Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Justin Thiessen | 4533 | 41.03% | 2 | 4.55% |
Axel Lin | 3499 | 31.67% | 4 | 9.09% |
Guenter Roeck | 1258 | 11.39% | 6 | 13.64% |
Yani Ioannou | 585 | 5.29% | 2 | 4.55% |
Jean Delvare | 527 | 4.77% | 14 | 31.82% |
Mark M. Hoffman | 526 | 4.76% | 3 | 6.82% |
Julia Lawall | 44 | 0.40% | 1 | 2.27% |
Ingo Molnar | 26 | 0.24% | 1 | 2.27% |
Gabriele Gorla | 25 | 0.23% | 1 | 2.27% |
Ben Dooks | 6 | 0.05% | 1 | 2.27% |
Alexey Dobriyan | 6 | 0.05% | 1 | 2.27% |
Grant Coady | 5 | 0.05% | 1 | 2.27% |
Paul Fertser | 3 | 0.03% | 1 | 2.27% |
Wolfram Sang | 1 | 0.01% | 1 | 2.27% |
Tony Jones | 1 | 0.01% | 1 | 2.27% |
Greg Kroah-Hartman | 1 | 0.01% | 1 | 2.27% |
Thomas Gleixner | 1 | 0.01% | 1 | 2.27% |
Alexander A. Klimov | 1 | 0.01% | 1 | 2.27% |
Uwe Kleine-König | 1 | 0.01% | 1 | 2.27% |
Total | 11049 | 44 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * adm1026.c - Part of lm_sensors, Linux kernel modules for hardware * monitoring * Copyright (C) 2002, 2003 Philip Pokorny <ppokorny@penguincomputing.com> * Copyright (C) 2004 Justin Thiessen <jthiessen@penguincomputing.com> * * Chip details at: * * <https://www.onsemi.com/PowerSolutions/product.do?id=ADM1026> */ #include <linux/module.h> #include <linux/init.h> #include <linux/slab.h> #include <linux/jiffies.h> #include <linux/i2c.h> #include <linux/hwmon.h> #include <linux/hwmon-sysfs.h> #include <linux/hwmon-vid.h> #include <linux/err.h> #include <linux/mutex.h> /* Addresses to scan */ static const unsigned short normal_i2c[] = { 0x2c, 0x2d, 0x2e, I2C_CLIENT_END }; static int gpio_input[17] = { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }; static int gpio_output[17] = { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }; static int gpio_inverted[17] = { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }; static int gpio_normal[17] = { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }; static int gpio_fan[8] = { -1, -1, -1, -1, -1, -1, -1, -1 }; module_param_array(gpio_input, int, NULL, 0); MODULE_PARM_DESC(gpio_input, "List of GPIO pins (0-16) to program as inputs"); module_param_array(gpio_output, int, NULL, 0); MODULE_PARM_DESC(gpio_output, "List of GPIO pins (0-16) to program as outputs"); module_param_array(gpio_inverted, int, NULL, 0); MODULE_PARM_DESC(gpio_inverted, "List of GPIO pins (0-16) to program as inverted"); module_param_array(gpio_normal, int, NULL, 0); MODULE_PARM_DESC(gpio_normal, "List of GPIO pins (0-16) to program as normal/non-inverted"); module_param_array(gpio_fan, int, NULL, 0); MODULE_PARM_DESC(gpio_fan, "List of GPIO pins (0-7) to program as fan tachs"); /* Many ADM1026 constants specified below */ /* The ADM1026 registers */ #define ADM1026_REG_CONFIG1 0x00 #define CFG1_MONITOR 0x01 #define CFG1_INT_ENABLE 0x02 #define CFG1_INT_CLEAR 0x04 #define CFG1_AIN8_9 0x08 #define CFG1_THERM_HOT 0x10 #define CFG1_DAC_AFC 0x20 #define CFG1_PWM_AFC 0x40 #define CFG1_RESET 0x80 #define ADM1026_REG_CONFIG2 0x01 /* CONFIG2 controls FAN0/GPIO0 through FAN7/GPIO7 */ #define ADM1026_REG_CONFIG3 0x07 #define CFG3_GPIO16_ENABLE 0x01 #define CFG3_CI_CLEAR 0x02 #define CFG3_VREF_250 0x04 #define CFG3_GPIO16_DIR 0x40 #define CFG3_GPIO16_POL 0x80 #define ADM1026_REG_E2CONFIG 0x13 #define E2CFG_READ 0x01 #define E2CFG_WRITE 0x02 #define E2CFG_ERASE 0x04 #define E2CFG_ROM 0x08 #define E2CFG_CLK_EXT 0x80 /* * There are 10 general analog inputs and 7 dedicated inputs * They are: * 0 - 9 = AIN0 - AIN9 * 10 = Vbat * 11 = 3.3V Standby * 12 = 3.3V Main * 13 = +5V * 14 = Vccp (CPU core voltage) * 15 = +12V * 16 = -12V */ static u16 ADM1026_REG_IN[] = { 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x27, 0x29, 0x26, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f }; static u16 ADM1026_REG_IN_MIN[] = { 0x58, 0x59, 0x5a, 0x5b, 0x5c, 0x5d, 0x5e, 0x5f, 0x6d, 0x49, 0x6b, 0x4a, 0x4b, 0x4c, 0x4d, 0x4e, 0x4f }; static u16 ADM1026_REG_IN_MAX[] = { 0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57, 0x6c, 0x41, 0x6a, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47 }; /* * Temperatures are: * 0 - Internal * 1 - External 1 * 2 - External 2 */ static u16 ADM1026_REG_TEMP[] = { 0x1f, 0x28, 0x29 }; static u16 ADM1026_REG_TEMP_MIN[] = { 0x69, 0x48, 0x49 }; static u16 ADM1026_REG_TEMP_MAX[] = { 0x68, 0x40, 0x41 }; static u16 ADM1026_REG_TEMP_TMIN[] = { 0x10, 0x11, 0x12 }; static u16 ADM1026_REG_TEMP_THERM[] = { 0x0d, 0x0e, 0x0f }; static u16 ADM1026_REG_TEMP_OFFSET[] = { 0x1e, 0x6e, 0x6f }; #define ADM1026_REG_FAN(nr) (0x38 + (nr)) #define ADM1026_REG_FAN_MIN(nr) (0x60 + (nr)) #define ADM1026_REG_FAN_DIV_0_3 0x02 #define ADM1026_REG_FAN_DIV_4_7 0x03 #define ADM1026_REG_DAC 0x04 #define ADM1026_REG_PWM 0x05 #define ADM1026_REG_GPIO_CFG_0_3 0x08 #define ADM1026_REG_GPIO_CFG_4_7 0x09 #define ADM1026_REG_GPIO_CFG_8_11 0x0a #define ADM1026_REG_GPIO_CFG_12_15 0x0b /* CFG_16 in REG_CFG3 */ #define ADM1026_REG_GPIO_STATUS_0_7 0x24 #define ADM1026_REG_GPIO_STATUS_8_15 0x25 /* STATUS_16 in REG_STATUS4 */ #define ADM1026_REG_GPIO_MASK_0_7 0x1c #define ADM1026_REG_GPIO_MASK_8_15 0x1d /* MASK_16 in REG_MASK4 */ #define ADM1026_REG_COMPANY 0x16 #define ADM1026_REG_VERSTEP 0x17 /* These are the recognized values for the above regs */ #define ADM1026_COMPANY_ANALOG_DEV 0x41 #define ADM1026_VERSTEP_GENERIC 0x40 #define ADM1026_VERSTEP_ADM1026 0x44 #define ADM1026_REG_MASK1 0x18 #define ADM1026_REG_MASK2 0x19 #define ADM1026_REG_MASK3 0x1a #define ADM1026_REG_MASK4 0x1b #define ADM1026_REG_STATUS1 0x20 #define ADM1026_REG_STATUS2 0x21 #define ADM1026_REG_STATUS3 0x22 #define ADM1026_REG_STATUS4 0x23 #define ADM1026_FAN_ACTIVATION_TEMP_HYST -6 #define ADM1026_FAN_CONTROL_TEMP_RANGE 20 #define ADM1026_PWM_MAX 255 /* * Conversions. Rounding and limit checking is only done on the TO_REG * variants. Note that you should be a bit careful with which arguments * these macros are called: arguments may be evaluated more than once. */ /* * IN are scaled according to built-in resistors. These are the * voltages corresponding to 3/4 of full scale (192 or 0xc0) * NOTE: The -12V input needs an additional factor to account * for the Vref pullup resistor. * NEG12_OFFSET = SCALE * Vref / V-192 - Vref * = 13875 * 2.50 / 1.875 - 2500 * = 16000 * * The values in this table are based on Table II, page 15 of the * datasheet. */ static int adm1026_scaling[] = { /* .001 Volts */ 2250, 2250, 2250, 2250, 2250, 2250, 1875, 1875, 1875, 1875, 3000, 3330, 3330, 4995, 2250, 12000, 13875 }; #define NEG12_OFFSET 16000 #define SCALE(val, from, to) (((val)*(to) + ((from)/2))/(from)) #define INS_TO_REG(n, val) \ SCALE(clamp_val(val, 0, 255 * adm1026_scaling[n] / 192), \ adm1026_scaling[n], 192) #define INS_FROM_REG(n, val) (SCALE(val, 192, adm1026_scaling[n])) /* * FAN speed is measured using 22.5kHz clock and counts for 2 pulses * and we assume a 2 pulse-per-rev fan tach signal * 22500 kHz * 60 (sec/min) * 2 (pulse) / 2 (pulse/rev) == 1350000 */ #define FAN_TO_REG(val, div) ((val) <= 0 ? 0xff : \ clamp_val(1350000 / ((val) * (div)), \ 1, 254)) #define FAN_FROM_REG(val, div) ((val) == 0 ? -1 : (val) == 0xff ? 0 : \ 1350000 / ((val) * (div))) #define DIV_FROM_REG(val) (1 << (val)) #define DIV_TO_REG(val) ((val) >= 8 ? 3 : (val) >= 4 ? 2 : (val) >= 2 ? 1 : 0) /* Temperature is reported in 1 degC increments */ #define TEMP_TO_REG(val) DIV_ROUND_CLOSEST(clamp_val(val, -128000, 127000), \ 1000) #define TEMP_FROM_REG(val) ((val) * 1000) #define OFFSET_TO_REG(val) DIV_ROUND_CLOSEST(clamp_val(val, -128000, 127000), \ 1000) #define OFFSET_FROM_REG(val) ((val) * 1000) #define PWM_TO_REG(val) (clamp_val(val, 0, 255)) #define PWM_FROM_REG(val) (val) #define PWM_MIN_TO_REG(val) ((val) & 0xf0) #define PWM_MIN_FROM_REG(val) (((val) & 0xf0) + ((val) >> 4)) /* * Analog output is a voltage, and scaled to millivolts. The datasheet * indicates that the DAC could be used to drive the fans, but in our * example board (Arima HDAMA) it isn't connected to the fans at all. */ #define DAC_TO_REG(val) DIV_ROUND_CLOSEST(clamp_val(val, 0, 2500) * 255, \ 2500) #define DAC_FROM_REG(val) (((val) * 2500) / 255) /* * Chip sampling rates * * Some sensors are not updated more frequently than once per second * so it doesn't make sense to read them more often than that. * We cache the results and return the saved data if the driver * is called again before a second has elapsed. * * Also, there is significant configuration data for this chip * So, we keep the config data up to date in the cache * when it is written and only sample it once every 5 *minutes* */ #define ADM1026_DATA_INTERVAL (1 * HZ) #define ADM1026_CONFIG_INTERVAL (5 * 60 * HZ) /* * We allow for multiple chips in a single system. * * For each registered ADM1026, we need to keep state information * at client->data. The adm1026_data structure is dynamically * allocated, when a new client structure is allocated. */ struct pwm_data { u8 pwm; u8 enable; u8 auto_pwm_min; }; struct adm1026_data { struct i2c_client *client; const struct attribute_group *groups[3]; struct mutex update_lock; bool valid; /* true if following fields are valid */ unsigned long last_reading; /* In jiffies */ unsigned long last_config; /* In jiffies */ u8 in[17]; /* Register value */ u8 in_max[17]; /* Register value */ u8 in_min[17]; /* Register value */ s8 temp[3]; /* Register value */ s8 temp_min[3]; /* Register value */ s8 temp_max[3]; /* Register value */ s8 temp_tmin[3]; /* Register value */ s8 temp_crit[3]; /* Register value */ s8 temp_offset[3]; /* Register value */ u8 fan[8]; /* Register value */ u8 fan_min[8]; /* Register value */ u8 fan_div[8]; /* Decoded value */ struct pwm_data pwm1; /* Pwm control values */ u8 vrm; /* VRM version */ u8 analog_out; /* Register value (DAC) */ long alarms; /* Register encoding, combined */ long alarm_mask; /* Register encoding, combined */ long gpio; /* Register encoding, combined */ long gpio_mask; /* Register encoding, combined */ u8 gpio_config[17]; /* Decoded value */ u8 config1; /* Register value */ u8 config2; /* Register value */ u8 config3; /* Register value */ }; static int adm1026_read_value(struct i2c_client *client, u8 reg) { int res; if (reg < 0x80) { /* "RAM" locations */ res = i2c_smbus_read_byte_data(client, reg) & 0xff; } else { /* EEPROM, do nothing */ res = 0; } return res; } static int adm1026_write_value(struct i2c_client *client, u8 reg, int value) { int res; if (reg < 0x80) { /* "RAM" locations */ res = i2c_smbus_write_byte_data(client, reg, value); } else { /* EEPROM, do nothing */ res = 0; } return res; } static struct adm1026_data *adm1026_update_device(struct device *dev) { struct adm1026_data *data = dev_get_drvdata(dev); struct i2c_client *client = data->client; int i; long value, alarms, gpio; mutex_lock(&data->update_lock); if (!data->valid || time_after(jiffies, data->last_reading + ADM1026_DATA_INTERVAL)) { /* Things that change quickly */ dev_dbg(&client->dev, "Reading sensor values\n"); for (i = 0; i <= 16; ++i) { data->in[i] = adm1026_read_value(client, ADM1026_REG_IN[i]); } for (i = 0; i <= 7; ++i) { data->fan[i] = adm1026_read_value(client, ADM1026_REG_FAN(i)); } for (i = 0; i <= 2; ++i) { /* * NOTE: temp[] is s8 and we assume 2's complement * "conversion" in the assignment */ data->temp[i] = adm1026_read_value(client, ADM1026_REG_TEMP[i]); } data->pwm1.pwm = adm1026_read_value(client, ADM1026_REG_PWM); data->analog_out = adm1026_read_value(client, ADM1026_REG_DAC); /* GPIO16 is MSbit of alarms, move it to gpio */ alarms = adm1026_read_value(client, ADM1026_REG_STATUS4); gpio = alarms & 0x80 ? 0x0100 : 0; /* GPIO16 */ alarms &= 0x7f; alarms <<= 8; alarms |= adm1026_read_value(client, ADM1026_REG_STATUS3); alarms <<= 8; alarms |= adm1026_read_value(client, ADM1026_REG_STATUS2); alarms <<= 8; alarms |= adm1026_read_value(client, ADM1026_REG_STATUS1); data->alarms = alarms; /* Read the GPIO values */ gpio |= adm1026_read_value(client, ADM1026_REG_GPIO_STATUS_8_15); gpio <<= 8; gpio |= adm1026_read_value(client, ADM1026_REG_GPIO_STATUS_0_7); data->gpio = gpio; data->last_reading = jiffies; } /* last_reading */ if (!data->valid || time_after(jiffies, data->last_config + ADM1026_CONFIG_INTERVAL)) { /* Things that don't change often */ dev_dbg(&client->dev, "Reading config values\n"); for (i = 0; i <= 16; ++i) { data->in_min[i] = adm1026_read_value(client, ADM1026_REG_IN_MIN[i]); data->in_max[i] = adm1026_read_value(client, ADM1026_REG_IN_MAX[i]); } value = adm1026_read_value(client, ADM1026_REG_FAN_DIV_0_3) | (adm1026_read_value(client, ADM1026_REG_FAN_DIV_4_7) << 8); for (i = 0; i <= 7; ++i) { data->fan_min[i] = adm1026_read_value(client, ADM1026_REG_FAN_MIN(i)); data->fan_div[i] = DIV_FROM_REG(value & 0x03); value >>= 2; } for (i = 0; i <= 2; ++i) { /* * NOTE: temp_xxx[] are s8 and we assume 2's * complement "conversion" in the assignment */ data->temp_min[i] = adm1026_read_value(client, ADM1026_REG_TEMP_MIN[i]); data->temp_max[i] = adm1026_read_value(client, ADM1026_REG_TEMP_MAX[i]); data->temp_tmin[i] = adm1026_read_value(client, ADM1026_REG_TEMP_TMIN[i]); data->temp_crit[i] = adm1026_read_value(client, ADM1026_REG_TEMP_THERM[i]); data->temp_offset[i] = adm1026_read_value(client, ADM1026_REG_TEMP_OFFSET[i]); } /* Read the STATUS/alarm masks */ alarms = adm1026_read_value(client, ADM1026_REG_MASK4); gpio = alarms & 0x80 ? 0x0100 : 0; /* GPIO16 */ alarms = (alarms & 0x7f) << 8; alarms |= adm1026_read_value(client, ADM1026_REG_MASK3); alarms <<= 8; alarms |= adm1026_read_value(client, ADM1026_REG_MASK2); alarms <<= 8; alarms |= adm1026_read_value(client, ADM1026_REG_MASK1); data->alarm_mask = alarms; /* Read the GPIO values */ gpio |= adm1026_read_value(client, ADM1026_REG_GPIO_MASK_8_15); gpio <<= 8; gpio |= adm1026_read_value(client, ADM1026_REG_GPIO_MASK_0_7); data->gpio_mask = gpio; /* Read various values from CONFIG1 */ data->config1 = adm1026_read_value(client, ADM1026_REG_CONFIG1); if (data->config1 & CFG1_PWM_AFC) { data->pwm1.enable = 2; data->pwm1.auto_pwm_min = PWM_MIN_FROM_REG(data->pwm1.pwm); } /* Read the GPIO config */ data->config2 = adm1026_read_value(client, ADM1026_REG_CONFIG2); data->config3 = adm1026_read_value(client, ADM1026_REG_CONFIG3); data->gpio_config[16] = (data->config3 >> 6) & 0x03; value = 0; for (i = 0; i <= 15; ++i) { if ((i & 0x03) == 0) { value = adm1026_read_value(client, ADM1026_REG_GPIO_CFG_0_3 + i/4); } data->gpio_config[i] = value & 0x03; value >>= 2; } data->last_config = jiffies; } /* last_config */ data->valid = true; mutex_unlock(&data->update_lock); return data; } static ssize_t in_show(struct device *dev, struct device_attribute *attr, char *buf) { struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); int nr = sensor_attr->index; struct adm1026_data *data = adm1026_update_device(dev); return sprintf(buf, "%d\n", INS_FROM_REG(nr, data->in[nr])); } static ssize_t in_min_show(struct device *dev, struct device_attribute *attr, char *buf) { struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); int nr = sensor_attr->index; struct adm1026_data *data = adm1026_update_device(dev); return sprintf(buf, "%d\n", INS_FROM_REG(nr, data->in_min[nr])); } static ssize_t in_min_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); int nr = sensor_attr->index; struct adm1026_data *data = dev_get_drvdata(dev); struct i2c_client *client = data->client; long val; int err; err = kstrtol(buf, 10, &val); if (err) return err; mutex_lock(&data->update_lock); data->in_min[nr] = INS_TO_REG(nr, val); adm1026_write_value(client, ADM1026_REG_IN_MIN[nr], data->in_min[nr]); mutex_unlock(&data->update_lock); return count; } static ssize_t in_max_show(struct device *dev, struct device_attribute *attr, char *buf) { struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); int nr = sensor_attr->index; struct adm1026_data *data = adm1026_update_device(dev); return sprintf(buf, "%d\n", INS_FROM_REG(nr, data->in_max[nr])); } static ssize_t in_max_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); int nr = sensor_attr->index; struct adm1026_data *data = dev_get_drvdata(dev); struct i2c_client *client = data->client; long val; int err; err = kstrtol(buf, 10, &val); if (err) return err; mutex_lock(&data->update_lock); data->in_max[nr] = INS_TO_REG(nr, val); adm1026_write_value(client, ADM1026_REG_IN_MAX[nr], data->in_max[nr]); mutex_unlock(&data->update_lock); return count; } static SENSOR_DEVICE_ATTR_RO(in0_input, in, 0); static SENSOR_DEVICE_ATTR_RW(in0_min, in_min, 0); static SENSOR_DEVICE_ATTR_RW(in0_max, in_max, 0); static SENSOR_DEVICE_ATTR_RO(in1_input, in, 1); static SENSOR_DEVICE_ATTR_RW(in1_min, in_min, 1); static SENSOR_DEVICE_ATTR_RW(in1_max, in_max, 1); static SENSOR_DEVICE_ATTR_RO(in2_input, in, 2); static SENSOR_DEVICE_ATTR_RW(in2_min, in_min, 2); static SENSOR_DEVICE_ATTR_RW(in2_max, in_max, 2); static SENSOR_DEVICE_ATTR_RO(in3_input, in, 3); static SENSOR_DEVICE_ATTR_RW(in3_min, in_min, 3); static SENSOR_DEVICE_ATTR_RW(in3_max, in_max, 3); static SENSOR_DEVICE_ATTR_RO(in4_input, in, 4); static SENSOR_DEVICE_ATTR_RW(in4_min, in_min, 4); static SENSOR_DEVICE_ATTR_RW(in4_max, in_max, 4); static SENSOR_DEVICE_ATTR_RO(in5_input, in, 5); static SENSOR_DEVICE_ATTR_RW(in5_min, in_min, 5); static SENSOR_DEVICE_ATTR_RW(in5_max, in_max, 5); static SENSOR_DEVICE_ATTR_RO(in6_input, in, 6); static SENSOR_DEVICE_ATTR_RW(in6_min, in_min, 6); static SENSOR_DEVICE_ATTR_RW(in6_max, in_max, 6); static SENSOR_DEVICE_ATTR_RO(in7_input, in, 7); static SENSOR_DEVICE_ATTR_RW(in7_min, in_min, 7); static SENSOR_DEVICE_ATTR_RW(in7_max, in_max, 7); static SENSOR_DEVICE_ATTR_RO(in8_input, in, 8); static SENSOR_DEVICE_ATTR_RW(in8_min, in_min, 8); static SENSOR_DEVICE_ATTR_RW(in8_max, in_max, 8); static SENSOR_DEVICE_ATTR_RO(in9_input, in, 9); static SENSOR_DEVICE_ATTR_RW(in9_min, in_min, 9); static SENSOR_DEVICE_ATTR_RW(in9_max, in_max, 9); static SENSOR_DEVICE_ATTR_RO(in10_input, in, 10); static SENSOR_DEVICE_ATTR_RW(in10_min, in_min, 10); static SENSOR_DEVICE_ATTR_RW(in10_max, in_max, 10); static SENSOR_DEVICE_ATTR_RO(in11_input, in, 11); static SENSOR_DEVICE_ATTR_RW(in11_min, in_min, 11); static SENSOR_DEVICE_ATTR_RW(in11_max, in_max, 11); static SENSOR_DEVICE_ATTR_RO(in12_input, in, 12); static SENSOR_DEVICE_ATTR_RW(in12_min, in_min, 12); static SENSOR_DEVICE_ATTR_RW(in12_max, in_max, 12); static SENSOR_DEVICE_ATTR_RO(in13_input, in, 13); static SENSOR_DEVICE_ATTR_RW(in13_min, in_min, 13); static SENSOR_DEVICE_ATTR_RW(in13_max, in_max, 13); static SENSOR_DEVICE_ATTR_RO(in14_input, in, 14); static SENSOR_DEVICE_ATTR_RW(in14_min, in_min, 14); static SENSOR_DEVICE_ATTR_RW(in14_max, in_max, 14); static SENSOR_DEVICE_ATTR_RO(in15_input, in, 15); static SENSOR_DEVICE_ATTR_RW(in15_min, in_min, 15); static SENSOR_DEVICE_ATTR_RW(in15_max, in_max, 15); static ssize_t in16_show(struct device *dev, struct device_attribute *attr, char *buf) { struct adm1026_data *data = adm1026_update_device(dev); return sprintf(buf, "%d\n", INS_FROM_REG(16, data->in[16]) - NEG12_OFFSET); } static ssize_t in16_min_show(struct device *dev, struct device_attribute *attr, char *buf) { struct adm1026_data *data = adm1026_update_device(dev); return sprintf(buf, "%d\n", INS_FROM_REG(16, data->in_min[16]) - NEG12_OFFSET); } static ssize_t in16_min_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct adm1026_data *data = dev_get_drvdata(dev); struct i2c_client *client = data->client; long val; int err; err = kstrtol(buf, 10, &val); if (err) return err; mutex_lock(&data->update_lock); data->in_min[16] = INS_TO_REG(16, clamp_val(val, INT_MIN, INT_MAX - NEG12_OFFSET) + NEG12_OFFSET); adm1026_write_value(client, ADM1026_REG_IN_MIN[16], data->in_min[16]); mutex_unlock(&data->update_lock); return count; } static ssize_t in16_max_show(struct device *dev, struct device_attribute *attr, char *buf) { struct adm1026_data *data = adm1026_update_device(dev); return sprintf(buf, "%d\n", INS_FROM_REG(16, data->in_max[16]) - NEG12_OFFSET); } static ssize_t in16_max_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct adm1026_data *data = dev_get_drvdata(dev); struct i2c_client *client = data->client; long val; int err; err = kstrtol(buf, 10, &val); if (err) return err; mutex_lock(&data->update_lock); data->in_max[16] = INS_TO_REG(16, clamp_val(val, INT_MIN, INT_MAX - NEG12_OFFSET) + NEG12_OFFSET); adm1026_write_value(client, ADM1026_REG_IN_MAX[16], data->in_max[16]); mutex_unlock(&data->update_lock); return count; } static SENSOR_DEVICE_ATTR_RO(in16_input, in16, 16); static SENSOR_DEVICE_ATTR_RW(in16_min, in16_min, 16); static SENSOR_DEVICE_ATTR_RW(in16_max, in16_max, 16); /* Now add fan read/write functions */ static ssize_t fan_show(struct device *dev, struct device_attribute *attr, char *buf) { struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); int nr = sensor_attr->index; struct adm1026_data *data = adm1026_update_device(dev); return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan[nr], data->fan_div[nr])); } static ssize_t fan_min_show(struct device *dev, struct device_attribute *attr, char *buf) { struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); int nr = sensor_attr->index; struct adm1026_data *data = adm1026_update_device(dev); return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan_min[nr], data->fan_div[nr])); } static ssize_t fan_min_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); int nr = sensor_attr->index; struct adm1026_data *data = dev_get_drvdata(dev); struct i2c_client *client = data->client; long val; int err; err = kstrtol(buf, 10, &val); if (err) return err; mutex_lock(&data->update_lock); data->fan_min[nr] = FAN_TO_REG(val, data->fan_div[nr]); adm1026_write_value(client, ADM1026_REG_FAN_MIN(nr), data->fan_min[nr]); mutex_unlock(&data->update_lock); return count; } static SENSOR_DEVICE_ATTR_RO(fan1_input, fan, 0); static SENSOR_DEVICE_ATTR_RW(fan1_min, fan_min, 0); static SENSOR_DEVICE_ATTR_RO(fan2_input, fan, 1); static SENSOR_DEVICE_ATTR_RW(fan2_min, fan_min, 1); static SENSOR_DEVICE_ATTR_RO(fan3_input, fan, 2); static SENSOR_DEVICE_ATTR_RW(fan3_min, fan_min, 2); static SENSOR_DEVICE_ATTR_RO(fan4_input, fan, 3); static SENSOR_DEVICE_ATTR_RW(fan4_min, fan_min, 3); static SENSOR_DEVICE_ATTR_RO(fan5_input, fan, 4); static SENSOR_DEVICE_ATTR_RW(fan5_min, fan_min, 4); static SENSOR_DEVICE_ATTR_RO(fan6_input, fan, 5); static SENSOR_DEVICE_ATTR_RW(fan6_min, fan_min, 5); static SENSOR_DEVICE_ATTR_RO(fan7_input, fan, 6); static SENSOR_DEVICE_ATTR_RW(fan7_min, fan_min, 6); static SENSOR_DEVICE_ATTR_RO(fan8_input, fan, 7); static SENSOR_DEVICE_ATTR_RW(fan8_min, fan_min, 7); /* Adjust fan_min to account for new fan divisor */ static void fixup_fan_min(struct device *dev, int fan, int old_div) { struct adm1026_data *data = dev_get_drvdata(dev); struct i2c_client *client = data->client; int new_min; int new_div = data->fan_div[fan]; /* 0 and 0xff are special. Don't adjust them */ if (data->fan_min[fan] == 0 || data->fan_min[fan] == 0xff) return; new_min = data->fan_min[fan] * old_div / new_div; new_min = clamp_val(new_min, 1, 254); data->fan_min[fan] = new_min; adm1026_write_value(client, ADM1026_REG_FAN_MIN(fan), new_min); } /* Now add fan_div read/write functions */ static ssize_t fan_div_show(struct device *dev, struct device_attribute *attr, char *buf) { struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); int nr = sensor_attr->index; struct adm1026_data *data = adm1026_update_device(dev); return sprintf(buf, "%d\n", data->fan_div[nr]); } static ssize_t fan_div_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); int nr = sensor_attr->index; struct adm1026_data *data = dev_get_drvdata(dev); struct i2c_client *client = data->client; long val; int orig_div, new_div; int err; err = kstrtol(buf, 10, &val); if (err) return err; new_div = DIV_TO_REG(val); mutex_lock(&data->update_lock); orig_div = data->fan_div[nr]; data->fan_div[nr] = DIV_FROM_REG(new_div); if (nr < 4) { /* 0 <= nr < 4 */ adm1026_write_value(client, ADM1026_REG_FAN_DIV_0_3, (DIV_TO_REG(data->fan_div[0]) << 0) | (DIV_TO_REG(data->fan_div[1]) << 2) | (DIV_TO_REG(data->fan_div[2]) << 4) | (DIV_TO_REG(data->fan_div[3]) << 6)); } else { /* 3 < nr < 8 */ adm1026_write_value(client, ADM1026_REG_FAN_DIV_4_7, (DIV_TO_REG(data->fan_div[4]) << 0) | (DIV_TO_REG(data->fan_div[5]) << 2) | (DIV_TO_REG(data->fan_div[6]) << 4) | (DIV_TO_REG(data->fan_div[7]) << 6)); } if (data->fan_div[nr] != orig_div) fixup_fan_min(dev, nr, orig_div); mutex_unlock(&data->update_lock); return count; } static SENSOR_DEVICE_ATTR_RW(fan1_div, fan_div, 0); static SENSOR_DEVICE_ATTR_RW(fan2_div, fan_div, 1); static SENSOR_DEVICE_ATTR_RW(fan3_div, fan_div, 2); static SENSOR_DEVICE_ATTR_RW(fan4_div, fan_div, 3); static SENSOR_DEVICE_ATTR_RW(fan5_div, fan_div, 4); static SENSOR_DEVICE_ATTR_RW(fan6_div, fan_div, 5); static SENSOR_DEVICE_ATTR_RW(fan7_div, fan_div, 6); static SENSOR_DEVICE_ATTR_RW(fan8_div, fan_div, 7); /* Temps */ static ssize_t temp_show(struct device *dev, struct device_attribute *attr, char *buf) { struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); int nr = sensor_attr->index; struct adm1026_data *data = adm1026_update_device(dev); return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp[nr])); } static ssize_t temp_min_show(struct device *dev, struct device_attribute *attr, char *buf) { struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); int nr = sensor_attr->index; struct adm1026_data *data = adm1026_update_device(dev); return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_min[nr])); } static ssize_t temp_min_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); int nr = sensor_attr->index; struct adm1026_data *data = dev_get_drvdata(dev); struct i2c_client *client = data->client; long val; int err; err = kstrtol(buf, 10, &val); if (err) return err; mutex_lock(&data->update_lock); data->temp_min[nr] = TEMP_TO_REG(val); adm1026_write_value(client, ADM1026_REG_TEMP_MIN[nr], data->temp_min[nr]); mutex_unlock(&data->update_lock); return count; } static ssize_t temp_max_show(struct device *dev, struct device_attribute *attr, char *buf) { struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); int nr = sensor_attr->index; struct adm1026_data *data = adm1026_update_device(dev); return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_max[nr])); } static ssize_t temp_max_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); int nr = sensor_attr->index; struct adm1026_data *data = dev_get_drvdata(dev); struct i2c_client *client = data->client; long val; int err; err = kstrtol(buf, 10, &val); if (err) return err; mutex_lock(&data->update_lock); data->temp_max[nr] = TEMP_TO_REG(val); adm1026_write_value(client, ADM1026_REG_TEMP_MAX[nr], data->temp_max[nr]); mutex_unlock(&data->update_lock); return count; } static SENSOR_DEVICE_ATTR_RO(temp1_input, temp, 0); static SENSOR_DEVICE_ATTR_RW(temp1_min, temp_min, 0); static SENSOR_DEVICE_ATTR_RW(temp1_max, temp_max, 0); static SENSOR_DEVICE_ATTR_RO(temp2_input, temp, 1); static SENSOR_DEVICE_ATTR_RW(temp2_min, temp_min, 1); static SENSOR_DEVICE_ATTR_RW(temp2_max, temp_max, 1); static SENSOR_DEVICE_ATTR_RO(temp3_input, temp, 2); static SENSOR_DEVICE_ATTR_RW(temp3_min, temp_min, 2); static SENSOR_DEVICE_ATTR_RW(temp3_max, temp_max, 2); static ssize_t temp_offset_show(struct device *dev, struct device_attribute *attr, char *buf) { struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); int nr = sensor_attr->index; struct adm1026_data *data = adm1026_update_device(dev); return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_offset[nr])); } static ssize_t temp_offset_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); int nr = sensor_attr->index; struct adm1026_data *data = dev_get_drvdata(dev); struct i2c_client *client = data->client; long val; int err; err = kstrtol(buf, 10, &val); if (err) return err; mutex_lock(&data->update_lock); data->temp_offset[nr] = TEMP_TO_REG(val); adm1026_write_value(client, ADM1026_REG_TEMP_OFFSET[nr], data->temp_offset[nr]); mutex_unlock(&data->update_lock); return count; } static SENSOR_DEVICE_ATTR_RW(temp1_offset, temp_offset, 0); static SENSOR_DEVICE_ATTR_RW(temp2_offset, temp_offset, 1); static SENSOR_DEVICE_ATTR_RW(temp3_offset, temp_offset, 2); static ssize_t temp_auto_point1_temp_hyst_show(struct device *dev, struct device_attribute *attr, char *buf) { struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); int nr = sensor_attr->index; struct adm1026_data *data = adm1026_update_device(dev); return sprintf(buf, "%d\n", TEMP_FROM_REG( ADM1026_FAN_ACTIVATION_TEMP_HYST + data->temp_tmin[nr])); } static ssize_t temp_auto_point2_temp_show(struct device *dev, struct device_attribute *attr, char *buf) { struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); int nr = sensor_attr->index; struct adm1026_data *data = adm1026_update_device(dev); return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_tmin[nr] + ADM1026_FAN_CONTROL_TEMP_RANGE)); } static ssize_t temp_auto_point1_temp_show(struct device *dev, struct device_attribute *attr, char *buf) { struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); int nr = sensor_attr->index; struct adm1026_data *data = adm1026_update_device(dev); return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_tmin[nr])); } static ssize_t temp_auto_point1_temp_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); int nr = sensor_attr->index; struct adm1026_data *data = dev_get_drvdata(dev); struct i2c_client *client = data->client; long val; int err; err = kstrtol(buf, 10, &val); if (err) return err; mutex_lock(&data->update_lock); data->temp_tmin[nr] = TEMP_TO_REG(val); adm1026_write_value(client, ADM1026_REG_TEMP_TMIN[nr], data->temp_tmin[nr]); mutex_unlock(&data->update_lock); return count; } static SENSOR_DEVICE_ATTR_RW(temp1_auto_point1_temp, temp_auto_point1_temp, 0); static SENSOR_DEVICE_ATTR_RO(temp1_auto_point1_temp_hyst, temp_auto_point1_temp_hyst, 0); static SENSOR_DEVICE_ATTR_RO(temp1_auto_point2_temp, temp_auto_point2_temp, 0); static SENSOR_DEVICE_ATTR_RW(temp2_auto_point1_temp, temp_auto_point1_temp, 1); static SENSOR_DEVICE_ATTR_RO(temp2_auto_point1_temp_hyst, temp_auto_point1_temp_hyst, 1); static SENSOR_DEVICE_ATTR_RO(temp2_auto_point2_temp, temp_auto_point2_temp, 1); static SENSOR_DEVICE_ATTR_RW(temp3_auto_point1_temp, temp_auto_point1_temp, 2); static SENSOR_DEVICE_ATTR_RO(temp3_auto_point1_temp_hyst, temp_auto_point1_temp_hyst, 2); static SENSOR_DEVICE_ATTR_RO(temp3_auto_point2_temp, temp_auto_point2_temp, 2); static ssize_t show_temp_crit_enable(struct device *dev, struct device_attribute *attr, char *buf) { struct adm1026_data *data = adm1026_update_device(dev); return sprintf(buf, "%d\n", (data->config1 & CFG1_THERM_HOT) >> 4); } static ssize_t set_temp_crit_enable(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct adm1026_data *data = dev_get_drvdata(dev); struct i2c_client *client = data->client; unsigned long val; int err; err = kstrtoul(buf, 10, &val); if (err) return err; if (val > 1) return -EINVAL; mutex_lock(&data->update_lock); data->config1 = (data->config1 & ~CFG1_THERM_HOT) | (val << 4); adm1026_write_value(client, ADM1026_REG_CONFIG1, data->config1); mutex_unlock(&data->update_lock); return count; } static DEVICE_ATTR(temp1_crit_enable, 0644, show_temp_crit_enable, set_temp_crit_enable); static DEVICE_ATTR(temp2_crit_enable, 0644, show_temp_crit_enable, set_temp_crit_enable); static DEVICE_ATTR(temp3_crit_enable, 0644, show_temp_crit_enable, set_temp_crit_enable); static ssize_t temp_crit_show(struct device *dev, struct device_attribute *attr, char *buf) { struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); int nr = sensor_attr->index; struct adm1026_data *data = adm1026_update_device(dev); return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_crit[nr])); } static ssize_t temp_crit_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr); int nr = sensor_attr->index; struct adm1026_data *data = dev_get_drvdata(dev); struct i2c_client *client = data->client; long val; int err; err = kstrtol(buf, 10, &val); if (err) return err; mutex_lock(&data->update_lock); data->temp_crit[nr] = TEMP_TO_REG(val); adm1026_write_value(client, ADM1026_REG_TEMP_THERM[nr], data->temp_crit[nr]); mutex_unlock(&data->update_lock); return count; } static SENSOR_DEVICE_ATTR_RW(temp1_crit, temp_crit, 0); static SENSOR_DEVICE_ATTR_RW(temp2_crit, temp_crit, 1); static SENSOR_DEVICE_ATTR_RW(temp3_crit, temp_crit, 2); static ssize_t analog_out_show(struct device *dev, struct device_attribute *attr, char *buf) { struct adm1026_data *data = adm1026_update_device(dev); return sprintf(buf, "%d\n", DAC_FROM_REG(data->analog_out)); } static ssize_t analog_out_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct adm1026_data *data = dev_get_drvdata(dev); struct i2c_client *client = data->client; long val; int err; err = kstrtol(buf, 10, &val); if (err) return err; mutex_lock(&data->update_lock); data->analog_out = DAC_TO_REG(val); adm1026_write_value(client, ADM1026_REG_DAC, data->analog_out); mutex_unlock(&data->update_lock); return count; } static DEVICE_ATTR_RW(analog_out); static ssize_t cpu0_vid_show(struct device *dev, struct device_attribute *attr, char *buf) { struct adm1026_data *data = adm1026_update_device(dev); int vid = (data->gpio >> 11) & 0x1f; dev_dbg(dev, "Setting VID from GPIO11-15.\n"); return sprintf(buf, "%d\n", vid_from_reg(vid, data->vrm)); } static DEVICE_ATTR_RO(cpu0_vid); static ssize_t vrm_show(struct device *dev, struct device_attribute *attr, char *buf) { struct adm1026_data *data = dev_get_drvdata(dev); return sprintf(buf, "%d\n", data->vrm); } static ssize_t vrm_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct adm1026_data *data = dev_get_drvdata(dev); unsigned long val; int err; err = kstrtoul(buf, 10, &val); if (err) return err; if (val > 255) return -EINVAL; data->vrm = val; return count; } static DEVICE_ATTR_RW(vrm); static ssize_t alarms_show(struct device *dev, struct device_attribute *attr, char *buf) { struct adm1026_data *data = adm1026_update_device(dev); return sprintf(buf, "%ld\n", data->alarms); } static DEVICE_ATTR_RO(alarms); static ssize_t alarm_show(struct device *dev, struct device_attribute *attr, char *buf) { struct adm1026_data *data = adm1026_update_device(dev); int bitnr = to_sensor_dev_attr(attr)->index; return sprintf(buf, "%ld\n", (data->alarms >> bitnr) & 1); } static SENSOR_DEVICE_ATTR_RO(temp2_alarm, alarm, 0); static SENSOR_DEVICE_ATTR_RO(temp3_alarm, alarm, 1); static SENSOR_DEVICE_ATTR_RO(in9_alarm, alarm, 1); static SENSOR_DEVICE_ATTR_RO(in11_alarm, alarm, 2); static SENSOR_DEVICE_ATTR_RO(in12_alarm, alarm, 3); static SENSOR_DEVICE_ATTR_RO(in13_alarm, alarm, 4); static SENSOR_DEVICE_ATTR_RO(in14_alarm, alarm, 5); static SENSOR_DEVICE_ATTR_RO(in15_alarm, alarm, 6); static SENSOR_DEVICE_ATTR_RO(in16_alarm, alarm, 7); static SENSOR_DEVICE_ATTR_RO(in0_alarm, alarm, 8); static SENSOR_DEVICE_ATTR_RO(in1_alarm, alarm, 9); static SENSOR_DEVICE_ATTR_RO(in2_alarm, alarm, 10); static SENSOR_DEVICE_ATTR_RO(in3_alarm, alarm, 11); static SENSOR_DEVICE_ATTR_RO(in4_alarm, alarm, 12); static SENSOR_DEVICE_ATTR_RO(in5_alarm, alarm, 13); static SENSOR_DEVICE_ATTR_RO(in6_alarm, alarm, 14); static SENSOR_DEVICE_ATTR_RO(in7_alarm, alarm, 15); static SENSOR_DEVICE_ATTR_RO(fan1_alarm, alarm, 16); static SENSOR_DEVICE_ATTR_RO(fan2_alarm, alarm, 17); static SENSOR_DEVICE_ATTR_RO(fan3_alarm, alarm, 18); static SENSOR_DEVICE_ATTR_RO(fan4_alarm, alarm, 19); static SENSOR_DEVICE_ATTR_RO(fan5_alarm, alarm, 20); static SENSOR_DEVICE_ATTR_RO(fan6_alarm, alarm, 21); static SENSOR_DEVICE_ATTR_RO(fan7_alarm, alarm, 22); static SENSOR_DEVICE_ATTR_RO(fan8_alarm, alarm, 23); static SENSOR_DEVICE_ATTR_RO(temp1_alarm, alarm, 24); static SENSOR_DEVICE_ATTR_RO(in10_alarm, alarm, 25); static SENSOR_DEVICE_ATTR_RO(in8_alarm, alarm, 26); static ssize_t alarm_mask_show(struct device *dev, struct device_attribute *attr, char *buf) { struct adm1026_data *data = adm1026_update_device(dev); return sprintf(buf, "%ld\n", data->alarm_mask); } static ssize_t alarm_mask_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct adm1026_data *data = dev_get_drvdata(dev); struct i2c_client *client = data->client; unsigned long mask; long val; int err; err = kstrtol(buf, 10, &val); if (err) return err; mutex_lock(&data->update_lock); data->alarm_mask = val & 0x7fffffff; mask = data->alarm_mask | (data->gpio_mask & 0x10000 ? 0x80000000 : 0); adm1026_write_value(client, ADM1026_REG_MASK1, mask & 0xff); mask >>= 8; adm1026_write_value(client, ADM1026_REG_MASK2, mask & 0xff); mask >>= 8; adm1026_write_value(client, ADM1026_REG_MASK3, mask & 0xff); mask >>= 8; adm1026_write_value(client, ADM1026_REG_MASK4, mask & 0xff); mutex_unlock(&data->update_lock); return count; } static DEVICE_ATTR_RW(alarm_mask); static ssize_t gpio_show(struct device *dev, struct device_attribute *attr, char *buf) { struct adm1026_data *data = adm1026_update_device(dev); return sprintf(buf, "%ld\n", data->gpio); } static ssize_t gpio_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct adm1026_data *data = dev_get_drvdata(dev); struct i2c_client *client = data->client; long gpio; long val; int err; err = kstrtol(buf, 10, &val); if (err) return err; mutex_lock(&data->update_lock); data->gpio = val & 0x1ffff; gpio = data->gpio; adm1026_write_value(client, ADM1026_REG_GPIO_STATUS_0_7, gpio & 0xff); gpio >>= 8; adm1026_write_value(client, ADM1026_REG_GPIO_STATUS_8_15, gpio & 0xff); gpio = ((gpio >> 1) & 0x80) | (data->alarms >> 24 & 0x7f); adm1026_write_value(client, ADM1026_REG_STATUS4, gpio & 0xff); mutex_unlock(&data->update_lock); return count; } static DEVICE_ATTR_RW(gpio); static ssize_t gpio_mask_show(struct device *dev, struct device_attribute *attr, char *buf) { struct adm1026_data *data = adm1026_update_device(dev); return sprintf(buf, "%ld\n", data->gpio_mask); } static ssize_t gpio_mask_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct adm1026_data *data = dev_get_drvdata(dev); struct i2c_client *client = data->client; long mask; long val; int err; err = kstrtol(buf, 10, &val); if (err) return err; mutex_lock(&data->update_lock); data->gpio_mask = val & 0x1ffff; mask = data->gpio_mask; adm1026_write_value(client, ADM1026_REG_GPIO_MASK_0_7, mask & 0xff); mask >>= 8; adm1026_write_value(client, ADM1026_REG_GPIO_MASK_8_15, mask & 0xff); mask = ((mask >> 1) & 0x80) | (data->alarm_mask >> 24 & 0x7f); adm1026_write_value(client, ADM1026_REG_MASK1, mask & 0xff); mutex_unlock(&data->update_lock); return count; } static DEVICE_ATTR_RW(gpio_mask); static ssize_t pwm1_show(struct device *dev, struct device_attribute *attr, char *buf) { struct adm1026_data *data = adm1026_update_device(dev); return sprintf(buf, "%d\n", PWM_FROM_REG(data->pwm1.pwm)); } static ssize_t pwm1_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct adm1026_data *data = dev_get_drvdata(dev); struct i2c_client *client = data->client; if (data->pwm1.enable == 1) { long val; int err; err = kstrtol(buf, 10, &val); if (err) return err; mutex_lock(&data->update_lock); data->pwm1.pwm = PWM_TO_REG(val); adm1026_write_value(client, ADM1026_REG_PWM, data->pwm1.pwm); mutex_unlock(&data->update_lock); } return count; } static ssize_t temp1_auto_point1_pwm_show(struct device *dev, struct device_attribute *attr, char *buf) { struct adm1026_data *data = adm1026_update_device(dev); return sprintf(buf, "%d\n", data->pwm1.auto_pwm_min); } static ssize_t temp1_auto_point1_pwm_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct adm1026_data *data = dev_get_drvdata(dev); struct i2c_client *client = data->client; unsigned long val; int err; err = kstrtoul(buf, 10, &val); if (err) return err; mutex_lock(&data->update_lock); data->pwm1.auto_pwm_min = clamp_val(val, 0, 255); if (data->pwm1.enable == 2) { /* apply immediately */ data->pwm1.pwm = PWM_TO_REG((data->pwm1.pwm & 0x0f) | PWM_MIN_TO_REG(data->pwm1.auto_pwm_min)); adm1026_write_value(client, ADM1026_REG_PWM, data->pwm1.pwm); } mutex_unlock(&data->update_lock); return count; } static ssize_t temp1_auto_point2_pwm_show(struct device *dev, struct device_attribute *attr, char *buf) { return sprintf(buf, "%d\n", ADM1026_PWM_MAX); } static ssize_t pwm1_enable_show(struct device *dev, struct device_attribute *attr, char *buf) { struct adm1026_data *data = adm1026_update_device(dev); return sprintf(buf, "%d\n", data->pwm1.enable); } static ssize_t pwm1_enable_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct adm1026_data *data = dev_get_drvdata(dev); struct i2c_client *client = data->client; int old_enable; unsigned long val; int err; err = kstrtoul(buf, 10, &val); if (err) return err; if (val >= 3) return -EINVAL; mutex_lock(&data->update_lock); old_enable = data->pwm1.enable; data->pwm1.enable = val; data->config1 = (data->config1 & ~CFG1_PWM_AFC) | ((val == 2) ? CFG1_PWM_AFC : 0); adm1026_write_value(client, ADM1026_REG_CONFIG1, data->config1); if (val == 2) { /* apply pwm1_auto_pwm_min to pwm1 */ data->pwm1.pwm = PWM_TO_REG((data->pwm1.pwm & 0x0f) | PWM_MIN_TO_REG(data->pwm1.auto_pwm_min)); adm1026_write_value(client, ADM1026_REG_PWM, data->pwm1.pwm); } else if (!((old_enable == 1) && (val == 1))) { /* set pwm to safe value */ data->pwm1.pwm = 255; adm1026_write_value(client, ADM1026_REG_PWM, data->pwm1.pwm); } mutex_unlock(&data->update_lock); return count; } /* enable PWM fan control */ static DEVICE_ATTR_RW(pwm1); static DEVICE_ATTR(pwm2, 0644, pwm1_show, pwm1_store); static DEVICE_ATTR(pwm3, 0644, pwm1_show, pwm1_store); static DEVICE_ATTR_RW(pwm1_enable); static DEVICE_ATTR(pwm2_enable, 0644, pwm1_enable_show, pwm1_enable_store); static DEVICE_ATTR(pwm3_enable, 0644, pwm1_enable_show, pwm1_enable_store); static DEVICE_ATTR_RW(temp1_auto_point1_pwm); static DEVICE_ATTR(temp2_auto_point1_pwm, 0644, temp1_auto_point1_pwm_show, temp1_auto_point1_pwm_store); static DEVICE_ATTR(temp3_auto_point1_pwm, 0644, temp1_auto_point1_pwm_show, temp1_auto_point1_pwm_store); static DEVICE_ATTR_RO(temp1_auto_point2_pwm); static DEVICE_ATTR(temp2_auto_point2_pwm, 0444, temp1_auto_point2_pwm_show, NULL); static DEVICE_ATTR(temp3_auto_point2_pwm, 0444, temp1_auto_point2_pwm_show, NULL); static struct attribute *adm1026_attributes[] = { &sensor_dev_attr_in0_input.dev_attr.attr, &sensor_dev_attr_in0_max.dev_attr.attr, &sensor_dev_attr_in0_min.dev_attr.attr, &sensor_dev_attr_in0_alarm.dev_attr.attr, &sensor_dev_attr_in1_input.dev_attr.attr, &sensor_dev_attr_in1_max.dev_attr.attr, &sensor_dev_attr_in1_min.dev_attr.attr, &sensor_dev_attr_in1_alarm.dev_attr.attr, &sensor_dev_attr_in2_input.dev_attr.attr, &sensor_dev_attr_in2_max.dev_attr.attr, &sensor_dev_attr_in2_min.dev_attr.attr, &sensor_dev_attr_in2_alarm.dev_attr.attr, &sensor_dev_attr_in3_input.dev_attr.attr, &sensor_dev_attr_in3_max.dev_attr.attr, &sensor_dev_attr_in3_min.dev_attr.attr, &sensor_dev_attr_in3_alarm.dev_attr.attr, &sensor_dev_attr_in4_input.dev_attr.attr, &sensor_dev_attr_in4_max.dev_attr.attr, &sensor_dev_attr_in4_min.dev_attr.attr, &sensor_dev_attr_in4_alarm.dev_attr.attr, &sensor_dev_attr_in5_input.dev_attr.attr, &sensor_dev_attr_in5_max.dev_attr.attr, &sensor_dev_attr_in5_min.dev_attr.attr, &sensor_dev_attr_in5_alarm.dev_attr.attr, &sensor_dev_attr_in6_input.dev_attr.attr, &sensor_dev_attr_in6_max.dev_attr.attr, &sensor_dev_attr_in6_min.dev_attr.attr, &sensor_dev_attr_in6_alarm.dev_attr.attr, &sensor_dev_attr_in7_input.dev_attr.attr, &sensor_dev_attr_in7_max.dev_attr.attr, &sensor_dev_attr_in7_min.dev_attr.attr, &sensor_dev_attr_in7_alarm.dev_attr.attr, &sensor_dev_attr_in10_input.dev_attr.attr, &sensor_dev_attr_in10_max.dev_attr.attr, &sensor_dev_attr_in10_min.dev_attr.attr, &sensor_dev_attr_in10_alarm.dev_attr.attr, &sensor_dev_attr_in11_input.dev_attr.attr, &sensor_dev_attr_in11_max.dev_attr.attr, &sensor_dev_attr_in11_min.dev_attr.attr, &sensor_dev_attr_in11_alarm.dev_attr.attr, &sensor_dev_attr_in12_input.dev_attr.attr, &sensor_dev_attr_in12_max.dev_attr.attr, &sensor_dev_attr_in12_min.dev_attr.attr, &sensor_dev_attr_in12_alarm.dev_attr.attr, &sensor_dev_attr_in13_input.dev_attr.attr, &sensor_dev_attr_in13_max.dev_attr.attr, &sensor_dev_attr_in13_min.dev_attr.attr, &sensor_dev_attr_in13_alarm.dev_attr.attr, &sensor_dev_attr_in14_input.dev_attr.attr, &sensor_dev_attr_in14_max.dev_attr.attr, &sensor_dev_attr_in14_min.dev_attr.attr, &sensor_dev_attr_in14_alarm.dev_attr.attr, &sensor_dev_attr_in15_input.dev_attr.attr, &sensor_dev_attr_in15_max.dev_attr.attr, &sensor_dev_attr_in15_min.dev_attr.attr, &sensor_dev_attr_in15_alarm.dev_attr.attr, &sensor_dev_attr_in16_input.dev_attr.attr, &sensor_dev_attr_in16_max.dev_attr.attr, &sensor_dev_attr_in16_min.dev_attr.attr, &sensor_dev_attr_in16_alarm.dev_attr.attr, &sensor_dev_attr_fan1_input.dev_attr.attr, &sensor_dev_attr_fan1_div.dev_attr.attr, &sensor_dev_attr_fan1_min.dev_attr.attr, &sensor_dev_attr_fan1_alarm.dev_attr.attr, &sensor_dev_attr_fan2_input.dev_attr.attr, &sensor_dev_attr_fan2_div.dev_attr.attr, &sensor_dev_attr_fan2_min.dev_attr.attr, &sensor_dev_attr_fan2_alarm.dev_attr.attr, &sensor_dev_attr_fan3_input.dev_attr.attr, &sensor_dev_attr_fan3_div.dev_attr.attr, &sensor_dev_attr_fan3_min.dev_attr.attr, &sensor_dev_attr_fan3_alarm.dev_attr.attr, &sensor_dev_attr_fan4_input.dev_attr.attr, &sensor_dev_attr_fan4_div.dev_attr.attr, &sensor_dev_attr_fan4_min.dev_attr.attr, &sensor_dev_attr_fan4_alarm.dev_attr.attr, &sensor_dev_attr_fan5_input.dev_attr.attr, &sensor_dev_attr_fan5_div.dev_attr.attr, &sensor_dev_attr_fan5_min.dev_attr.attr, &sensor_dev_attr_fan5_alarm.dev_attr.attr, &sensor_dev_attr_fan6_input.dev_attr.attr, &sensor_dev_attr_fan6_div.dev_attr.attr, &sensor_dev_attr_fan6_min.dev_attr.attr, &sensor_dev_attr_fan6_alarm.dev_attr.attr, &sensor_dev_attr_fan7_input.dev_attr.attr, &sensor_dev_attr_fan7_div.dev_attr.attr, &sensor_dev_attr_fan7_min.dev_attr.attr, &sensor_dev_attr_fan7_alarm.dev_attr.attr, &sensor_dev_attr_fan8_input.dev_attr.attr, &sensor_dev_attr_fan8_div.dev_attr.attr, &sensor_dev_attr_fan8_min.dev_attr.attr, &sensor_dev_attr_fan8_alarm.dev_attr.attr, &sensor_dev_attr_temp1_input.dev_attr.attr, &sensor_dev_attr_temp1_max.dev_attr.attr, &sensor_dev_attr_temp1_min.dev_attr.attr, &sensor_dev_attr_temp1_alarm.dev_attr.attr, &sensor_dev_attr_temp2_input.dev_attr.attr, &sensor_dev_attr_temp2_max.dev_attr.attr, &sensor_dev_attr_temp2_min.dev_attr.attr, &sensor_dev_attr_temp2_alarm.dev_attr.attr, &sensor_dev_attr_temp1_offset.dev_attr.attr, &sensor_dev_attr_temp2_offset.dev_attr.attr, &sensor_dev_attr_temp1_auto_point1_temp.dev_attr.attr, &sensor_dev_attr_temp2_auto_point1_temp.dev_attr.attr, &sensor_dev_attr_temp1_auto_point1_temp_hyst.dev_attr.attr, &sensor_dev_attr_temp2_auto_point1_temp_hyst.dev_attr.attr, &sensor_dev_attr_temp1_auto_point2_temp.dev_attr.attr, &sensor_dev_attr_temp2_auto_point2_temp.dev_attr.attr, &sensor_dev_attr_temp1_crit.dev_attr.attr, &sensor_dev_attr_temp2_crit.dev_attr.attr, &dev_attr_temp1_crit_enable.attr, &dev_attr_temp2_crit_enable.attr, &dev_attr_cpu0_vid.attr, &dev_attr_vrm.attr, &dev_attr_alarms.attr, &dev_attr_alarm_mask.attr, &dev_attr_gpio.attr, &dev_attr_gpio_mask.attr, &dev_attr_pwm1.attr, &dev_attr_pwm2.attr, &dev_attr_pwm3.attr, &dev_attr_pwm1_enable.attr, &dev_attr_pwm2_enable.attr, &dev_attr_pwm3_enable.attr, &dev_attr_temp1_auto_point1_pwm.attr, &dev_attr_temp2_auto_point1_pwm.attr, &dev_attr_temp1_auto_point2_pwm.attr, &dev_attr_temp2_auto_point2_pwm.attr, &dev_attr_analog_out.attr, NULL }; static const struct attribute_group adm1026_group = { .attrs = adm1026_attributes, }; static struct attribute *adm1026_attributes_temp3[] = { &sensor_dev_attr_temp3_input.dev_attr.attr, &sensor_dev_attr_temp3_max.dev_attr.attr, &sensor_dev_attr_temp3_min.dev_attr.attr, &sensor_dev_attr_temp3_alarm.dev_attr.attr, &sensor_dev_attr_temp3_offset.dev_attr.attr, &sensor_dev_attr_temp3_auto_point1_temp.dev_attr.attr, &sensor_dev_attr_temp3_auto_point1_temp_hyst.dev_attr.attr, &sensor_dev_attr_temp3_auto_point2_temp.dev_attr.attr, &sensor_dev_attr_temp3_crit.dev_attr.attr, &dev_attr_temp3_crit_enable.attr, &dev_attr_temp3_auto_point1_pwm.attr, &dev_attr_temp3_auto_point2_pwm.attr, NULL }; static const struct attribute_group adm1026_group_temp3 = { .attrs = adm1026_attributes_temp3, }; static struct attribute *adm1026_attributes_in8_9[] = { &sensor_dev_attr_in8_input.dev_attr.attr, &sensor_dev_attr_in8_max.dev_attr.attr, &sensor_dev_attr_in8_min.dev_attr.attr, &sensor_dev_attr_in8_alarm.dev_attr.attr, &sensor_dev_attr_in9_input.dev_attr.attr, &sensor_dev_attr_in9_max.dev_attr.attr, &sensor_dev_attr_in9_min.dev_attr.attr, &sensor_dev_attr_in9_alarm.dev_attr.attr, NULL }; static const struct attribute_group adm1026_group_in8_9 = { .attrs = adm1026_attributes_in8_9, }; /* Return 0 if detection is successful, -ENODEV otherwise */ static int adm1026_detect(struct i2c_client *client, struct i2c_board_info *info) { struct i2c_adapter *adapter = client->adapter; int address = client->addr; int company, verstep; if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) { /* We need to be able to do byte I/O */ return -ENODEV; } /* Now, we do the remaining detection. */ company = adm1026_read_value(client, ADM1026_REG_COMPANY); verstep = adm1026_read_value(client, ADM1026_REG_VERSTEP); dev_dbg(&adapter->dev, "Detecting device at %d,0x%02x with COMPANY: 0x%02x and VERSTEP: 0x%02x\n", i2c_adapter_id(client->adapter), client->addr, company, verstep); /* Determine the chip type. */ dev_dbg(&adapter->dev, "Autodetecting device at %d,0x%02x...\n", i2c_adapter_id(adapter), address); if (company == ADM1026_COMPANY_ANALOG_DEV && verstep == ADM1026_VERSTEP_ADM1026) { /* Analog Devices ADM1026 */ } else if (company == ADM1026_COMPANY_ANALOG_DEV && (verstep & 0xf0) == ADM1026_VERSTEP_GENERIC) { dev_err(&adapter->dev, "Unrecognized stepping 0x%02x. Defaulting to ADM1026.\n", verstep); } else if ((verstep & 0xf0) == ADM1026_VERSTEP_GENERIC) { dev_err(&adapter->dev, "Found version/stepping 0x%02x. Assuming generic ADM1026.\n", verstep); } else { dev_dbg(&adapter->dev, "Autodetection failed\n"); /* Not an ADM1026... */ return -ENODEV; } strscpy(info->type, "adm1026", I2C_NAME_SIZE); return 0; } static void adm1026_print_gpio(struct i2c_client *client) { struct adm1026_data *data = i2c_get_clientdata(client); int i; dev_dbg(&client->dev, "GPIO config is:\n"); for (i = 0; i <= 7; ++i) { if (data->config2 & (1 << i)) { dev_dbg(&client->dev, "\t%sGP%s%d\n", data->gpio_config[i] & 0x02 ? "" : "!", data->gpio_config[i] & 0x01 ? "OUT" : "IN", i); } else { dev_dbg(&client->dev, "\tFAN%d\n", i); } } for (i = 8; i <= 15; ++i) { dev_dbg(&client->dev, "\t%sGP%s%d\n", data->gpio_config[i] & 0x02 ? "" : "!", data->gpio_config[i] & 0x01 ? "OUT" : "IN", i); } if (data->config3 & CFG3_GPIO16_ENABLE) { dev_dbg(&client->dev, "\t%sGP%s16\n", data->gpio_config[16] & 0x02 ? "" : "!", data->gpio_config[16] & 0x01 ? "OUT" : "IN"); } else { /* GPIO16 is THERM */ dev_dbg(&client->dev, "\tTHERM\n"); } } static void adm1026_fixup_gpio(struct i2c_client *client) { struct adm1026_data *data = i2c_get_clientdata(client); int i; int value; /* Make the changes requested. */ /* * We may need to unlock/stop monitoring or soft-reset the * chip before we can make changes. This hasn't been * tested much. FIXME */ /* Make outputs */ for (i = 0; i <= 16; ++i) { if (gpio_output[i] >= 0 && gpio_output[i] <= 16) data->gpio_config[gpio_output[i]] |= 0x01; /* if GPIO0-7 is output, it isn't a FAN tach */ if (gpio_output[i] >= 0 && gpio_output[i] <= 7) data->config2 |= 1 << gpio_output[i]; } /* Input overrides output */ for (i = 0; i <= 16; ++i) { if (gpio_input[i] >= 0 && gpio_input[i] <= 16) data->gpio_config[gpio_input[i]] &= ~0x01; /* if GPIO0-7 is input, it isn't a FAN tach */ if (gpio_input[i] >= 0 && gpio_input[i] <= 7) data->config2 |= 1 << gpio_input[i]; } /* Inverted */ for (i = 0; i <= 16; ++i) { if (gpio_inverted[i] >= 0 && gpio_inverted[i] <= 16) data->gpio_config[gpio_inverted[i]] &= ~0x02; } /* Normal overrides inverted */ for (i = 0; i <= 16; ++i) { if (gpio_normal[i] >= 0 && gpio_normal[i] <= 16) data->gpio_config[gpio_normal[i]] |= 0x02; } /* Fan overrides input and output */ for (i = 0; i <= 7; ++i) { if (gpio_fan[i] >= 0 && gpio_fan[i] <= 7) data->config2 &= ~(1 << gpio_fan[i]); } /* Write new configs to registers */ adm1026_write_value(client, ADM1026_REG_CONFIG2, data->config2); data->config3 = (data->config3 & 0x3f) | ((data->gpio_config[16] & 0x03) << 6); adm1026_write_value(client, ADM1026_REG_CONFIG3, data->config3); for (i = 15, value = 0; i >= 0; --i) { value <<= 2; value |= data->gpio_config[i] & 0x03; if ((i & 0x03) == 0) { adm1026_write_value(client, ADM1026_REG_GPIO_CFG_0_3 + i/4, value); value = 0; } } /* Print the new config */ adm1026_print_gpio(client); } static void adm1026_init_client(struct i2c_client *client) { int value, i; struct adm1026_data *data = i2c_get_clientdata(client); dev_dbg(&client->dev, "Initializing device\n"); /* Read chip config */ data->config1 = adm1026_read_value(client, ADM1026_REG_CONFIG1); data->config2 = adm1026_read_value(client, ADM1026_REG_CONFIG2); data->config3 = adm1026_read_value(client, ADM1026_REG_CONFIG3); /* Inform user of chip config */ dev_dbg(&client->dev, "ADM1026_REG_CONFIG1 is: 0x%02x\n", data->config1); if ((data->config1 & CFG1_MONITOR) == 0) { dev_dbg(&client->dev, "Monitoring not currently enabled.\n"); } if (data->config1 & CFG1_INT_ENABLE) { dev_dbg(&client->dev, "SMBALERT interrupts are enabled.\n"); } if (data->config1 & CFG1_AIN8_9) { dev_dbg(&client->dev, "in8 and in9 enabled. temp3 disabled.\n"); } else { dev_dbg(&client->dev, "temp3 enabled. in8 and in9 disabled.\n"); } if (data->config1 & CFG1_THERM_HOT) { dev_dbg(&client->dev, "Automatic THERM, PWM, and temp limits enabled.\n"); } if (data->config3 & CFG3_GPIO16_ENABLE) { dev_dbg(&client->dev, "GPIO16 enabled. THERM pin disabled.\n"); } else { dev_dbg(&client->dev, "THERM pin enabled. GPIO16 disabled.\n"); } if (data->config3 & CFG3_VREF_250) dev_dbg(&client->dev, "Vref is 2.50 Volts.\n"); else dev_dbg(&client->dev, "Vref is 1.82 Volts.\n"); /* Read and pick apart the existing GPIO configuration */ value = 0; for (i = 0; i <= 15; ++i) { if ((i & 0x03) == 0) { value = adm1026_read_value(client, ADM1026_REG_GPIO_CFG_0_3 + i / 4); } data->gpio_config[i] = value & 0x03; value >>= 2; } data->gpio_config[16] = (data->config3 >> 6) & 0x03; /* ... and then print it */ adm1026_print_gpio(client); /* * If the user asks us to reprogram the GPIO config, then * do it now. */ if (gpio_input[0] != -1 || gpio_output[0] != -1 || gpio_inverted[0] != -1 || gpio_normal[0] != -1 || gpio_fan[0] != -1) { adm1026_fixup_gpio(client); } /* * WE INTENTIONALLY make no changes to the limits, * offsets, pwms, fans and zones. If they were * configured, we don't want to mess with them. * If they weren't, the default is 100% PWM, no * control and will suffice until 'sensors -s' * can be run by the user. We DO set the default * value for pwm1.auto_pwm_min to its maximum * so that enabling automatic pwm fan control * without first setting a value for pwm1.auto_pwm_min * will not result in potentially dangerous fan speed decrease. */ data->pwm1.auto_pwm_min = 255; /* Start monitoring */ value = adm1026_read_value(client, ADM1026_REG_CONFIG1); /* Set MONITOR, clear interrupt acknowledge and s/w reset */ value = (value | CFG1_MONITOR) & (~CFG1_INT_CLEAR & ~CFG1_RESET); dev_dbg(&client->dev, "Setting CONFIG to: 0x%02x\n", value); data->config1 = value; adm1026_write_value(client, ADM1026_REG_CONFIG1, value); /* initialize fan_div[] to hardware defaults */ value = adm1026_read_value(client, ADM1026_REG_FAN_DIV_0_3) | (adm1026_read_value(client, ADM1026_REG_FAN_DIV_4_7) << 8); for (i = 0; i <= 7; ++i) { data->fan_div[i] = DIV_FROM_REG(value & 0x03); value >>= 2; } } static int adm1026_probe(struct i2c_client *client) { struct device *dev = &client->dev; struct device *hwmon_dev; struct adm1026_data *data; data = devm_kzalloc(dev, sizeof(struct adm1026_data), GFP_KERNEL); if (!data) return -ENOMEM; i2c_set_clientdata(client, data); data->client = client; mutex_init(&data->update_lock); /* Set the VRM version */ data->vrm = vid_which_vrm(); /* Initialize the ADM1026 chip */ adm1026_init_client(client); /* sysfs hooks */ data->groups[0] = &adm1026_group; if (data->config1 & CFG1_AIN8_9) data->groups[1] = &adm1026_group_in8_9; else data->groups[1] = &adm1026_group_temp3; hwmon_dev = devm_hwmon_device_register_with_groups(dev, client->name, data, data->groups); return PTR_ERR_OR_ZERO(hwmon_dev); } static const struct i2c_device_id adm1026_id[] = { { "adm1026" }, { } }; MODULE_DEVICE_TABLE(i2c, adm1026_id); static struct i2c_driver adm1026_driver = { .class = I2C_CLASS_HWMON, .driver = { .name = "adm1026", }, .probe = adm1026_probe, .id_table = adm1026_id, .detect = adm1026_detect, .address_list = normal_i2c, }; module_i2c_driver(adm1026_driver); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Philip Pokorny <ppokorny@penguincomputing.com>, " "Justin Thiessen <jthiessen@penguincomputing.com>"); MODULE_DESCRIPTION("ADM1026 driver");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1