Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Dipen Patel | 3534 | 99.41% | 1 | 12.50% |
Andy Shevchenko | 5 | 0.14% | 1 | 12.50% |
Kees Cook | 5 | 0.14% | 1 | 12.50% |
ye xingchen | 4 | 0.11% | 1 | 12.50% |
Rob Herring | 4 | 0.11% | 2 | 25.00% |
Dan Carpenter | 3 | 0.08% | 2 | 25.00% |
Total | 3555 | 8 |
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (c) 2021-2022 NVIDIA Corporation * * Author: Dipen Patel <dipenp@nvidia.com> */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/err.h> #include <linux/slab.h> #include <linux/of.h> #include <linux/mutex.h> #include <linux/uaccess.h> #include <linux/hte.h> #include <linux/delay.h> #include <linux/debugfs.h> #include <linux/device.h> /* Global list of the HTE devices */ static DEFINE_SPINLOCK(hte_lock); static LIST_HEAD(hte_devices); enum { HTE_TS_REGISTERED, HTE_TS_REQ, HTE_TS_DISABLE, HTE_TS_QUEUE_WK, }; /** * struct hte_ts_info - Information related to requested timestamp. * * @xlated_id: Timestamp ID as understood between HTE subsys and HTE provider, * See xlate callback API. * @flags: Flags holding state information. * @hte_cb_flags: Callback related flags. * @seq: Timestamp sequence counter. * @line_name: HTE allocated line name. * @free_attr_name: If set, free the attr name. * @cb: A nonsleeping callback function provided by clients. * @tcb: A secondary sleeping callback function provided by clients. * @dropped_ts: Dropped timestamps. * @slock: Spin lock to synchronize between disable/enable, * request/release APIs. * @cb_work: callback workqueue, used when tcb is specified. * @req_mlock: Lock during timestamp request/release APIs. * @ts_dbg_root: Root for the debug fs. * @gdev: HTE abstract device that this timestamp information belongs to. * @cl_data: Client specific data. */ struct hte_ts_info { u32 xlated_id; unsigned long flags; unsigned long hte_cb_flags; u64 seq; char *line_name; bool free_attr_name; hte_ts_cb_t cb; hte_ts_sec_cb_t tcb; atomic_t dropped_ts; spinlock_t slock; struct work_struct cb_work; struct mutex req_mlock; struct dentry *ts_dbg_root; struct hte_device *gdev; void *cl_data; }; /** * struct hte_device - HTE abstract device * @nlines: Number of entities this device supports. * @ts_req: Total number of entities requested. * @sdev: Device used at various debug prints. * @dbg_root: Root directory for debug fs. * @list: List node to store hte_device for each provider. * @chip: HTE chip providing this HTE device. * @owner: helps prevent removal of modules when in use. * @ei: Timestamp information. */ struct hte_device { u32 nlines; atomic_t ts_req; struct device *sdev; struct dentry *dbg_root; struct list_head list; struct hte_chip *chip; struct module *owner; struct hte_ts_info ei[] __counted_by(nlines); }; #ifdef CONFIG_DEBUG_FS static struct dentry *hte_root; static int __init hte_subsys_dbgfs_init(void) { /* creates /sys/kernel/debug/hte/ */ hte_root = debugfs_create_dir("hte", NULL); return 0; } subsys_initcall(hte_subsys_dbgfs_init); static void hte_chip_dbgfs_init(struct hte_device *gdev) { const struct hte_chip *chip = gdev->chip; const char *name = chip->name ? chip->name : dev_name(chip->dev); gdev->dbg_root = debugfs_create_dir(name, hte_root); debugfs_create_atomic_t("ts_requested", 0444, gdev->dbg_root, &gdev->ts_req); debugfs_create_u32("total_ts", 0444, gdev->dbg_root, &gdev->nlines); } static void hte_ts_dbgfs_init(const char *name, struct hte_ts_info *ei) { if (!ei->gdev->dbg_root || !name) return; ei->ts_dbg_root = debugfs_create_dir(name, ei->gdev->dbg_root); debugfs_create_atomic_t("dropped_timestamps", 0444, ei->ts_dbg_root, &ei->dropped_ts); } #else static void hte_chip_dbgfs_init(struct hte_device *gdev) { } static void hte_ts_dbgfs_init(const char *name, struct hte_ts_info *ei) { } #endif /** * hte_ts_put() - Release and disable timestamp for the given desc. * * @desc: timestamp descriptor. * * Context: debugfs_remove_recursive() function call may use sleeping locks, * not suitable from atomic context. * Returns: 0 on success or a negative error code on failure. */ int hte_ts_put(struct hte_ts_desc *desc) { int ret = 0; unsigned long flag; struct hte_device *gdev; struct hte_ts_info *ei; if (!desc) return -EINVAL; ei = desc->hte_data; if (!ei || !ei->gdev) return -EINVAL; gdev = ei->gdev; mutex_lock(&ei->req_mlock); if (unlikely(!test_bit(HTE_TS_REQ, &ei->flags) && !test_bit(HTE_TS_REGISTERED, &ei->flags))) { dev_info(gdev->sdev, "id:%d is not requested\n", desc->attr.line_id); ret = -EINVAL; goto unlock; } if (unlikely(!test_bit(HTE_TS_REQ, &ei->flags) && test_bit(HTE_TS_REGISTERED, &ei->flags))) { dev_info(gdev->sdev, "id:%d is registered but not requested\n", desc->attr.line_id); ret = -EINVAL; goto unlock; } if (test_bit(HTE_TS_REQ, &ei->flags) && !test_bit(HTE_TS_REGISTERED, &ei->flags)) { clear_bit(HTE_TS_REQ, &ei->flags); desc->hte_data = NULL; ret = 0; goto mod_put; } ret = gdev->chip->ops->release(gdev->chip, desc, ei->xlated_id); if (ret) { dev_err(gdev->sdev, "id: %d free failed\n", desc->attr.line_id); goto unlock; } kfree(ei->line_name); if (ei->free_attr_name) kfree_const(desc->attr.name); debugfs_remove_recursive(ei->ts_dbg_root); spin_lock_irqsave(&ei->slock, flag); if (test_bit(HTE_TS_QUEUE_WK, &ei->flags)) { spin_unlock_irqrestore(&ei->slock, flag); flush_work(&ei->cb_work); spin_lock_irqsave(&ei->slock, flag); } atomic_dec(&gdev->ts_req); atomic_set(&ei->dropped_ts, 0); ei->seq = 1; ei->flags = 0; desc->hte_data = NULL; spin_unlock_irqrestore(&ei->slock, flag); ei->cb = NULL; ei->tcb = NULL; ei->cl_data = NULL; mod_put: module_put(gdev->owner); unlock: mutex_unlock(&ei->req_mlock); dev_dbg(gdev->sdev, "release id: %d\n", desc->attr.line_id); return ret; } EXPORT_SYMBOL_GPL(hte_ts_put); static int hte_ts_dis_en_common(struct hte_ts_desc *desc, bool en) { u32 ts_id; struct hte_device *gdev; struct hte_ts_info *ei; int ret; unsigned long flag; if (!desc) return -EINVAL; ei = desc->hte_data; if (!ei || !ei->gdev) return -EINVAL; gdev = ei->gdev; ts_id = desc->attr.line_id; mutex_lock(&ei->req_mlock); if (!test_bit(HTE_TS_REGISTERED, &ei->flags)) { dev_dbg(gdev->sdev, "id:%d is not registered", ts_id); ret = -EUSERS; goto out; } spin_lock_irqsave(&ei->slock, flag); if (en) { if (!test_bit(HTE_TS_DISABLE, &ei->flags)) { ret = 0; goto out_unlock; } spin_unlock_irqrestore(&ei->slock, flag); ret = gdev->chip->ops->enable(gdev->chip, ei->xlated_id); if (ret) { dev_warn(gdev->sdev, "id: %d enable failed\n", ts_id); goto out; } spin_lock_irqsave(&ei->slock, flag); clear_bit(HTE_TS_DISABLE, &ei->flags); } else { if (test_bit(HTE_TS_DISABLE, &ei->flags)) { ret = 0; goto out_unlock; } spin_unlock_irqrestore(&ei->slock, flag); ret = gdev->chip->ops->disable(gdev->chip, ei->xlated_id); if (ret) { dev_warn(gdev->sdev, "id: %d disable failed\n", ts_id); goto out; } spin_lock_irqsave(&ei->slock, flag); set_bit(HTE_TS_DISABLE, &ei->flags); } out_unlock: spin_unlock_irqrestore(&ei->slock, flag); out: mutex_unlock(&ei->req_mlock); return ret; } /** * hte_disable_ts() - Disable timestamp on given descriptor. * * The API does not release any resources associated with desc. * * @desc: ts descriptor, this is the same as returned by the request API. * * Context: Holds mutex lock, not suitable from atomic context. * Returns: 0 on success or a negative error code on failure. */ int hte_disable_ts(struct hte_ts_desc *desc) { return hte_ts_dis_en_common(desc, false); } EXPORT_SYMBOL_GPL(hte_disable_ts); /** * hte_enable_ts() - Enable timestamp on given descriptor. * * @desc: ts descriptor, this is the same as returned by the request API. * * Context: Holds mutex lock, not suitable from atomic context. * Returns: 0 on success or a negative error code on failure. */ int hte_enable_ts(struct hte_ts_desc *desc) { return hte_ts_dis_en_common(desc, true); } EXPORT_SYMBOL_GPL(hte_enable_ts); static void hte_do_cb_work(struct work_struct *w) { unsigned long flag; struct hte_ts_info *ei = container_of(w, struct hte_ts_info, cb_work); if (unlikely(!ei->tcb)) return; ei->tcb(ei->cl_data); spin_lock_irqsave(&ei->slock, flag); clear_bit(HTE_TS_QUEUE_WK, &ei->flags); spin_unlock_irqrestore(&ei->slock, flag); } static int __hte_req_ts(struct hte_ts_desc *desc, hte_ts_cb_t cb, hte_ts_sec_cb_t tcb, void *data) { int ret; struct hte_device *gdev; struct hte_ts_info *ei = desc->hte_data; gdev = ei->gdev; /* * There is a chance that multiple consumers requesting same entity, * lock here. */ mutex_lock(&ei->req_mlock); if (test_bit(HTE_TS_REGISTERED, &ei->flags) || !test_bit(HTE_TS_REQ, &ei->flags)) { dev_dbg(gdev->chip->dev, "id:%u req failed\n", desc->attr.line_id); ret = -EUSERS; goto unlock; } ei->cb = cb; ei->tcb = tcb; if (tcb) INIT_WORK(&ei->cb_work, hte_do_cb_work); ret = gdev->chip->ops->request(gdev->chip, desc, ei->xlated_id); if (ret < 0) { dev_err(gdev->chip->dev, "ts request failed\n"); goto unlock; } ei->cl_data = data; ei->seq = 1; atomic_inc(&gdev->ts_req); if (desc->attr.name) ei->line_name = NULL; else ei->line_name = kasprintf(GFP_KERNEL, "ts_%u", desc->attr.line_id); hte_ts_dbgfs_init(desc->attr.name == NULL ? ei->line_name : desc->attr.name, ei); set_bit(HTE_TS_REGISTERED, &ei->flags); dev_dbg(gdev->chip->dev, "id: %u, xlated id:%u", desc->attr.line_id, ei->xlated_id); ret = 0; unlock: mutex_unlock(&ei->req_mlock); return ret; } static int hte_bind_ts_info_locked(struct hte_ts_info *ei, struct hte_ts_desc *desc, u32 x_id) { int ret = 0; mutex_lock(&ei->req_mlock); if (test_bit(HTE_TS_REQ, &ei->flags)) { dev_dbg(ei->gdev->chip->dev, "id:%u is already requested\n", desc->attr.line_id); ret = -EUSERS; goto out; } set_bit(HTE_TS_REQ, &ei->flags); desc->hte_data = ei; ei->xlated_id = x_id; out: mutex_unlock(&ei->req_mlock); return ret; } static struct hte_device *of_node_to_htedevice(struct device_node *np) { struct hte_device *gdev; spin_lock(&hte_lock); list_for_each_entry(gdev, &hte_devices, list) if (gdev->chip && gdev->chip->dev && device_match_of_node(gdev->chip->dev, np)) { spin_unlock(&hte_lock); return gdev; } spin_unlock(&hte_lock); return ERR_PTR(-ENODEV); } static struct hte_device *hte_find_dev_from_linedata(struct hte_ts_desc *desc) { struct hte_device *gdev; spin_lock(&hte_lock); list_for_each_entry(gdev, &hte_devices, list) if (gdev->chip && gdev->chip->match_from_linedata) { if (!gdev->chip->match_from_linedata(gdev->chip, desc)) continue; spin_unlock(&hte_lock); return gdev; } spin_unlock(&hte_lock); return ERR_PTR(-ENODEV); } /** * of_hte_req_count - Return the number of entities to timestamp. * * The function returns the total count of the requested entities to timestamp * by parsing device tree. * * @dev: The HTE consumer. * * Returns: Positive number on success, -ENOENT if no entries, * -EINVAL for other errors. */ int of_hte_req_count(struct device *dev) { int count; if (!dev || !dev->of_node) return -EINVAL; count = of_count_phandle_with_args(dev->of_node, "timestamps", "#timestamp-cells"); return count ? count : -ENOENT; } EXPORT_SYMBOL_GPL(of_hte_req_count); static inline struct hte_device *hte_get_dev(struct hte_ts_desc *desc) { return hte_find_dev_from_linedata(desc); } static struct hte_device *hte_of_get_dev(struct device *dev, struct hte_ts_desc *desc, int index, struct of_phandle_args *args, bool *free_name) { int ret; struct device_node *np; char *temp; if (!dev->of_node) return ERR_PTR(-EINVAL); np = dev->of_node; if (!of_property_present(np, "timestamp-names")) { /* Let hte core construct it during request time */ desc->attr.name = NULL; } else { ret = of_property_read_string_index(np, "timestamp-names", index, &desc->attr.name); if (ret) { pr_err("can't parse \"timestamp-names\" property\n"); return ERR_PTR(ret); } *free_name = false; if (desc->attr.name) { temp = skip_spaces(desc->attr.name); if (!*temp) desc->attr.name = NULL; } } ret = of_parse_phandle_with_args(np, "timestamps", "#timestamp-cells", index, args); if (ret) { pr_err("%s(): can't parse \"timestamps\" property\n", __func__); return ERR_PTR(ret); } of_node_put(args->np); return of_node_to_htedevice(args->np); } /** * hte_ts_get() - The function to initialize and obtain HTE desc. * * The function initializes the consumer provided HTE descriptor. If consumer * has device tree node, index is used to parse the line id and other details. * The function needs to be called before using any request APIs. * * @dev: HTE consumer/client device, used in case of parsing device tree node. * @desc: Pre-allocated timestamp descriptor. * @index: The index will be used as an index to parse line_id from the * device tree node if node is present. * * Context: Holds mutex lock. * Returns: Returns 0 on success or negative error code on failure. */ int hte_ts_get(struct device *dev, struct hte_ts_desc *desc, int index) { struct hte_device *gdev; struct hte_ts_info *ei; const struct fwnode_handle *fwnode; struct of_phandle_args args; u32 xlated_id; int ret; bool free_name = false; if (!desc) return -EINVAL; fwnode = dev ? dev_fwnode(dev) : NULL; if (is_of_node(fwnode)) gdev = hte_of_get_dev(dev, desc, index, &args, &free_name); else gdev = hte_get_dev(desc); if (IS_ERR(gdev)) { pr_err("%s() no hte dev found\n", __func__); return PTR_ERR(gdev); } if (!try_module_get(gdev->owner)) return -ENODEV; if (!gdev->chip) { pr_err("%s(): requested id does not have provider\n", __func__); ret = -ENODEV; goto put; } if (is_of_node(fwnode)) { if (!gdev->chip->xlate_of) ret = -EINVAL; else ret = gdev->chip->xlate_of(gdev->chip, &args, desc, &xlated_id); } else { if (!gdev->chip->xlate_plat) ret = -EINVAL; else ret = gdev->chip->xlate_plat(gdev->chip, desc, &xlated_id); } if (ret < 0) goto put; ei = &gdev->ei[xlated_id]; ret = hte_bind_ts_info_locked(ei, desc, xlated_id); if (ret) goto put; ei->free_attr_name = free_name; return 0; put: module_put(gdev->owner); return ret; } EXPORT_SYMBOL_GPL(hte_ts_get); static void __devm_hte_release_ts(void *res) { hte_ts_put(res); } /** * hte_request_ts_ns() - The API to request and enable hardware timestamp in * nanoseconds. * * The entity is provider specific for example, GPIO lines, signals, buses * etc...The API allocates necessary resources and enables the timestamp. * * @desc: Pre-allocated and initialized timestamp descriptor. * @cb: Callback to push the timestamp data to consumer. * @tcb: Optional callback. If its provided, subsystem initializes * workqueue. It is called when cb returns HTE_RUN_SECOND_CB. * @data: Client data, used during cb and tcb callbacks. * * Context: Holds mutex lock. * Returns: Returns 0 on success or negative error code on failure. */ int hte_request_ts_ns(struct hte_ts_desc *desc, hte_ts_cb_t cb, hte_ts_sec_cb_t tcb, void *data) { int ret; struct hte_ts_info *ei; if (!desc || !desc->hte_data || !cb) return -EINVAL; ei = desc->hte_data; if (!ei || !ei->gdev) return -EINVAL; ret = __hte_req_ts(desc, cb, tcb, data); if (ret < 0) { dev_err(ei->gdev->chip->dev, "failed to request id: %d\n", desc->attr.line_id); return ret; } return 0; } EXPORT_SYMBOL_GPL(hte_request_ts_ns); /** * devm_hte_request_ts_ns() - Resource managed API to request and enable * hardware timestamp in nanoseconds. * * The entity is provider specific for example, GPIO lines, signals, buses * etc...The API allocates necessary resources and enables the timestamp. It * deallocates and disables automatically when the consumer exits. * * @dev: HTE consumer/client device. * @desc: Pre-allocated and initialized timestamp descriptor. * @cb: Callback to push the timestamp data to consumer. * @tcb: Optional callback. If its provided, subsystem initializes * workqueue. It is called when cb returns HTE_RUN_SECOND_CB. * @data: Client data, used during cb and tcb callbacks. * * Context: Holds mutex lock. * Returns: Returns 0 on success or negative error code on failure. */ int devm_hte_request_ts_ns(struct device *dev, struct hte_ts_desc *desc, hte_ts_cb_t cb, hte_ts_sec_cb_t tcb, void *data) { int err; if (!dev) return -EINVAL; err = hte_request_ts_ns(desc, cb, tcb, data); if (err) return err; err = devm_add_action_or_reset(dev, __devm_hte_release_ts, desc); if (err) return err; return 0; } EXPORT_SYMBOL_GPL(devm_hte_request_ts_ns); /** * hte_init_line_attr() - Initialize line attributes. * * Zeroes out line attributes and initializes with provided arguments. * The function needs to be called before calling any consumer facing * functions. * * @desc: Pre-allocated timestamp descriptor. * @line_id: line id. * @edge_flags: edge flags related to line_id. * @name: name of the line. * @data: line data related to line_id. * * Context: Any. * Returns: 0 on success or negative error code for the failure. */ int hte_init_line_attr(struct hte_ts_desc *desc, u32 line_id, unsigned long edge_flags, const char *name, void *data) { if (!desc) return -EINVAL; memset(&desc->attr, 0, sizeof(desc->attr)); desc->attr.edge_flags = edge_flags; desc->attr.line_id = line_id; desc->attr.line_data = data; if (name) { name = kstrdup_const(name, GFP_KERNEL); if (!name) return -ENOMEM; } desc->attr.name = name; return 0; } EXPORT_SYMBOL_GPL(hte_init_line_attr); /** * hte_get_clk_src_info() - Get the clock source information for a ts * descriptor. * * @desc: ts descriptor, same as returned from request API. * @ci: The API fills this structure with the clock information data. * * Context: Any context. * Returns: 0 on success else negative error code on failure. */ int hte_get_clk_src_info(const struct hte_ts_desc *desc, struct hte_clk_info *ci) { struct hte_chip *chip; struct hte_ts_info *ei; if (!desc || !desc->hte_data || !ci) { pr_debug("%s:%d\n", __func__, __LINE__); return -EINVAL; } ei = desc->hte_data; if (!ei->gdev || !ei->gdev->chip) return -EINVAL; chip = ei->gdev->chip; if (!chip->ops->get_clk_src_info) return -EOPNOTSUPP; return chip->ops->get_clk_src_info(chip, ci); } EXPORT_SYMBOL_GPL(hte_get_clk_src_info); /** * hte_push_ts_ns() - Push timestamp data in nanoseconds. * * It is used by the provider to push timestamp data. * * @chip: The HTE chip, used during the registration. * @xlated_id: entity id understood by both subsystem and provider, this is * obtained from xlate callback during request API. * @data: timestamp data. * * Returns: 0 on success or a negative error code on failure. */ int hte_push_ts_ns(const struct hte_chip *chip, u32 xlated_id, struct hte_ts_data *data) { enum hte_return ret; int st = 0; struct hte_ts_info *ei; unsigned long flag; if (!chip || !data || !chip->gdev) return -EINVAL; if (xlated_id >= chip->nlines) return -EINVAL; ei = &chip->gdev->ei[xlated_id]; spin_lock_irqsave(&ei->slock, flag); /* timestamp sequence counter */ data->seq = ei->seq++; if (!test_bit(HTE_TS_REGISTERED, &ei->flags) || test_bit(HTE_TS_DISABLE, &ei->flags)) { dev_dbg(chip->dev, "Unknown timestamp push\n"); atomic_inc(&ei->dropped_ts); st = -EINVAL; goto unlock; } ret = ei->cb(data, ei->cl_data); if (ret == HTE_RUN_SECOND_CB && ei->tcb) { queue_work(system_unbound_wq, &ei->cb_work); set_bit(HTE_TS_QUEUE_WK, &ei->flags); } unlock: spin_unlock_irqrestore(&ei->slock, flag); return st; } EXPORT_SYMBOL_GPL(hte_push_ts_ns); static int hte_register_chip(struct hte_chip *chip) { struct hte_device *gdev; u32 i; if (!chip || !chip->dev || !chip->dev->of_node) return -EINVAL; if (!chip->ops || !chip->ops->request || !chip->ops->release) { dev_err(chip->dev, "Driver needs to provide ops\n"); return -EINVAL; } gdev = kzalloc(struct_size(gdev, ei, chip->nlines), GFP_KERNEL); if (!gdev) return -ENOMEM; gdev->chip = chip; chip->gdev = gdev; gdev->nlines = chip->nlines; gdev->sdev = chip->dev; for (i = 0; i < chip->nlines; i++) { gdev->ei[i].gdev = gdev; mutex_init(&gdev->ei[i].req_mlock); spin_lock_init(&gdev->ei[i].slock); } if (chip->dev->driver) gdev->owner = chip->dev->driver->owner; else gdev->owner = THIS_MODULE; of_node_get(chip->dev->of_node); INIT_LIST_HEAD(&gdev->list); spin_lock(&hte_lock); list_add_tail(&gdev->list, &hte_devices); spin_unlock(&hte_lock); hte_chip_dbgfs_init(gdev); dev_dbg(chip->dev, "Added hte chip\n"); return 0; } static int hte_unregister_chip(struct hte_chip *chip) { struct hte_device *gdev; if (!chip) return -EINVAL; gdev = chip->gdev; spin_lock(&hte_lock); list_del(&gdev->list); spin_unlock(&hte_lock); gdev->chip = NULL; of_node_put(chip->dev->of_node); debugfs_remove_recursive(gdev->dbg_root); kfree(gdev); dev_dbg(chip->dev, "Removed hte chip\n"); return 0; } static void _hte_devm_unregister_chip(void *chip) { hte_unregister_chip(chip); } /** * devm_hte_register_chip() - Resource managed API to register HTE chip. * * It is used by the provider to register itself with the HTE subsystem. * The unregistration is done automatically when the provider exits. * * @chip: the HTE chip to add to subsystem. * * Returns: 0 on success or a negative error code on failure. */ int devm_hte_register_chip(struct hte_chip *chip) { int err; err = hte_register_chip(chip); if (err) return err; err = devm_add_action_or_reset(chip->dev, _hte_devm_unregister_chip, chip); if (err) return err; return 0; } EXPORT_SYMBOL_GPL(devm_hte_register_chip);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1