Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Matthew Brost | 1365 | 52.28% | 7 | 14.58% |
Michal Wajdeczko | 444 | 17.00% | 7 | 14.58% |
Matthew Auld | 216 | 8.27% | 6 | 12.50% |
Vinay Belgaumkar | 171 | 6.55% | 2 | 4.17% |
Lucas De Marchi | 158 | 6.05% | 7 | 14.58% |
Maarten Lankhorst | 90 | 3.45% | 6 | 12.50% |
Matt Roper | 87 | 3.33% | 5 | 10.42% |
Francois Dugast | 39 | 1.49% | 1 | 2.08% |
Michał Winiarski | 19 | 0.73% | 2 | 4.17% |
Daniele Ceraolo Spurio | 17 | 0.65% | 2 | 4.17% |
Rodrigo Vivi | 3 | 0.11% | 1 | 2.08% |
Dafna Hirschfeld | 1 | 0.04% | 1 | 2.08% |
Jani Nikula | 1 | 0.04% | 1 | 2.08% |
Total | 2611 | 48 |
// SPDX-License-Identifier: MIT /* * Copyright © 2021 Intel Corporation */ #include "xe_ggtt.h" #include <linux/io-64-nonatomic-lo-hi.h> #include <linux/sizes.h> #include <drm/drm_drv.h> #include <drm/drm_managed.h> #include <drm/intel/i915_drm.h> #include <generated/xe_wa_oob.h> #include "regs/xe_gt_regs.h" #include "regs/xe_gtt_defs.h" #include "regs/xe_regs.h" #include "xe_assert.h" #include "xe_bo.h" #include "xe_device.h" #include "xe_gt.h" #include "xe_gt_printk.h" #include "xe_gt_sriov_vf.h" #include "xe_gt_tlb_invalidation.h" #include "xe_map.h" #include "xe_mmio.h" #include "xe_pm.h" #include "xe_sriov.h" #include "xe_wa.h" #include "xe_wopcm.h" static u64 xelp_ggtt_pte_encode_bo(struct xe_bo *bo, u64 bo_offset, u16 pat_index) { u64 pte; pte = xe_bo_addr(bo, bo_offset, XE_PAGE_SIZE); pte |= XE_PAGE_PRESENT; if (xe_bo_is_vram(bo) || xe_bo_is_stolen_devmem(bo)) pte |= XE_GGTT_PTE_DM; return pte; } static u64 xelpg_ggtt_pte_encode_bo(struct xe_bo *bo, u64 bo_offset, u16 pat_index) { struct xe_device *xe = xe_bo_device(bo); u64 pte; pte = xelp_ggtt_pte_encode_bo(bo, bo_offset, pat_index); xe_assert(xe, pat_index <= 3); if (pat_index & BIT(0)) pte |= XELPG_GGTT_PTE_PAT0; if (pat_index & BIT(1)) pte |= XELPG_GGTT_PTE_PAT1; return pte; } static unsigned int probe_gsm_size(struct pci_dev *pdev) { u16 gmch_ctl, ggms; pci_read_config_word(pdev, SNB_GMCH_CTRL, &gmch_ctl); ggms = (gmch_ctl >> BDW_GMCH_GGMS_SHIFT) & BDW_GMCH_GGMS_MASK; return ggms ? SZ_1M << ggms : 0; } static void ggtt_update_access_counter(struct xe_ggtt *ggtt) { struct xe_gt *gt = XE_WA(ggtt->tile->primary_gt, 22019338487) ? ggtt->tile->primary_gt : ggtt->tile->media_gt; u32 max_gtt_writes = XE_WA(ggtt->tile->primary_gt, 22019338487) ? 1100 : 63; /* * Wa_22019338487: GMD_ID is a RO register, a dummy write forces gunit * to wait for completion of prior GTT writes before letting this through. * This needs to be done for all GGTT writes originating from the CPU. */ lockdep_assert_held(&ggtt->lock); if ((++ggtt->access_count % max_gtt_writes) == 0) { xe_mmio_write32(gt, GMD_ID, 0x0); ggtt->access_count = 0; } } static void xe_ggtt_set_pte(struct xe_ggtt *ggtt, u64 addr, u64 pte) { xe_tile_assert(ggtt->tile, !(addr & XE_PTE_MASK)); xe_tile_assert(ggtt->tile, addr < ggtt->size); writeq(pte, &ggtt->gsm[addr >> XE_PTE_SHIFT]); } static void xe_ggtt_set_pte_and_flush(struct xe_ggtt *ggtt, u64 addr, u64 pte) { xe_ggtt_set_pte(ggtt, addr, pte); ggtt_update_access_counter(ggtt); } static void xe_ggtt_clear(struct xe_ggtt *ggtt, u64 start, u64 size) { u16 pat_index = tile_to_xe(ggtt->tile)->pat.idx[XE_CACHE_WB]; u64 end = start + size - 1; u64 scratch_pte; xe_tile_assert(ggtt->tile, start < end); if (ggtt->scratch) scratch_pte = ggtt->pt_ops->pte_encode_bo(ggtt->scratch, 0, pat_index); else scratch_pte = 0; while (start < end) { ggtt->pt_ops->ggtt_set_pte(ggtt, start, scratch_pte); start += XE_PAGE_SIZE; } } static void ggtt_fini_early(struct drm_device *drm, void *arg) { struct xe_ggtt *ggtt = arg; mutex_destroy(&ggtt->lock); drm_mm_takedown(&ggtt->mm); } static void ggtt_fini(struct drm_device *drm, void *arg) { struct xe_ggtt *ggtt = arg; ggtt->scratch = NULL; } static void primelockdep(struct xe_ggtt *ggtt) { if (!IS_ENABLED(CONFIG_LOCKDEP)) return; fs_reclaim_acquire(GFP_KERNEL); might_lock(&ggtt->lock); fs_reclaim_release(GFP_KERNEL); } static const struct xe_ggtt_pt_ops xelp_pt_ops = { .pte_encode_bo = xelp_ggtt_pte_encode_bo, .ggtt_set_pte = xe_ggtt_set_pte, }; static const struct xe_ggtt_pt_ops xelpg_pt_ops = { .pte_encode_bo = xelpg_ggtt_pte_encode_bo, .ggtt_set_pte = xe_ggtt_set_pte, }; static const struct xe_ggtt_pt_ops xelpg_pt_wa_ops = { .pte_encode_bo = xelpg_ggtt_pte_encode_bo, .ggtt_set_pte = xe_ggtt_set_pte_and_flush, }; /* * Early GGTT initialization, which allows to create new mappings usable by the * GuC. * Mappings are not usable by the HW engines, as it doesn't have scratch / * initial clear done to it yet. That will happen in the regular, non-early * GGTT init. */ int xe_ggtt_init_early(struct xe_ggtt *ggtt) { struct xe_device *xe = tile_to_xe(ggtt->tile); struct pci_dev *pdev = to_pci_dev(xe->drm.dev); unsigned int gsm_size; int err; if (IS_SRIOV_VF(xe)) gsm_size = SZ_8M; /* GGTT is expected to be 4GiB */ else gsm_size = probe_gsm_size(pdev); if (gsm_size == 0) { drm_err(&xe->drm, "Hardware reported no preallocated GSM\n"); return -ENOMEM; } ggtt->gsm = ggtt->tile->mmio.regs + SZ_8M; ggtt->size = (gsm_size / 8) * (u64) XE_PAGE_SIZE; if (IS_DGFX(xe) && xe->info.vram_flags & XE_VRAM_FLAGS_NEED64K) ggtt->flags |= XE_GGTT_FLAGS_64K; /* * 8B per entry, each points to a 4KB page. * * The GuC address space is limited on both ends of the GGTT, because * the GuC shim HW redirects accesses to those addresses to other HW * areas instead of going through the GGTT. On the bottom end, the GuC * can't access offsets below the WOPCM size, while on the top side the * limit is fixed at GUC_GGTT_TOP. To keep things simple, instead of * checking each object to see if they are accessed by GuC or not, we * just exclude those areas from the allocator. Additionally, to * simplify the driver load, we use the maximum WOPCM size in this logic * instead of the programmed one, so we don't need to wait until the * actual size to be programmed is determined (which requires FW fetch) * before initializing the GGTT. These simplifications might waste space * in the GGTT (about 20-25 MBs depending on the platform) but we can * live with this. * * Another benifit of this is the GuC bootrom can't access anything * below the WOPCM max size so anything the bootom needs to access (e.g. * a RSA key) needs to be placed in the GGTT above the WOPCM max size. * Starting the GGTT allocations above the WOPCM max give us the correct * placement for free. */ if (ggtt->size > GUC_GGTT_TOP) ggtt->size = GUC_GGTT_TOP; if (GRAPHICS_VERx100(xe) >= 1270) ggtt->pt_ops = (ggtt->tile->media_gt && XE_WA(ggtt->tile->media_gt, 22019338487)) || XE_WA(ggtt->tile->primary_gt, 22019338487) ? &xelpg_pt_wa_ops : &xelpg_pt_ops; else ggtt->pt_ops = &xelp_pt_ops; drm_mm_init(&ggtt->mm, xe_wopcm_size(xe), ggtt->size - xe_wopcm_size(xe)); mutex_init(&ggtt->lock); primelockdep(ggtt); err = drmm_add_action_or_reset(&xe->drm, ggtt_fini_early, ggtt); if (err) return err; if (IS_SRIOV_VF(xe)) { err = xe_gt_sriov_vf_prepare_ggtt(xe_tile_get_gt(ggtt->tile, 0)); if (err) return err; } return 0; } static void xe_ggtt_invalidate(struct xe_ggtt *ggtt); static void xe_ggtt_initial_clear(struct xe_ggtt *ggtt) { struct drm_mm_node *hole; u64 start, end; /* Display may have allocated inside ggtt, so be careful with clearing here */ mutex_lock(&ggtt->lock); drm_mm_for_each_hole(hole, &ggtt->mm, start, end) xe_ggtt_clear(ggtt, start, end - start); xe_ggtt_invalidate(ggtt); mutex_unlock(&ggtt->lock); } int xe_ggtt_init(struct xe_ggtt *ggtt) { struct xe_device *xe = tile_to_xe(ggtt->tile); unsigned int flags; int err; /* * So we don't need to worry about 64K GGTT layout when dealing with * scratch entires, rather keep the scratch page in system memory on * platforms where 64K pages are needed for VRAM. */ flags = XE_BO_FLAG_PINNED; if (ggtt->flags & XE_GGTT_FLAGS_64K) flags |= XE_BO_FLAG_SYSTEM; else flags |= XE_BO_FLAG_VRAM_IF_DGFX(ggtt->tile); ggtt->scratch = xe_managed_bo_create_pin_map(xe, ggtt->tile, XE_PAGE_SIZE, flags); if (IS_ERR(ggtt->scratch)) { err = PTR_ERR(ggtt->scratch); goto err; } xe_map_memset(xe, &ggtt->scratch->vmap, 0, 0, ggtt->scratch->size); xe_ggtt_initial_clear(ggtt); return drmm_add_action_or_reset(&xe->drm, ggtt_fini, ggtt); err: ggtt->scratch = NULL; return err; } static void ggtt_invalidate_gt_tlb(struct xe_gt *gt) { int err; if (!gt) return; err = xe_gt_tlb_invalidation_ggtt(gt); if (err) drm_warn(>_to_xe(gt)->drm, "xe_gt_tlb_invalidation_ggtt error=%d", err); } static void xe_ggtt_invalidate(struct xe_ggtt *ggtt) { /* Each GT in a tile has its own TLB to cache GGTT lookups */ ggtt_invalidate_gt_tlb(ggtt->tile->primary_gt); ggtt_invalidate_gt_tlb(ggtt->tile->media_gt); } void xe_ggtt_printk(struct xe_ggtt *ggtt, const char *prefix) { u16 pat_index = tile_to_xe(ggtt->tile)->pat.idx[XE_CACHE_WB]; u64 addr, scratch_pte; scratch_pte = ggtt->pt_ops->pte_encode_bo(ggtt->scratch, 0, pat_index); printk("%sGlobal GTT:", prefix); for (addr = 0; addr < ggtt->size; addr += XE_PAGE_SIZE) { unsigned int i = addr / XE_PAGE_SIZE; xe_tile_assert(ggtt->tile, addr <= U32_MAX); if (ggtt->gsm[i] == scratch_pte) continue; printk("%s ggtt[0x%08x] = 0x%016llx", prefix, (u32)addr, ggtt->gsm[i]); } } static void xe_ggtt_dump_node(struct xe_ggtt *ggtt, const struct drm_mm_node *node, const char *description) { char buf[10]; if (IS_ENABLED(CONFIG_DRM_XE_DEBUG)) { string_get_size(node->size, 1, STRING_UNITS_2, buf, sizeof(buf)); xe_gt_dbg(ggtt->tile->primary_gt, "GGTT %#llx-%#llx (%s) %s\n", node->start, node->start + node->size, buf, description); } } /** * xe_ggtt_balloon - prevent allocation of specified GGTT addresses * @ggtt: the &xe_ggtt where we want to make reservation * @start: the starting GGTT address of the reserved region * @end: then end GGTT address of the reserved region * @node: the &drm_mm_node to hold reserved GGTT node * * Use xe_ggtt_deballoon() to release a reserved GGTT node. * * Return: 0 on success or a negative error code on failure. */ int xe_ggtt_balloon(struct xe_ggtt *ggtt, u64 start, u64 end, struct drm_mm_node *node) { int err; xe_tile_assert(ggtt->tile, start < end); xe_tile_assert(ggtt->tile, IS_ALIGNED(start, XE_PAGE_SIZE)); xe_tile_assert(ggtt->tile, IS_ALIGNED(end, XE_PAGE_SIZE)); xe_tile_assert(ggtt->tile, !drm_mm_node_allocated(node)); node->color = 0; node->start = start; node->size = end - start; mutex_lock(&ggtt->lock); err = drm_mm_reserve_node(&ggtt->mm, node); mutex_unlock(&ggtt->lock); if (xe_gt_WARN(ggtt->tile->primary_gt, err, "Failed to balloon GGTT %#llx-%#llx (%pe)\n", node->start, node->start + node->size, ERR_PTR(err))) return err; xe_ggtt_dump_node(ggtt, node, "balloon"); return 0; } /** * xe_ggtt_deballoon - release a reserved GGTT region * @ggtt: the &xe_ggtt where reserved node belongs * @node: the &drm_mm_node with reserved GGTT region * * See xe_ggtt_balloon() for details. */ void xe_ggtt_deballoon(struct xe_ggtt *ggtt, struct drm_mm_node *node) { if (!drm_mm_node_allocated(node)) return; xe_ggtt_dump_node(ggtt, node, "deballoon"); mutex_lock(&ggtt->lock); drm_mm_remove_node(node); mutex_unlock(&ggtt->lock); } int xe_ggtt_insert_special_node_locked(struct xe_ggtt *ggtt, struct drm_mm_node *node, u32 size, u32 align, u32 mm_flags) { return drm_mm_insert_node_generic(&ggtt->mm, node, size, align, 0, mm_flags); } int xe_ggtt_insert_special_node(struct xe_ggtt *ggtt, struct drm_mm_node *node, u32 size, u32 align) { int ret; mutex_lock(&ggtt->lock); ret = xe_ggtt_insert_special_node_locked(ggtt, node, size, align, DRM_MM_INSERT_HIGH); mutex_unlock(&ggtt->lock); return ret; } void xe_ggtt_map_bo(struct xe_ggtt *ggtt, struct xe_bo *bo) { u16 cache_mode = bo->flags & XE_BO_FLAG_NEEDS_UC ? XE_CACHE_NONE : XE_CACHE_WB; u16 pat_index = tile_to_xe(ggtt->tile)->pat.idx[cache_mode]; u64 start = bo->ggtt_node.start; u64 offset, pte; for (offset = 0; offset < bo->size; offset += XE_PAGE_SIZE) { pte = ggtt->pt_ops->pte_encode_bo(bo, offset, pat_index); ggtt->pt_ops->ggtt_set_pte(ggtt, start + offset, pte); } } static int __xe_ggtt_insert_bo_at(struct xe_ggtt *ggtt, struct xe_bo *bo, u64 start, u64 end) { int err; u64 alignment = XE_PAGE_SIZE; if (xe_bo_is_vram(bo) && ggtt->flags & XE_GGTT_FLAGS_64K) alignment = SZ_64K; if (XE_WARN_ON(bo->ggtt_node.size)) { /* Someone's already inserted this BO in the GGTT */ xe_tile_assert(ggtt->tile, bo->ggtt_node.size == bo->size); return 0; } err = xe_bo_validate(bo, NULL, false); if (err) return err; xe_pm_runtime_get_noresume(tile_to_xe(ggtt->tile)); mutex_lock(&ggtt->lock); err = drm_mm_insert_node_in_range(&ggtt->mm, &bo->ggtt_node, bo->size, alignment, 0, start, end, 0); if (!err) xe_ggtt_map_bo(ggtt, bo); mutex_unlock(&ggtt->lock); if (!err && bo->flags & XE_BO_FLAG_GGTT_INVALIDATE) xe_ggtt_invalidate(ggtt); xe_pm_runtime_put(tile_to_xe(ggtt->tile)); return err; } int xe_ggtt_insert_bo_at(struct xe_ggtt *ggtt, struct xe_bo *bo, u64 start, u64 end) { return __xe_ggtt_insert_bo_at(ggtt, bo, start, end); } int xe_ggtt_insert_bo(struct xe_ggtt *ggtt, struct xe_bo *bo) { return __xe_ggtt_insert_bo_at(ggtt, bo, 0, U64_MAX); } void xe_ggtt_remove_node(struct xe_ggtt *ggtt, struct drm_mm_node *node, bool invalidate) { struct xe_device *xe = tile_to_xe(ggtt->tile); bool bound; int idx; bound = drm_dev_enter(&xe->drm, &idx); if (bound) xe_pm_runtime_get_noresume(xe); mutex_lock(&ggtt->lock); if (bound) xe_ggtt_clear(ggtt, node->start, node->size); drm_mm_remove_node(node); node->size = 0; mutex_unlock(&ggtt->lock); if (!bound) return; if (invalidate) xe_ggtt_invalidate(ggtt); xe_pm_runtime_put(xe); drm_dev_exit(idx); } void xe_ggtt_remove_bo(struct xe_ggtt *ggtt, struct xe_bo *bo) { if (XE_WARN_ON(!bo->ggtt_node.size)) return; /* This BO is not currently in the GGTT */ xe_tile_assert(ggtt->tile, bo->ggtt_node.size == bo->size); xe_ggtt_remove_node(ggtt, &bo->ggtt_node, bo->flags & XE_BO_FLAG_GGTT_INVALIDATE); } #ifdef CONFIG_PCI_IOV static u64 xe_encode_vfid_pte(u16 vfid) { return FIELD_PREP(GGTT_PTE_VFID, vfid) | XE_PAGE_PRESENT; } static void xe_ggtt_assign_locked(struct xe_ggtt *ggtt, const struct drm_mm_node *node, u16 vfid) { u64 start = node->start; u64 size = node->size; u64 end = start + size - 1; u64 pte = xe_encode_vfid_pte(vfid); lockdep_assert_held(&ggtt->lock); if (!drm_mm_node_allocated(node)) return; while (start < end) { ggtt->pt_ops->ggtt_set_pte(ggtt, start, pte); start += XE_PAGE_SIZE; } xe_ggtt_invalidate(ggtt); } /** * xe_ggtt_assign - assign a GGTT region to the VF * @ggtt: the &xe_ggtt where the node belongs * @node: the &drm_mm_node to update * @vfid: the VF identifier * * This function is used by the PF driver to assign a GGTT region to the VF. * In addition to PTE's VFID bits 11:2 also PRESENT bit 0 is set as on some * platforms VFs can't modify that either. */ void xe_ggtt_assign(struct xe_ggtt *ggtt, const struct drm_mm_node *node, u16 vfid) { mutex_lock(&ggtt->lock); xe_ggtt_assign_locked(ggtt, node, vfid); mutex_unlock(&ggtt->lock); } #endif int xe_ggtt_dump(struct xe_ggtt *ggtt, struct drm_printer *p) { int err; err = mutex_lock_interruptible(&ggtt->lock); if (err) return err; drm_mm_print(&ggtt->mm, p); mutex_unlock(&ggtt->lock); return err; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1