= BIT(12); /* SOFTRST */ oldi_cfg |= BIT(0); /* ENABLE */ dispc_vp_write(dispc, hw_videoport, DISPC_VP_DSS_OLDI_CFG, oldi_cfg); while (!(oldi_reset_bit & dispc_read(dispc, DSS_SYSSTATUS)) && count < 10000) count++; if (!(oldi_reset_bit & dispc_read(dispc, DSS_SYSSTATUS))) dev_warn(dispc->dev, "%s: timeout waiting OLDI reset done\n", __func__); } void dispc_vp_prepare(struct dispc_device *dispc, u32 hw_videoport, const struct drm_crtc_state *state) { const struct tidss_crtc_state *tstate = to_tidss_crtc_state(state); const struct dispc_bus_format *fmt; fmt = dispc_vp_find_bus_fmt(dispc, hw_videoport, tstate->bus_format, tstate->bus_flags); if (WARN_ON(!fmt)) return; if (dispc->feat->vp_bus_type[hw_videoport] == DISPC_VP_OLDI) { dispc_oldi_tx_power(dispc, true); dispc_enable_oldi(dispc, hw_videoport, fmt); } } void dispc_vp_enable(struct dispc_device *dispc, u32 hw_videoport, const struct drm_crtc_state *state) { const struct drm_display_mode *mode = &state->adjusted_mode; const struct tidss_crtc_state *tstate = to_tidss_crtc_state(state); bool align, onoff, rf, ieo, ipc, ihs, ivs; const struct dispc_bus_format *fmt; u32 hsw, hfp, hbp, vsw, vfp, vbp; fmt = dispc_vp_find_bus_fmt(dispc, hw_videoport, tstate->bus_format, tstate->bus_flags); if (WARN_ON(!fmt)) return; dispc_set_num_datalines(dispc, hw_videoport, fmt->data_width); hfp = mode->hsync_start - mode->hdisplay; hsw = mode->hsync_end - mode->hsync_start; hbp = mode->htotal - mode->hsync_end; vfp = mode->vsync_start - mode->vdisplay; vsw = mode->vsync_end - mode->vsync_start; vbp = mode->vtotal - mode->vsync_end; dispc_vp_write(dispc, hw_videoport, DISPC_VP_TIMING_H, FLD_VAL(hsw - 1, 7, 0) | FLD_VAL(hfp - 1, 19, 8) | FLD_VAL(hbp - 1, 31, 20)); dispc_vp_write(dispc, hw_videoport, DISPC_VP_TIMING_V, FLD_VAL(vsw - 1, 7, 0) | FLD_VAL(vfp, 19, 8) | FLD_VAL(vbp, 31, 20)); ivs = !!(mode->flags & DRM_MODE_FLAG_NVSYNC); ihs = !!(mode->flags & DRM_MODE_FLAG_NHSYNC); ieo = !!(tstate->bus_flags & DRM_BUS_FLAG_DE_LOW); ipc = !!(tstate->bus_flags & DRM_BUS_FLAG_PIXDATA_DRIVE_NEGEDGE); /* always use the 'rf' setting */ onoff = true; rf = !!(tstate->bus_flags & DRM_BUS_FLAG_SYNC_DRIVE_POSEDGE); /* always use aligned syncs */ align = true; /* always use DE_HIGH for OLDI */ if (dispc->feat->vp_bus_type[hw_videoport] == DISPC_VP_OLDI) ieo = false; dispc_vp_write(dispc, hw_videoport, DISPC_VP_POL_FREQ, FLD_VAL(align, 18, 18) | FLD_VAL(onoff, 17, 17) | FLD_VAL(rf, 16, 16) | FLD_VAL(ieo, 15, 15) | FLD_VAL(ipc, 14, 14) | FLD_VAL(ihs, 13, 13) | FLD_VAL(ivs, 12, 12)); dispc_vp_write(dispc, hw_videoport, DISPC_VP_SIZE_SCREEN, FLD_VAL(mode->hdisplay - 1, 11, 0) | FLD_VAL(mode->vdisplay - 1, 27, 16)); VP_REG_FLD_MOD(dispc, hw_videoport, DISPC_VP_CONTROL, 1, 0, 0); } void dispc_vp_disable(struct dispc_device *dispc, u32 hw_videoport) { VP_REG_FLD_MOD(dispc, hw_videoport, DISPC_VP_CONTROL, 0, 0, 0); } void dispc_vp_unprepare(struct dispc_device *dispc, u32 hw_videoport) { if (dispc->feat->vp_bus_type[hw_videoport] == DISPC_VP_OLDI) { dispc_vp_write(dispc, hw_videoport, DISPC_VP_DSS_OLDI_CFG, 0); dispc_oldi_tx_power(dispc, false); } } bool dispc_vp_go_busy(struct dispc_device *dispc, u32 hw_videoport) { return VP_REG_GET(dispc, hw_videoport, DISPC_VP_CONTROL, 5, 5); } void dispc_vp_go(struct dispc_device *dispc, u32 hw_videoport) { WARN_ON(VP_REG_GET(dispc, hw_videoport, DISPC_VP_CONTROL, 5, 5)); VP_REG_FLD_MOD(dispc, hw_videoport, DISPC_VP_CONTROL, 1, 5, 5); } enum c8_to_c12_mode { C8_TO_C12_REPLICATE, C8_TO_C12_MAX, C8_TO_C12_MIN }; static u16 c8_to_c12(u8 c8, enum c8_to_c12_mode mode) { u16 c12; c12 = c8 << 4; switch (mode) { case C8_TO_C12_REPLICATE: /* Copy c8 4 MSB to 4 LSB for full scale c12 */ c12 |= c8 >> 4; break; case C8_TO_C12_MAX: c12 |= 0xF; break; default: case C8_TO_C12_MIN: break; } return c12; } static u64 argb8888_to_argb12121212(u32 argb8888, enum c8_to_c12_mode m) { u8 a, r, g, b; u64 v; a = (argb8888 >> 24) & 0xff; r = (argb8888 >> 16) & 0xff; g = (argb8888 >> 8) & 0xff; b = (argb8888 >> 0) & 0xff; v = ((u64)c8_to_c12(a, m) << 36) | ((u64)c8_to_c12(r, m) << 24) | ((u64)c8_to_c12(g, m) << 12) | (u64)c8_to_c12(b, m); return v; } static void dispc_vp_set_default_color(struct dispc_device *dispc, u32 hw_videoport, u32 default_color) { u64 v; v = argb8888_to_argb12121212(default_color, C8_TO_C12_REPLICATE); dispc_ovr_write(dispc, hw_videoport, DISPC_OVR_DEFAULT_COLOR, v & 0xffffffff); dispc_ovr_write(dispc, hw_videoport, DISPC_OVR_DEFAULT_COLOR2, (v >> 32) & 0xffff); } enum drm_mode_status dispc_vp_mode_valid(struct dispc_device *dispc, u32 hw_videoport, const struct drm_display_mode *mode) { u32 hsw, hfp, hbp, vsw, vfp, vbp; enum dispc_vp_bus_type bus_type; int max_pclk; bus_type = dispc->feat->vp_bus_type[hw_videoport]; max_pclk = dispc->feat->max_pclk_khz[bus_type]; if (WARN_ON(max_pclk == 0)) return MODE_BAD; if (mode->clock < dispc->feat->min_pclk_khz) return MODE_CLOCK_LOW; if (mode->clock > max_pclk) return MODE_CLOCK_HIGH; if (mode->hdisplay > 4096) return MODE_BAD; if (mode->vdisplay > 4096) return MODE_BAD; /* TODO: add interlace support */ if (mode->flags & DRM_MODE_FLAG_INTERLACE) return MODE_NO_INTERLACE; /* * Enforce the output width is divisible by 2. Actually this * is only needed in following cases: * - YUV output selected (BT656, BT1120) * - Dithering enabled * - TDM with TDMCycleFormat == 3 * But for simplicity we enforce that always. */ if ((mode->hdisplay % 2) != 0) return MODE_BAD_HVALUE; hfp = mode->hsync_start - mode->hdisplay; hsw = mode->hsync_end - mode->hsync_start; hbp = mode->htotal - mode->hsync_end; vfp = mode->vsync_start - mode->vdisplay; vsw = mode->vsync_end - mode->vsync_start; vbp = mode->vtotal - mode->vsync_end; if (hsw < 1 || hsw > 256 || hfp < 1 || hfp > 4096 || hbp < 1 || hbp > 4096) return MODE_BAD_HVALUE; if (vsw < 1 || vsw > 256 || vfp > 4095 || vbp > 4095) return MODE_BAD_VVALUE; if (dispc->memory_bandwidth_limit) { const unsigned int bpp = 4; u64 bandwidth; bandwidth = 1000 * mode->clock; bandwidth = bandwidth * mode->hdisplay * mode->vdisplay * bpp; bandwidth = div_u64(bandwidth, mode->htotal * mode->vtotal); if (dispc->memory_bandwidth_limit < bandwidth) return MODE_BAD; } return MODE_OK; } int dispc_vp_enable_clk(struct dispc_device *dispc, u32 hw_videoport) { int ret = clk_prepare_enable(dispc->vp_clk[hw_videoport]); if (ret) dev_err(dispc->dev, "%s: enabling clk failed: %d\n", __func__, ret); return ret; } void dispc_vp_disable_clk(struct dispc_device *dispc, u32 hw_videoport) { clk_disable_unprepare(dispc->vp_clk[hw_videoport]); } /* * Calculate the percentage difference between the requested pixel clock rate * and the effective rate resulting from calculating the clock divider value. */ static unsigned int dispc_pclk_diff(unsigned long rate, unsigned long real_rate) { int r = rate / 100, rr = real_rate / 100; return (unsigned int)(abs(((rr - r) * 100) / r)); } int dispc_vp_set_clk_rate(struct dispc_device *dispc, u32 hw_videoport, unsigned long rate) { int r; unsigned long new_rate; r = clk_set_rate(dispc->vp_clk[hw_videoport], rate); if (r) { dev_err(dispc->dev, "vp%d: failed to set clk rate to %lu\n", hw_videoport, rate); return r; } new_rate = clk_get_rate(dispc->vp_clk[hw_videoport]); if (dispc_pclk_diff(rate, new_rate) > 5) dev_warn(dispc->dev, "vp%d: Clock rate %lu differs over 5%% from requested %lu\n", hw_videoport, new_rate, rate); dev_dbg(dispc->dev, "vp%d: new rate %lu Hz (requested %lu Hz)\n", hw_videoport, clk_get_rate(dispc->vp_clk[hw_videoport]), rate); return 0; } /* OVR */ static void dispc_k2g_ovr_set_plane(struct dispc_device *dispc, u32 hw_plane, u32 hw_videoport, u32 x, u32 y, u32 layer) { /* On k2g there is only one plane and no need for ovr */ dispc_vid_write(dispc, hw_plane, DISPC_VID_K2G_POSITION, x | (y << 16)); } static void dispc_am65x_ovr_set_plane(struct dispc_device *dispc, u32 hw_plane, u32 hw_videoport, u32 x, u32 y, u32 layer) { OVR_REG_FLD_MOD(dispc, hw_videoport, DISPC_OVR_ATTRIBUTES(layer), hw_plane, 4, 1); OVR_REG_FLD_MOD(dispc, hw_videoport, DISPC_OVR_ATTRIBUTES(layer), x, 17, 6); OVR_REG_FLD_MOD(dispc, hw_videoport, DISPC_OVR_ATTRIBUTES(layer), y, 30, 19); } static void dispc_j721e_ovr_set_plane(struct dispc_device *dispc, u32 hw_plane, u32 hw_videoport, u32 x, u32 y, u32 layer) { OVR_REG_FLD_MOD(dispc, hw_videoport, DISPC_OVR_ATTRIBUTES(layer), hw_plane, 4, 1); OVR_REG_FLD_MOD(dispc, hw_videoport, DISPC_OVR_ATTRIBUTES2(layer), x, 13, 0); OVR_REG_FLD_MOD(dispc, hw_videoport, DISPC_OVR_ATTRIBUTES2(layer), y, 29, 16); } void dispc_ovr_set_plane(struct dispc_device *dispc, u32 hw_plane, u32 hw_videoport, u32 x, u32 y, u32 layer) { switch (dispc->feat->subrev) { case DISPC_K2G: dispc_k2g_ovr_set_plane(dispc, hw_plane, hw_videoport, x, y, layer); break; case DISPC_AM625: case DISPC_AM62A7: case DISPC_AM65X: dispc_am65x_ovr_set_plane(dispc, hw_plane, hw_videoport, x, y, layer); break; case DISPC_J721E: dispc_j721e_ovr_set_plane(dispc, hw_plane, hw_videoport, x, y, layer); break; default: WARN_ON(1); break; } } void dispc_ovr_enable_layer(struct dispc_device *dispc, u32 hw_videoport, u32 layer, bool enable) { if (dispc->feat->subrev == DISPC_K2G) return; OVR_REG_FLD_MOD(dispc, hw_videoport, DISPC_OVR_ATTRIBUTES(layer), !!enable, 0, 0); } /* CSC */ enum csc_ctm { CSC_RR, CSC_RG, CSC_RB, CSC_GR, CSC_GG, CSC_GB, CSC_BR, CSC_BG, CSC_BB, }; enum csc_yuv2rgb { CSC_RY, CSC_RCB, CSC_RCR, CSC_GY, CSC_GCB, CSC_GCR, CSC_BY, CSC_BCB, CSC_BCR, }; enum csc_rgb2yuv { CSC_YR, CSC_YG, CSC_YB, CSC_CBR, CSC_CBG, CSC_CBB, CSC_CRR, CSC_CRG, CSC_CRB, }; struct dispc_csc_coef { void (*to_regval)(const struct dispc_csc_coef *csc, u32 *regval); int m[9]; int preoffset[3]; int postoffset[3]; enum { CLIP_LIMITED_RANGE = 0, CLIP_FULL_RANGE = 1, } cliping; const char *name; }; #define DISPC_CSC_REGVAL_LEN 8 static void dispc_csc_offset_regval(const struct dispc_csc_coef *csc, u32 *regval) { #define OVAL(x, y) (FLD_VAL(x, 15, 3) | FLD_VAL(y, 31, 19)) regval[5] = OVAL(csc->preoffset[0], csc->preoffset[1]); regval[6] = OVAL(csc->preoffset[2], csc->postoffset[0]); regval[7] = OVAL(csc->postoffset[1], csc->postoffset[2]); #undef OVAL } #define CVAL(x, y) (FLD_VAL(x, 10, 0) | FLD_VAL(y, 26, 16)) static void dispc_csc_yuv2rgb_regval(const struct dispc_csc_coef *csc, u32 *regval) { regval[0] = CVAL(csc->m[CSC_RY], csc->m[CSC_RCR]); regval[1] = CVAL(csc->m[CSC_RCB], csc->m[CSC_GY]); regval[2] = CVAL(csc->m[CSC_GCR], csc->m[CSC_GCB]); regval[3] = CVAL(csc->m[CSC_BY], csc->m[CSC_BCR]); regval[4] = CVAL(csc->m[CSC_BCB], 0); dispc_csc_offset_regval(csc, regval); } __maybe_unused static void dispc_csc_rgb2yuv_regval(const struct dispc_csc_coef *csc, u32 *regval) { regval[0] = CVAL(csc->m[CSC_YR], csc->m[CSC_YG]); regval[1] = CVAL(csc->m[CSC_YB], csc->m[CSC_CRR]); regval[2] = CVAL(csc->m[CSC_CRG], csc->m[CSC_CRB]); regval[3] = CVAL(csc->m[CSC_CBR], csc->m[CSC_CBG]); regval[4] = CVAL(csc->m[CSC_CBB], 0); dispc_csc_offset_regval(csc, regval); } static void dispc_csc_cpr_regval(const struct dispc_csc_coef *csc, u32 *regval) { regval[0] = CVAL(csc->m[CSC_RR], csc->m[CSC_RG]); regval[1] = CVAL(csc->m[CSC_RB], csc->m[CSC_GR]); regval[2] = CVAL(csc->m[CSC_GG], csc->m[CSC_GB]); regval[3] = CVAL(csc->m[CSC_BR], csc->m[CSC_BG]); regval[4] = CVAL(csc->m[CSC_BB], 0); dispc_csc_offset_regval(csc, regval); } #undef CVAL static void dispc_k2g_vid_write_csc(struct dispc_device *dispc, u32 hw_plane, const struct dispc_csc_coef *csc) { static const u16 dispc_vid_csc_coef_reg[] = { DISPC_VID_CSC_COEF(0), DISPC_VID_CSC_COEF(1), DISPC_VID_CSC_COEF(2), DISPC_VID_CSC_COEF(3), DISPC_VID_CSC_COEF(4), DISPC_VID_CSC_COEF(5), DISPC_VID_CSC_COEF(6), /* K2G has no post offset support */ }; u32 regval[DISPC_CSC_REGVAL_LEN]; unsigned int i; csc->to_regval(csc, regval); if (regval[7] != 0) dev_warn(dispc->dev, "%s: No post offset support for %s\n", __func__, csc->name); for (i = 0; i < ARRAY_SIZE(dispc_vid_csc_coef_reg); i++) dispc_vid_write(dispc, hw_plane, dispc_vid_csc_coef_reg[i], regval[i]); } static void dispc_k3_vid_write_csc(struct dispc_device *dispc, u32 hw_plane, const struct dispc_csc_coef *csc) { static const u16 dispc_vid_csc_coef_reg[DISPC_CSC_REGVAL_LEN] = { DISPC_VID_CSC_COEF(0), DISPC_VID_CSC_COEF(1), DISPC_VID_CSC_COEF(2), DISPC_VID_CSC_COEF(3), DISPC_VID_CSC_COEF(4), DISPC_VID_CSC_COEF(5), DISPC_VID_CSC_COEF(6), DISPC_VID_CSC_COEF7, }; u32 regval[DISPC_CSC_REGVAL_LEN]; unsigned int i; csc->to_regval(csc, regval); for (i = 0; i < ARRAY_SIZE(dispc_vid_csc_coef_reg); i++) dispc_vid_write(dispc, hw_plane, dispc_vid_csc_coef_reg[i], regval[i]); } /* YUV -> RGB, ITU-R BT.601, full range */ static const struct dispc_csc_coef csc_yuv2rgb_bt601_full = { dispc_csc_yuv2rgb_regval, { 256, 0, 358, /* ry, rcb, rcr |1.000 0.000 1.402|*/ 256, -88, -182, /* gy, gcb, gcr |1.000 -0.344 -0.714|*/ 256, 452, 0, }, /* by, bcb, bcr |1.000 1.772 0.000|*/ { 0, -2048, -2048, }, /* full range */ { 0, 0, 0, }, CLIP_FULL_RANGE, "BT.601 Full", }; /* YUV -> RGB, ITU-R BT.601, limited range */ static const struct dispc_csc_coef csc_yuv2rgb_bt601_lim = { dispc_csc_yuv2rgb_regval, { 298, 0, 409, /* ry, rcb, rcr |1.164 0.000 1.596|*/ 298, -100, -208, /* gy, gcb, gcr |1.164 -0.392 -0.813|*/ 298, 516, 0, }, /* by, bcb, bcr |1.164 2.017 0.000|*/ { -256, -2048, -2048, }, /* limited range */ { 0, 0, 0, }, CLIP_FULL_RANGE, "BT.601 Limited", }; /* YUV -> RGB, ITU-R BT.709, full range */ static const struct dispc_csc_coef csc_yuv2rgb_bt709_full = { dispc_csc_yuv2rgb_regval, { 256, 0, 402, /* ry, rcb, rcr |1.000 0.000 1.570|*/ 256, -48, -120, /* gy, gcb, gcr |1.000 -0.187 -0.467|*/ 256, 475, 0, }, /* by, bcb, bcr |1.000 1.856 0.000|*/ { 0, -2048, -2048, }, /* full range */ { 0, 0, 0, }, CLIP_FULL_RANGE, "BT.709 Full", }; /* YUV -> RGB, ITU-R BT.709, limited range */ static const struct dispc_csc_coef csc_yuv2rgb_bt709_lim = { dispc_csc_yuv2rgb_regval, { 298, 0, 459, /* ry, rcb, rcr |1.164 0.000 1.793|*/ 298, -55, -136, /* gy, gcb, gcr |1.164 -0.213 -0.533|*/ 298, 541, 0, }, /* by, bcb, bcr |1.164 2.112 0.000|*/ { -256, -2048, -2048, }, /* limited range */ { 0, 0, 0, }, CLIP_FULL_RANGE, "BT.709 Limited", }; static const struct { enum drm_color_encoding encoding; enum drm_color_range range; const struct dispc_csc_coef *csc; } dispc_csc_table[] = { { DRM_COLOR_YCBCR_BT601, DRM_COLOR_YCBCR_FULL_RANGE, &csc_yuv2rgb_bt601_full, }, { DRM_COLOR_YCBCR_BT601, DRM_COLOR_YCBCR_LIMITED_RANGE, &csc_yuv2rgb_bt601_lim, }, { DRM_COLOR_YCBCR_BT709, DRM_COLOR_YCBCR_FULL_RANGE, &csc_yuv2rgb_bt709_full, }, { DRM_COLOR_YCBCR_BT709, DRM_COLOR_YCBCR_LIMITED_RANGE, &csc_yuv2rgb_bt709_lim, }, }; static const struct dispc_csc_coef *dispc_find_csc(enum drm_color_encoding encoding, enum drm_color_range range) { unsigned int i; for (i = 0; i < ARRAY_SIZE(dispc_csc_table); i++) { if (dispc_csc_table[i].encoding == encoding && dispc_csc_table[i].range == range) { return dispc_csc_table[i].csc; } } return NULL; } static void dispc_vid_csc_setup(struct dispc_device *dispc, u32 hw_plane, const struct drm_plane_state *state) { const struct dispc_csc_coef *coef; coef = dispc_find_csc(state->color_encoding, state->color_range); if (!coef) { dev_err(dispc->dev, "%s: CSC (%u,%u) not found\n", __func__, state->color_encoding, state->color_range); return; } if (dispc->feat->subrev == DISPC_K2G) dispc_k2g_vid_write_csc(dispc, hw_plane, coef); else dispc_k3_vid_write_csc(dispc, hw_plane, coef); } static void dispc_vid_csc_enable(struct dispc_device *dispc, u32 hw_plane, bool enable) { VID_REG_FLD_MOD(dispc, hw_plane, DISPC_VID_ATTRIBUTES, !!enable, 9, 9); } /* SCALER */ static u32 dispc_calc_fir_inc(u32 in, u32 out) { return (u32)div_u64(0x200000ull * in, out); } enum dispc_vid_fir_coef_set { DISPC_VID_FIR_COEF_HORIZ, DISPC_VID_FIR_COEF_HORIZ_UV, DISPC_VID_FIR_COEF_VERT, DISPC_VID_FIR_COEF_VERT_UV, }; static void dispc_vid_write_fir_coefs(struct dispc_device *dispc, u32 hw_plane, enum dispc_vid_fir_coef_set coef_set, const struct tidss_scale_coefs *coefs) { static const u16 c0_regs[] = { [DISPC_VID_FIR_COEF_HORIZ] = DISPC_VID_FIR_COEFS_H0, [DISPC_VID_FIR_COEF_HORIZ_UV] = DISPC_VID_FIR_COEFS_H0_C, [DISPC_VID_FIR_COEF_VERT] = DISPC_VID_FIR_COEFS_V0, [DISPC_VID_FIR_COEF_VERT_UV] = DISPC_VID_FIR_COEFS_V0_C, }; static const u16 c12_regs[] = { [DISPC_VID_FIR_COEF_HORIZ] = DISPC_VID_FIR_COEFS_H12, [DISPC_VID_FIR_COEF_HORIZ_UV] = DISPC_VID_FIR_COEFS_H12_C, [DISPC_VID_FIR_COEF_VERT] = DISPC_VID_FIR_COEFS_V12, [DISPC_VID_FIR_COEF_VERT_UV] = DISPC_VID_FIR_COEFS_V12_C, }; const u16 c0_base = c0_regs[coef_set]; const u16 c12_base = c12_regs[coef_set]; int phase; if (!coefs) { dev_err(dispc->dev, "%s: No coefficients given.\n", __func__); return; } for (phase = 0; phase <= 8; ++phase) { u16 reg = c0_base + phase * 4; u16 c0 = coefs->c0[phase]; dispc_vid_write(dispc, hw_plane, reg, c0); } for (phase = 0; phase <= 15; ++phase) { u16 reg = c12_base + phase * 4; s16 c1, c2; u32 c12; c1 = coefs->c1[phase]; c2 = coefs->c2[phase]; c12 = FLD_VAL(c1, 19, 10) | FLD_VAL(c2, 29, 20); dispc_vid_write(dispc, hw_plane, reg, c12); } } static bool dispc_fourcc_is_yuv(u32 fourcc) { switch (fourcc) { case DRM_FORMAT_YUYV: case DRM_FORMAT_UYVY: case DRM_FORMAT_NV12: return true; default: return false; } } struct dispc_scaling_params { int xinc, yinc; u32 in_w, in_h, in_w_uv, in_h_uv; u32 fir_xinc, fir_yinc, fir_xinc_uv, fir_yinc_uv; bool scale_x, scale_y; const struct tidss_scale_coefs *xcoef, *ycoef, *xcoef_uv, *ycoef_uv; bool five_taps; }; static int dispc_vid_calc_scaling(struct dispc_device *dispc, const struct drm_plane_state *state, struct dispc_scaling_params *sp, bool lite_plane) { const struct dispc_features_scaling *f = &dispc->feat->scaling; u32 fourcc = state->fb->format->format; u32 in_width_max_5tap = f->in_width_max_5tap_rgb; u32 in_width_max_3tap = f->in_width_max_3tap_rgb; u32 downscale_limit; u32 in_width_max; memset(sp, 0, sizeof(*sp)); sp->xinc = 1; sp->yinc = 1; sp->in_w = state->src_w >> 16; sp->in_w_uv = sp->in_w; sp->in_h = state->src_h >> 16; sp->in_h_uv = sp->in_h; sp->scale_x = sp->in_w != state->crtc_w; sp->scale_y = sp->in_h != state->crtc_h; if (dispc_fourcc_is_yuv(fourcc)) { in_width_max_5tap = f->in_width_max_5tap_yuv; in_width_max_3tap = f->in_width_max_3tap_yuv; sp->in_w_uv >>= 1; sp->scale_x = true; if (fourcc == DRM_FORMAT_NV12) { sp->in_h_uv >>= 1; sp->scale_y = true; } } /* Skip the rest if no scaling is used */ if ((!sp->scale_x && !sp->scale_y) || lite_plane) return 0; if (sp->in_w > in_width_max_5tap) { sp->five_taps = false; in_width_max = in_width_max_3tap; downscale_limit = f->downscale_limit_3tap; } else { sp->five_taps = true; in_width_max = in_width_max_5tap; downscale_limit = f->downscale_limit_5tap; } if (sp->scale_x) { sp->fir_xinc = dispc_calc_fir_inc(sp->in_w, state->crtc_w); if (sp->fir_xinc < dispc_calc_fir_inc(1, f->upscale_limit)) { dev_dbg(dispc->dev, "%s: X-scaling factor %u/%u > %u\n", __func__, state->crtc_w, state->src_w >> 16, f->upscale_limit); return -EINVAL; } if (sp->fir_xinc >= dispc_calc_fir_inc(downscale_limit, 1)) { sp->xinc = DIV_ROUND_UP(DIV_ROUND_UP(sp->in_w, state->crtc_w), downscale_limit); if (sp->xinc > f->xinc_max) { dev_dbg(dispc->dev, "%s: X-scaling factor %u/%u < 1/%u\n", __func__, state->crtc_w, state->src_w >> 16, downscale_limit * f->xinc_max); return -EINVAL; } sp->in_w = (state->src_w >> 16) / sp->xinc; } while (sp->in_w > in_width_max) { sp->xinc++; sp->in_w = (state->src_w >> 16) / sp->xinc; } if (sp->xinc > f->xinc_max) { dev_dbg(dispc->dev, "%s: Too wide input buffer %u > %u\n", __func__, state->src_w >> 16, in_width_max * f->xinc_max); return -EINVAL; } /* * We need even line length for YUV formats. Decimation * can lead to odd length, so we need to make it even * again. */ if (dispc_fourcc_is_yuv(fourcc)) sp->in_w &= ~1; sp->fir_xinc = dispc_calc_fir_inc(sp->in_w, state->crtc_w); } if (sp->scale_y) { sp->fir_yinc = dispc_calc_fir_inc(sp->in_h, state->crtc_h); if (sp->fir_yinc < dispc_calc_fir_inc(1, f->upscale_limit)) { dev_dbg(dispc->dev, "%s: Y-scaling factor %u/%u > %u\n", __func__, state->crtc_h, state->src_h >> 16, f->upscale_limit); return -EINVAL; } if (sp->fir_yinc >= dispc_calc_fir_inc(downscale_limit, 1)) { sp->yinc = DIV_ROUND_UP(DIV_ROUND_UP(sp->in_h, state->crtc_h), downscale_limit); sp->in_h /= sp->yinc; sp->fir_yinc = dispc_calc_fir_inc(sp->in_h, state->crtc_h); } } dev_dbg(dispc->dev, "%s: %ux%u decim %ux%u -> %ux%u firinc %u.%03ux%u.%03u taps %u -> %ux%u\n", __func__, state->src_w >> 16, state->src_h >> 16, sp->xinc, sp->yinc, sp->in_w, sp->in_h, sp->fir_xinc / 0x200000u, ((sp->fir_xinc & 0x1FFFFFu) * 999u) / 0x1FFFFFu, sp->fir_yinc / 0x200000u, ((sp->fir_yinc & 0x1FFFFFu) * 999u) / 0x1FFFFFu, sp->five_taps ? 5 : 3, state->crtc_w, state->crtc_h); if (dispc_fourcc_is_yuv(fourcc)) { if (sp->scale_x) { sp->in_w_uv /= sp->xinc; sp->fir_xinc_uv = dispc_calc_fir_inc(sp->in_w_uv, state->crtc_w); sp->xcoef_uv = tidss_get_scale_coefs(dispc->dev, sp->fir_xinc_uv, true); } if (sp->scale_y) { sp->in_h_uv /= sp->yinc; sp->fir_yinc_uv = dispc_calc_fir_inc(sp->in_h_uv, state->crtc_h); sp->ycoef_uv = tidss_get_scale_coefs(dispc->dev, sp->fir_yinc_uv, sp->five_taps); } } if (sp->scale_x) sp->xcoef = tidss_get_scale_coefs(dispc->dev, sp->fir_xinc, true); if (sp->scale_y) sp->ycoef = tidss_get_scale_coefs(dispc->dev, sp->fir_yinc, sp->five_taps); return 0; } static void dispc_vid_set_scaling(struct dispc_device *dispc, u32 hw_plane, struct dispc_scaling_params *sp, u32 fourcc) { /* HORIZONTAL RESIZE ENABLE */ VID_REG_FLD_MOD(dispc, hw_plane, DISPC_VID_ATTRIBUTES, sp->scale_x, 7, 7); /* VERTICAL RESIZE ENABLE */ VID_REG_FLD_MOD(dispc, hw_plane, DISPC_VID_ATTRIBUTES, sp->scale_y, 8, 8); /* Skip the rest if no scaling is used */ if (!sp->scale_x && !sp->scale_y) return; /* VERTICAL 5-TAPS */ VID_REG_FLD_MOD(dispc, hw_plane, DISPC_VID_ATTRIBUTES, sp->five_taps, 21, 21); if (dispc_fourcc_is_yuv(fourcc)) { if (sp->scale_x) { dispc_vid_write(dispc, hw_plane, DISPC_VID_FIRH2, sp->fir_xinc_uv); dispc_vid_write_fir_coefs(dispc, hw_plane, DISPC_VID_FIR_COEF_HORIZ_UV, sp->xcoef_uv); } if (sp->scale_y) { dispc_vid_write(dispc, hw_plane, DISPC_VID_FIRV2, sp->fir_yinc_uv); dispc_vid_write_fir_coefs(dispc, hw_plane, DISPC_VID_FIR_COEF_VERT_UV, sp->ycoef_uv); } } if (sp->scale_x) { dispc_vid_write(dispc, hw_plane, DISPC_VID_FIRH, sp->fir_xinc); dispc_vid_write_fir_coefs(dispc, hw_plane, DISPC_VID_FIR_COEF_HORIZ, sp->xcoef); } if (sp->scale_y) { dispc_vid_write(dispc, hw_plane, DISPC_VID_FIRV, sp->fir_yinc); dispc_vid_write_fir_coefs(dispc, hw_plane, DISPC_VID_FIR_COEF_VERT, sp->ycoef); } } /* OTHER */ static const struct { u32 fourcc; u8 dss_code; } dispc_color_formats[] = { { DRM_FORMAT_ARGB4444, 0x0, }, { DRM_FORMAT_ABGR4444, 0x1, }, { DRM_FORMAT_RGBA4444, 0x2, }, { DRM_FORMAT_RGB565, 0x3, }, { DRM_FORMAT_BGR565, 0x4, }, { DRM_FORMAT_ARGB1555, 0x5, }, { DRM_FORMAT_ABGR1555, 0x6, }, { DRM_FORMAT_ARGB8888, 0x7, }, { DRM_FORMAT_ABGR8888, 0x8, }, { DRM_FORMAT_RGBA8888, 0x9, }, { DRM_FORMAT_BGRA8888, 0xa, }, { DRM_FORMAT_RGB888, 0xb, }, { DRM_FORMAT_BGR888, 0xc, }, { DRM_FORMAT_ARGB2101010, 0xe, }, { DRM_FORMAT_ABGR2101010, 0xf, }, { DRM_FORMAT_XRGB4444, 0x20, }, { DRM_FORMAT_XBGR4444, 0x21, }, { DRM_FORMAT_RGBX4444, 0x22, }, { DRM_FORMAT_XRGB1555, 0x25, }, { DRM_FORMAT_XBGR1555, 0x26, }, { DRM_FORMAT_XRGB8888, 0x27, }, { DRM_FORMAT_XBGR8888, 0x28, }, { DRM_FORMAT_RGBX8888, 0x29, }, { DRM_FORMAT_BGRX8888, 0x2a, }, { DRM_FORMAT_XRGB2101010, 0x2e, }, { DRM_FORMAT_XBGR2101010, 0x2f, }, { DRM_FORMAT_YUYV, 0x3e, }, { DRM_FORMAT_UYVY, 0x3f, }, { DRM_FORMAT_NV12, 0x3d, }, }; static void dispc_plane_set_pixel_format(struct dispc_device *dispc, u32 hw_plane, u32 fourcc) { unsigned int i; for (i = 0; i < ARRAY_SIZE(dispc_color_formats); ++i) { if (dispc_color_formats[i].fourcc == fourcc) { VID_REG_FLD_MOD(dispc, hw_plane, DISPC_VID_ATTRIBUTES, dispc_color_formats[i].dss_code, 6, 1); return; } } WARN_ON(1); } const u32 *dispc_plane_formats(struct dispc_device *dispc, unsigned int *len) { WARN_ON(!dispc->fourccs); *len = dispc->num_fourccs; return dispc->fourccs; } static s32 pixinc(int pixels, u8 ps) { if (pixels == 1) return 1; else if (pixels > 1) return 1 + (pixels - 1) * ps; else if (pixels < 0) return 1 - (-pixels + 1) * ps; WARN_ON(1); return 0; } int dispc_plane_check(struct dispc_device *dispc, u32 hw_plane, const struct drm_plane_state *state, u32 hw_videoport) { bool lite = dispc->feat->vid_lite[hw_plane]; u32 fourcc = state->fb->format->format; bool need_scaling = state->src_w >> 16 != state->crtc_w || state->src_h >> 16 != state->crtc_h; struct dispc_scaling_params scaling; int ret; if (dispc_fourcc_is_yuv(fourcc)) { if (!dispc_find_csc(state->color_encoding, state->color_range)) { dev_dbg(dispc->dev, "%s: Unsupported CSC (%u,%u) for HW plane %u\n", __func__, state->color_encoding, state->color_range, hw_plane); return -EINVAL; } } if (need_scaling) { if (lite) { dev_dbg(dispc->dev, "%s: Lite plane %u can't scale %ux%u!=%ux%u\n", __func__, hw_plane, state->src_w >> 16, state->src_h >> 16, state->crtc_w, state->crtc_h); return -EINVAL; } ret = dispc_vid_calc_scaling(dispc, state, &scaling, false); if (ret) return ret; } return 0; } static dma_addr_t dispc_plane_state_dma_addr(const struct drm_plane_state *state) { struct drm_framebuffer *fb = state->fb; struct drm_gem_dma_object *gem; u32 x = state->src_x >> 16; u32 y = state->src_y >> 16; gem = drm_fb_dma_get_gem_obj(state->fb, 0); return gem->dma_addr + fb->offsets[0] + x * fb->format->cpp[0] + y * fb->pitches[0]; } static dma_addr_t dispc_plane_state_p_uv_addr(const struct drm_plane_state *state) { struct drm_framebuffer *fb = state->fb; struct drm_gem_dma_object *gem; u32 x = state->src_x >> 16; u32 y = state->src_y >> 16; if (WARN_ON(state->fb->format->num_planes != 2)) return 0; gem = drm_fb_dma_get_gem_obj(fb, 1); return gem->dma_addr + fb->offsets[1] + (x * fb->format->cpp[1] / fb->format->hsub) + (y * fb->pitches[1] / fb->format->vsub); } void dispc_plane_setup(struct dispc_device *dispc, u32 hw_plane, const struct drm_plane_state *state, u32 hw_videoport) { bool lite = dispc->feat->vid_lite[hw_plane]; u32 fourcc = state->fb->format->format; u16 cpp = state->fb->format->cpp[0]; u32 fb_width = state->fb->pitches[0] / cpp; dma_addr_t dma_addr = dispc_plane_state_dma_addr(state); struct dispc_scaling_params scale; dispc_vid_calc_scaling(dispc, state, &scale, lite); dispc_plane_set_pixel_format(dispc, hw_plane, fourcc); dispc_vid_write(dispc, hw_plane, DISPC_VID_BA_0, dma_addr & 0xffffffff); dispc_vid_write(dispc, hw_plane, DISPC_VID_BA_EXT_0, (u64)dma_addr >> 32); dispc_vid_write(dispc, hw_plane, DISPC_VID_BA_1, dma_addr & 0xffffffff); dispc_vid_write(dispc, hw_plane, DISPC_VID_BA_EXT_1, (u64)dma_addr >> 32); dispc_vid_write(dispc, hw_plane, DISPC_VID_PICTURE_SIZE, (scale.in_w - 1) | ((scale.in_h - 1) << 16)); /* For YUV422 format we use the macropixel size for pixel inc */ if (fourcc == DRM_FORMAT_YUYV || fourcc == DRM_FORMAT_UYVY) dispc_vid_write(dispc, hw_plane, DISPC_VID_PIXEL_INC, pixinc(scale.xinc, cpp * 2)); else dispc_vid_write(dispc, hw_plane, DISPC_VID_PIXEL_INC, pixinc(scale.xinc, cpp)); dispc_vid_write(dispc, hw_plane, DISPC_VID_ROW_INC, pixinc(1 + (scale.yinc * fb_width - scale.xinc * scale.in_w), cpp)); if (state->fb->format->num_planes == 2) { u16 cpp_uv = state->fb->format->cpp[1]; u32 fb_width_uv = state->fb->pitches[1] / cpp_uv; dma_addr_t p_uv_addr = dispc_plane_state_p_uv_addr(state); dispc_vid_write(dispc, hw_plane, DISPC_VID_BA_UV_0, p_uv_addr & 0xffffffff); dispc_vid_write(dispc, hw_plane, DISPC_VID_BA_UV_EXT_0, (u64)p_uv_addr >> 32); dispc_vid_write(dispc, hw_plane, DISPC_VID_BA_UV_1, p_uv_addr & 0xffffffff); dispc_vid_write(dispc, hw_plane, DISPC_VID_BA_UV_EXT_1, (u64)p_uv_addr >> 32); dispc_vid_write(dispc, hw_plane, DISPC_VID_ROW_INC_UV, pixinc(1 + (scale.yinc * fb_width_uv - scale.xinc * scale.in_w_uv), cpp_uv)); } if (!lite) { dispc_vid_write(dispc, hw_plane, DISPC_VID_SIZE, (state->crtc_w - 1) | ((state->crtc_h - 1) << 16)); dispc_vid_set_scaling(dispc, hw_plane, &scale, fourcc); } /* enable YUV->RGB color conversion */ if (dispc_fourcc_is_yuv(fourcc)) { dispc_vid_csc_setup(dispc, hw_plane, state); dispc_vid_csc_enable(dispc, hw_plane, true); } else { dispc_vid_csc_enable(dispc, hw_plane, false); } dispc_vid_write(dispc, hw_plane, DISPC_VID_GLOBAL_ALPHA, 0xFF & (state->alpha >> 8)); if (state->pixel_blend_mode == DRM_MODE_BLEND_PREMULTI) VID_REG_FLD_MOD(dispc, hw_plane, DISPC_VID_ATTRIBUTES, 1, 28, 28); else VID_REG_FLD_MOD(dispc, hw_plane, DISPC_VID_ATTRIBUTES, 0, 28, 28); } void dispc_plane_enable(struct dispc_device *dispc, u32 hw_plane, bool enable) { VID_REG_FLD_MOD(dispc, hw_plane, DISPC_VID_ATTRIBUTES, !!enable, 0, 0); } static u32 dispc_vid_get_fifo_size(struct dispc_device *dispc, u32 hw_plane) { return VID_REG_GET(dispc, hw_plane, DISPC_VID_BUF_SIZE_STATUS, 15, 0); } static void dispc_vid_set_mflag_threshold(struct dispc_device *dispc, u32 hw_plane, u32 low, u32 high) { dispc_vid_write(dispc, hw_plane, DISPC_VID_MFLAG_THRESHOLD, FLD_VAL(high, 31, 16) | FLD_VAL(low, 15, 0)); } static void dispc_vid_set_buf_threshold(struct dispc_device *dispc, u32 hw_plane, u32 low, u32 high) { dispc_vid_write(dispc, hw_plane, DISPC_VID_BUF_THRESHOLD, FLD_VAL(high, 31, 16) | FLD_VAL(low, 15, 0)); } static void dispc_k2g_plane_init(struct dispc_device *dispc) { unsigned int hw_plane; dev_dbg(dispc->dev, "%s()\n", __func__); /* MFLAG_CTRL = ENABLED */ REG_FLD_MOD(dispc, DISPC_GLOBAL_MFLAG_ATTRIBUTE, 2, 1, 0); /* MFLAG_START = MFLAGNORMALSTARTMODE */ REG_FLD_MOD(dispc, DISPC_GLOBAL_MFLAG_ATTRIBUTE, 0, 6, 6); for (hw_plane = 0; hw_plane < dispc->feat->num_planes; hw_plane++) { u32 size = dispc_vid_get_fifo_size(dispc, hw_plane); u32 thr_low, thr_high; u32 mflag_low, mflag_high; u32 preload; thr_high = size - 1; thr_low = size / 2; mflag_high = size * 2 / 3; mflag_low = size / 3; preload = thr_low; dev_dbg(dispc->dev, "%s: bufsize %u, buf_threshold %u/%u, mflag threshold %u/%u preload %u\n", dispc->feat->vid_name[hw_plane], size, thr_high, thr_low, mflag_high, mflag_low, preload); dispc_vid_set_buf_threshold(dispc, hw_plane, thr_low, thr_high); dispc_vid_set_mflag_threshold(dispc, hw_plane, mflag_low, mflag_high); dispc_vid_write(dispc, hw_plane, DISPC_VID_PRELOAD, preload); /* * Prefetch up to fifo high-threshold value to minimize the * possibility of underflows. Note that this means the PRELOAD * register is ignored. */ VID_REG_FLD_MOD(dispc, hw_plane, DISPC_VID_ATTRIBUTES, 1, 19, 19); } } static void dispc_k3_plane_init(struct dispc_device *dispc) { unsigned int hw_plane; u32 cba_lo_pri = 1; u32 cba_hi_pri = 0; dev_dbg(dispc->dev, "%s()\n", __func__); REG_FLD_MOD(dispc, DSS_CBA_CFG, cba_lo_pri, 2, 0); REG_FLD_MOD(dispc, DSS_CBA_CFG, cba_hi_pri, 5, 3); /* MFLAG_CTRL = ENABLED */ REG_FLD_MOD(dispc, DISPC_GLOBAL_MFLAG_ATTRIBUTE, 2, 1, 0); /* MFLAG_START = MFLAGNORMALSTARTMODE */ REG_FLD_MOD(dispc, DISPC_GLOBAL_MFLAG_ATTRIBUTE, 0, 6, 6); for (hw_plane = 0; hw_plane < dispc->feat->num_planes; hw_plane++) { u32 size = dispc_vid_get_fifo_size(dispc, hw_plane); u32 thr_low, thr_high; u32 mflag_low, mflag_high; u32 preload; thr_high = size - 1; thr_low = size / 2; mflag_high = size * 2 / 3; mflag_low = size / 3; preload = thr_low; dev_dbg(dispc->dev, "%s: bufsize %u, buf_threshold %u/%u, mflag threshold %u/%u preload %u\n", dispc->feat->vid_name[hw_plane], size, thr_high, thr_low, mflag_high, mflag_low, preload); dispc_vid_set_buf_threshold(dispc, hw_plane, thr_low, thr_high); dispc_vid_set_mflag_threshold(dispc, hw_plane, mflag_low, mflag_high); dispc_vid_write(dispc, hw_plane, DISPC_VID_PRELOAD, preload); /* Prefech up to PRELOAD value */ VID_REG_FLD_MOD(dispc, hw_plane, DISPC_VID_ATTRIBUTES, 0, 19, 19); } } static void dispc_plane_init(struct dispc_device *dispc) { switch (dispc->feat->subrev) { case DISPC_K2G: dispc_k2g_plane_init(dispc); break; case DISPC_AM625: case DISPC_AM62A7: case DISPC_AM65X: case DISPC_J721E: dispc_k3_plane_init(dispc); break; default: WARN_ON(1); } } static void dispc_vp_init(struct dispc_device *dispc) { unsigned int i; dev_dbg(dispc->dev, "%s()\n", __func__); /* Enable the gamma Shadow bit-field for all VPs*/ for (i = 0; i < dispc->feat->num_vps; i++) VP_REG_FLD_MOD(dispc, i, DISPC_VP_CONFIG, 1, 2, 2); } static void dispc_initial_config(struct dispc_device *dispc) { dispc_plane_init(dispc); dispc_vp_init(dispc); /* Note: Hardcoded DPI routing on J721E for now */ if (dispc->feat->subrev == DISPC_J721E) { dispc_write(dispc, DISPC_CONNECTIONS, FLD_VAL(2, 3, 0) | /* VP1 to DPI0 */ FLD_VAL(8, 7, 4) /* VP3 to DPI1 */ ); } } static void dispc_k2g_vp_write_gamma_table(struct dispc_device *dispc, u32 hw_videoport) { u32 *table = dispc->vp_data[hw_videoport].gamma_table; u32 hwlen = dispc->feat->vp_feat.color.gamma_size; unsigned int i; dev_dbg(dispc->dev, "%s: hw_videoport %d\n", __func__, hw_videoport); if (WARN_ON(dispc->feat->vp_feat.color.gamma_type != TIDSS_GAMMA_8BIT)) return; for (i = 0; i < hwlen; ++i) { u32 v = table[i]; v |= i << 24; dispc_vp_write(dispc, hw_videoport, DISPC_VP_K2G_GAMMA_TABLE, v); } } static void dispc_am65x_vp_write_gamma_table(struct dispc_device *dispc, u32 hw_videoport) { u32 *table = dispc->vp_data[hw_videoport].gamma_table; u32 hwlen = dispc->feat->vp_feat.color.gamma_size; unsigned int i; dev_dbg(dispc->dev, "%s: hw_videoport %d\n", __func__, hw_videoport); if (WARN_ON(dispc->feat->vp_feat.color.gamma_type != TIDSS_GAMMA_8BIT)) return; for (i = 0; i < hwlen; ++i) { u32 v = table[i]; v |= i << 24; dispc_vp_write(dispc, hw_videoport, DISPC_VP_GAMMA_TABLE, v); } } static void dispc_j721e_vp_write_gamma_table(struct dispc_device *dispc, u32 hw_videoport) { u32 *table = dispc->vp_data[hw_videoport].gamma_table; u32 hwlen = dispc->feat->vp_feat.color.gamma_size; unsigned int i; dev_dbg(dispc->dev, "%s: hw_videoport %d\n", __func__, hw_videoport); if (WARN_ON(dispc->feat->vp_feat.color.gamma_type != TIDSS_GAMMA_10BIT)) return; for (i = 0; i < hwlen; ++i) { u32 v = table[i]; if (i == 0) v |= 1 << 31; dispc_vp_write(dispc, hw_videoport, DISPC_VP_GAMMA_TABLE, v); } } static void dispc_vp_write_gamma_table(struct dispc_device *dispc, u32 hw_videoport) { switch (dispc->feat->subrev) { case DISPC_K2G: dispc_k2g_vp_write_gamma_table(dispc, hw_videoport); break; case DISPC_AM625: case DISPC_AM62A7: case DISPC_AM65X: dispc_am65x_vp_write_gamma_table(dispc, hw_videoport); break; case DISPC_J721E: dispc_j721e_vp_write_gamma_table(dispc, hw_videoport); break; default: WARN_ON(1); break; } } static const struct drm_color_lut dispc_vp_gamma_default_lut[] = { { .red = 0, .green = 0, .blue = 0, }, { .red = U16_MAX, .green = U16_MAX, .blue = U16_MAX, }, }; static void dispc_vp_set_gamma(struct dispc_device *dispc, u32 hw_videoport, const struct drm_color_lut *lut, unsigned int length) { u32 *table = dispc->vp_data[hw_videoport].gamma_table; u32 hwlen = dispc->feat->vp_feat.color.gamma_size; u32 hwbits; unsigned int i; dev_dbg(dispc->dev, "%s: hw_videoport %d, lut len %u, hw len %u\n", __func__, hw_videoport, length, hwlen); if (dispc->feat->vp_feat.color.gamma_type == TIDSS_GAMMA_10BIT) hwbits = 10; else hwbits = 8; if (!lut || length < 2) { lut = dispc_vp_gamma_default_lut; length = ARRAY_SIZE(dispc_vp_gamma_default_lut); } for (i = 0; i < length - 1; ++i) { unsigned int first = i * (hwlen - 1) / (length - 1); unsigned int last = (i + 1) * (hwlen - 1) / (length - 1); unsigned int w = last - first; u16 r, g, b; unsigned int j; if (w == 0) continue; for (j = 0; j <= w; j++) { r = (lut[i].red * (w - j) + lut[i + 1].red * j) / w; g = (lut[i].green * (w - j) + lut[i + 1].green * j) / w; b = (lut[i].blue * (w - j) + lut[i + 1].blue * j) / w; r >>= 16 - hwbits; g >>= 16 - hwbits; b >>= 16 - hwbits; table[first + j] = (r << (hwbits * 2)) | (g << hwbits) | b; } } dispc_vp_write_gamma_table(dispc, hw_videoport); } static s16 dispc_S31_32_to_s2_8(s64 coef) { u64 sign_bit = 1ULL << 63; u64 cbits = (u64)coef; s16 ret; if (cbits & sign_bit) ret = -clamp_val(((cbits & ~sign_bit) >> 24), 0, 0x200); else ret = clamp_val(((cbits & ~sign_bit) >> 24), 0, 0x1FF); return ret; } static void dispc_k2g_cpr_from_ctm(const struct drm_color_ctm *ctm, struct dispc_csc_coef *cpr) { memset(cpr, 0, sizeof(*cpr)); cpr->to_regval = dispc_csc_cpr_regval; cpr->m[CSC_RR] = dispc_S31_32_to_s2_8(ctm->matrix[0]); cpr->m[CSC_RG] = dispc_S31_32_to_s2_8(ctm->matrix[1]); cpr->m[CSC_RB] = dispc_S31_32_to_s2_8(ctm->matrix[2]); cpr->m[CSC_GR] = dispc_S31_32_to_s2_8(ctm->matrix[3]); cpr->m[CSC_GG] = dispc_S31_32_to_s2_8(ctm->matrix[4]); cpr->m[CSC_GB] = dispc_S31_32_to_s2_8(ctm->matrix[5]); cpr->m[CSC_BR] = dispc_S31_32_to_s2_8(ctm->matrix[6]); cpr->m[CSC_BG] = dispc_S31_32_to_s2_8(ctm->matrix[7]); cpr->m[CSC_BB] = dispc_S31_32_to_s2_8(ctm->matrix[8]); } #define CVAL(xR, xG, xB) (FLD_VAL(xR, 9, 0) | FLD_VAL(xG, 20, 11) | \ FLD_VAL(xB, 31, 22)) static void dispc_k2g_vp_csc_cpr_regval(const struct dispc_csc_coef *csc, u32 *regval) { regval[0] = CVAL(csc->m[CSC_BB], csc->m[CSC_BG], csc->m[CSC_BR]); regval[1] = CVAL(csc->m[CSC_GB], csc->m[CSC_GG], csc->m[CSC_GR]); regval[2] = CVAL(csc->m[CSC_RB], csc->m[CSC_RG], csc->m[CSC_RR]); } #undef CVAL static void dispc_k2g_vp_write_csc(struct dispc_device *dispc, u32 hw_videoport, const struct dispc_csc_coef *csc) { static const u16 dispc_vp_cpr_coef_reg[] = { DISPC_VP_CSC_COEF0, DISPC_VP_CSC_COEF1, DISPC_VP_CSC_COEF2, /* K2G CPR is packed to three registers. */ }; u32 regval[DISPC_CSC_REGVAL_LEN]; unsigned int i; dispc_k2g_vp_csc_cpr_regval(csc, regval); for (i = 0; i < ARRAY_SIZE(dispc_vp_cpr_coef_reg); i++) dispc_vp_write(dispc, hw_videoport, dispc_vp_cpr_coef_reg[i], regval[i]); } static void dispc_k2g_vp_set_ctm(struct dispc_device *dispc, u32 hw_videoport, struct drm_color_ctm *ctm) { u32 cprenable = 0; if (ctm) { struct dispc_csc_coef cpr; dispc_k2g_cpr_from_ctm(ctm, &cpr); dispc_k2g_vp_write_csc(dispc, hw_videoport, &cpr); cprenable = 1; } VP_REG_FLD_MOD(dispc, hw_videoport, DISPC_VP_CONFIG, cprenable, 15, 15); } static s16 dispc_S31_32_to_s3_8(s64 coef) { u64 sign_bit = 1ULL << 63; u64 cbits = (u64)coef; s16 ret; if (cbits & sign_bit) ret = -clamp_val(((cbits & ~sign_bit) >> 24), 0, 0x400); else ret = clamp_val(((cbits & ~sign_bit) >> 24), 0, 0x3FF); return ret; } static void dispc_csc_from_ctm(const struct drm_color_ctm *ctm, struct dispc_csc_coef *cpr) { memset(cpr, 0, sizeof(*cpr)); cpr->to_regval = dispc_csc_cpr_regval; cpr->m[CSC_RR] = dispc_S31_32_to_s3_8(ctm->matrix[0]); cpr->m[CSC_RG] = dispc_S31_32_to_s3_8(ctm->matrix[1]); cpr->m[CSC_RB] = dispc_S31_32_to_s3_8(ctm->matrix[2]); cpr->m[CSC_GR] = dispc_S31_32_to_s3_8(ctm->matrix[3]); cpr->m[CSC_GG] = dispc_S31_32_to_s3_8(ctm->matrix[4]); cpr->m[CSC_GB] = dispc_S31_32_to_s3_8(ctm->matrix[5]); cpr->m[CSC_BR] = dispc_S31_32_to_s3_8(ctm->matrix[6]); cpr->m[CSC_BG] = dispc_S31_32_to_s3_8(ctm->matrix[7]); cpr->m[CSC_BB] = dispc_S31_32_to_s3_8(ctm->matrix[8]); } static void dispc_k3_vp_write_csc(struct dispc_device *dispc, u32 hw_videoport, const struct dispc_csc_coef *csc) { static const u16 dispc_vp_csc_coef_reg[DISPC_CSC_REGVAL_LEN] = { DISPC_VP_CSC_COEF0, DISPC_VP_CSC_COEF1, DISPC_VP_CSC_COEF2, DISPC_VP_CSC_COEF3, DISPC_VP_CSC_COEF4, DISPC_VP_CSC_COEF5, DISPC_VP_CSC_COEF6, DISPC_VP_CSC_COEF7, }; u32 regval[DISPC_CSC_REGVAL_LEN]; unsigned int i; csc->to_regval(csc, regval); for (i = 0; i < ARRAY_SIZE(regval); i++) dispc_vp_write(dispc, hw_videoport, dispc_vp_csc_coef_reg[i], regval[i]); } static void dispc_k3_vp_set_ctm(struct dispc_device *dispc, u32 hw_videoport, struct drm_color_ctm *ctm) { u32 colorconvenable = 0; if (ctm) { struct dispc_csc_coef csc; dispc_csc_from_ctm(ctm, &csc); dispc_k3_vp_write_csc(dispc, hw_videoport, &csc); colorconvenable = 1; } VP_REG_FLD_MOD(dispc, hw_videoport, DISPC_VP_CONFIG, colorconvenable, 24, 24); } static void dispc_vp_set_color_mgmt(struct dispc_device *dispc, u32 hw_videoport, const struct drm_crtc_state *state, bool newmodeset) { struct drm_color_lut *lut = NULL; struct drm_color_ctm *ctm = NULL; unsigned int length = 0; if (!(state->color_mgmt_changed || newmodeset)) return; if (state->gamma_lut) { lut = (struct drm_color_lut *)state->gamma_lut->data; length = state->gamma_lut->length / sizeof(*lut); } dispc_vp_set_gamma(dispc, hw_videoport, lut, length); if (state->ctm) ctm = (struct drm_color_ctm *)state->ctm->data; if (dispc->feat->subrev == DISPC_K2G) dispc_k2g_vp_set_ctm(dispc, hw_videoport, ctm); else dispc_k3_vp_set_ctm(dispc, hw_videoport, ctm); } void dispc_vp_setup(struct dispc_device *dispc, u32 hw_videoport, const struct drm_crtc_state *state, bool newmodeset) { dispc_vp_set_default_color(dispc, hw_videoport, 0); dispc_vp_set_color_mgmt(dispc, hw_videoport, state, newmodeset); } int dispc_runtime_suspend(struct dispc_device *dispc) { dev_dbg(dispc->dev, "suspend\n"); dispc->is_enabled = false; clk_disable_unprepare(dispc->fclk); return 0; } int dispc_runtime_resume(struct dispc_device *dispc) { dev_dbg(dispc->dev, "resume\n"); clk_prepare_enable(dispc->fclk); if (REG_GET(dispc, DSS_SYSSTATUS, 0, 0) == 0) dev_warn(dispc->dev, "DSS FUNC RESET not done!\n"); dev_dbg(dispc->dev, "OMAP DSS7 rev 0x%x\n", dispc_read(dispc, DSS_REVISION)); dev_dbg(dispc->dev, "VP RESETDONE %d,%d,%d\n", REG_GET(dispc, DSS_SYSSTATUS, 1, 1), REG_GET(dispc, DSS_SYSSTATUS, 2, 2), REG_GET(dispc, DSS_SYSSTATUS, 3, 3)); if (dispc->feat->subrev == DISPC_AM625 || dispc->feat->subrev == DISPC_AM65X) dev_dbg(dispc->dev, "OLDI RESETDONE %d,%d,%d\n", REG_GET(dispc, DSS_SYSSTATUS, 5, 5), REG_GET(dispc, DSS_SYSSTATUS, 6, 6), REG_GET(dispc, DSS_SYSSTATUS, 7, 7)); dev_dbg(dispc->dev, "DISPC IDLE %d\n", REG_GET(dispc, DSS_SYSSTATUS, 9, 9)); dispc_initial_config(dispc); dispc->is_enabled = true; tidss_irq_resume(dispc->tidss); return 0; } void dispc_remove(struct tidss_device *tidss) { dev_dbg(tidss->dev, "%s\n", __func__); tidss->dispc = NULL; } static int dispc_iomap_resource(struct platform_device *pdev, const char *name, void __iomem **base) { void __iomem *b; b = devm_platform_ioremap_resource_byname(pdev, name); if (IS_ERR(b)) { dev_err(&pdev->dev, "cannot ioremap resource '%s'\n", name); return PTR_ERR(b); } *base = b; return 0; } static int dispc_init_am65x_oldi_io_ctrl(struct device *dev, struct dispc_device *dispc) { dispc->oldi_io_ctrl = syscon_regmap_lookup_by_phandle(dev->of_node, "ti,am65x-oldi-io-ctrl"); if (PTR_ERR(dispc->oldi_io_ctrl) == -ENODEV) { dispc->oldi_io_ctrl = NULL; } else if (IS_ERR(dispc->oldi_io_ctrl)) { dev_err(dev, "%s: syscon_regmap_lookup_by_phandle failed %ld\n", __func__, PTR_ERR(dispc->oldi_io_ctrl)); return PTR_ERR(dispc->oldi_io_ctrl); } return 0; } static void dispc_init_errata(struct dispc_device *dispc) { static const struct soc_device_attribute am65x_sr10_soc_devices[] = { { .family = "AM65X", .revision = "SR1.0" }, { /* sentinel */ } }; if (soc_device_match(am65x_sr10_soc_devices)) { dispc->errata.i2000 = true; dev_info(dispc->dev, "WA for erratum i2000: YUV formats disabled\n"); } } /* * K2G display controller does not support soft reset, so we do a basic manual * reset here: make sure the IRQs are masked and VPs are disabled. */ static void dispc_softreset_k2g(struct dispc_device *dispc) { dispc_set_irqenable(dispc, 0); dispc_read_and_clear_irqstatus(dispc); for (unsigned int vp_idx = 0; vp_idx < dispc->feat->num_vps; ++vp_idx) VP_REG_FLD_MOD(dispc, vp_idx, DISPC_VP_CONTROL, 0, 0, 0); } static int dispc_softreset(struct dispc_device *dispc) { u32 val; int ret; if (dispc->feat->subrev == DISPC_K2G) { dispc_softreset_k2g(dispc); return 0; } /* Soft reset */ REG_FLD_MOD(dispc, DSS_SYSCONFIG, 1, 1, 1); /* Wait for reset to complete */ ret = readl_poll_timeout(dispc->base_common + DSS_SYSSTATUS, val, val & 1, 100, 5000); if (ret) { dev_err(dispc->dev, "failed to reset dispc\n"); return ret; } return 0; } static int dispc_init_hw(struct dispc_device *dispc) { struct device *dev = dispc->dev; int ret; ret = pm_runtime_set_active(dev); if (ret) { dev_err(dev, "Failed to set DSS PM to active\n"); return ret; } ret = clk_prepare_enable(dispc->fclk); if (ret) { dev_err(dev, "Failed to enable DSS fclk\n"); goto err_runtime_suspend; } ret = dispc_softreset(dispc); if (ret) goto err_clk_disable; clk_disable_unprepare(dispc->fclk); ret = pm_runtime_set_suspended(dev); if (ret) { dev_err(dev, "Failed to set DSS PM to suspended\n"); return ret; } return 0; err_clk_disable: clk_disable_unprepare(dispc->fclk); err_runtime_suspend: ret = pm_runtime_set_suspended(dev); if (ret) { dev_err(dev, "Failed to set DSS PM to suspended\n"); return ret; } return ret; } int dispc_init(struct tidss_device *tidss) { struct device *dev = tidss->dev; struct platform_device *pdev = to_platform_device(dev); struct dispc_device *dispc; const struct dispc_features *feat; unsigned int i, num_fourccs; int r = 0; dev_dbg(dev, "%s\n", __func__); feat = tidss->feat; if (feat->subrev != DISPC_K2G) { r = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(48)); if (r) dev_warn(dev, "cannot set DMA masks to 48-bit\n"); } dma_set_max_seg_size(dev, UINT_MAX); dispc = devm_kzalloc(dev, sizeof(*dispc), GFP_KERNEL); if (!dispc) return -ENOMEM; dispc->tidss = tidss; dispc->dev = dev; dispc->feat = feat; dispc_init_errata(dispc); dispc->fourccs = devm_kcalloc(dev, ARRAY_SIZE(dispc_color_formats), sizeof(*dispc->fourccs), GFP_KERNEL); if (!dispc->fourccs) return -ENOMEM; num_fourccs = 0; for (i = 0; i < ARRAY_SIZE(dispc_color_formats); ++i) { if (dispc->errata.i2000 && dispc_fourcc_is_yuv(dispc_color_formats[i].fourcc)) { continue; } dispc->fourccs[num_fourccs++] = dispc_color_formats[i].fourcc; } dispc->num_fourccs = num_fourccs; dispc_common_regmap = dispc->feat->common_regs; r = dispc_iomap_resource(pdev, dispc->feat->common, &dispc->base_common); if (r) return r; for (i = 0; i < dispc->feat->num_planes; i++) { r = dispc_iomap_resource(pdev, dispc->feat->vid_name[i], &dispc->base_vid[i]); if (r) return r; } for (i = 0; i < dispc->feat->num_vps; i++) { u32 gamma_size = dispc->feat->vp_feat.color.gamma_size; u32 *gamma_table; struct clk *clk; r = dispc_iomap_resource(pdev, dispc->feat->ovr_name[i], &dispc->base_ovr[i]); if (r) return r; r = dispc_iomap_resource(pdev, dispc->feat->vp_name[i], &dispc->base_vp[i]); if (r) return r; clk = devm_clk_get(dev, dispc->feat->vpclk_name[i]); if (IS_ERR(clk)) { dev_err(dev, "%s: Failed to get clk %s:%ld\n", __func__, dispc->feat->vpclk_name[i], PTR_ERR(clk)); return PTR_ERR(clk); } dispc->vp_clk[i] = clk; gamma_table = devm_kmalloc_array(dev, gamma_size, sizeof(*gamma_table), GFP_KERNEL); if (!gamma_table) return -ENOMEM; dispc->vp_data[i].gamma_table = gamma_table; } if (feat->subrev == DISPC_AM65X) { r = dispc_init_am65x_oldi_io_ctrl(dev, dispc); if (r) return r; } dispc->fclk = devm_clk_get(dev, "fck"); if (IS_ERR(dispc->fclk)) { dev_err(dev, "%s: Failed to get fclk: %ld\n", __func__, PTR_ERR(dispc->fclk)); return PTR_ERR(dispc->fclk); } dev_dbg(dev, "DSS fclk %lu Hz\n", clk_get_rate(dispc->fclk)); of_property_read_u32(dispc->dev->of_node, "max-memory-bandwidth", &dispc->memory_bandwidth_limit); r = dispc_init_hw(dispc); if (r) return r; tidss->dispc = dispc; return 0; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1