Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Javier Carrasco | 3293 | 100.00% | 3 | 100.00% |
Total | 3293 | 3 |
// SPDX-License-Identifier: GPL-2.0+ /* * cc2.c - Support for the Amphenol ChipCap 2 relative humidity, temperature sensor * * Part numbers supported: * CC2D23, CC2D23S, CC2D25, CC2D25S, CC2D33, CC2D33S, CC2D35, CC2D35S * * Author: Javier Carrasco <javier.carrasco.cruz@gmail.com> * * Datasheet and application notes: * https://www.amphenol-sensors.com/en/telaire/humidity/527-humidity-sensors/3095-chipcap-2 */ #include <linux/bitfield.h> #include <linux/bits.h> #include <linux/completion.h> #include <linux/delay.h> #include <linux/hwmon.h> #include <linux/i2c.h> #include <linux/interrupt.h> #include <linux/irq.h> #include <linux/module.h> #include <linux/regulator/consumer.h> #define CC2_START_CM 0xA0 #define CC2_START_NOM 0x80 #define CC2_R_ALARM_H_ON 0x18 #define CC2_R_ALARM_H_OFF 0x19 #define CC2_R_ALARM_L_ON 0x1A #define CC2_R_ALARM_L_OFF 0x1B #define CC2_RW_OFFSET 0x40 #define CC2_W_ALARM_H_ON (CC2_R_ALARM_H_ON + CC2_RW_OFFSET) #define CC2_W_ALARM_H_OFF (CC2_R_ALARM_H_OFF + CC2_RW_OFFSET) #define CC2_W_ALARM_L_ON (CC2_R_ALARM_L_ON + CC2_RW_OFFSET) #define CC2_W_ALARM_L_OFF (CC2_R_ALARM_L_OFF + CC2_RW_OFFSET) #define CC2_STATUS_FIELD GENMASK(7, 6) #define CC2_STATUS_VALID_DATA 0x00 #define CC2_STATUS_STALE_DATA 0x01 #define CC2_STATUS_CMD_MODE 0x02 #define CC2_RESPONSE_FIELD GENMASK(1, 0) #define CC2_RESPONSE_BUSY 0x00 #define CC2_RESPONSE_ACK 0x01 #define CC2_RESPONSE_NACK 0x02 #define CC2_ERR_CORR_EEPROM BIT(2) #define CC2_ERR_UNCORR_EEPROM BIT(3) #define CC2_ERR_RAM_PARITY BIT(4) #define CC2_ERR_CONFIG_LOAD BIT(5) #define CC2_EEPROM_SIZE 10 #define CC2_EEPROM_DATA_LEN 3 #define CC2_MEASUREMENT_DATA_LEN 4 #define CC2_RH_DATA_FIELD GENMASK(13, 0) /* ensure clean off -> on transitions */ #define CC2_POWER_CYCLE_MS 80 #define CC2_STARTUP_TO_DATA_MS 55 #define CC2_RESP_START_CM_US 100 #define CC2_RESP_EEPROM_R_US 100 #define CC2_RESP_EEPROM_W_MS 12 #define CC2_STARTUP_TIME_US 1250 #define CC2_RH_MAX (100 * 1000U) #define CC2_CM_RETRIES 5 struct cc2_rh_alarm_info { bool low_alarm; bool high_alarm; bool low_alarm_visible; bool high_alarm_visible; }; struct cc2_data { struct cc2_rh_alarm_info rh_alarm; struct completion complete; struct device *hwmon; struct i2c_client *client; struct mutex dev_access_lock; /* device access lock */ struct regulator *regulator; const char *name; int irq_ready; int irq_low; int irq_high; bool process_irqs; }; enum cc2_chan_addr { CC2_CHAN_TEMP = 0, CC2_CHAN_HUMIDITY, }; /* %RH as a per cent mille from a register value */ static long cc2_rh_convert(u16 data) { unsigned long tmp = (data & CC2_RH_DATA_FIELD) * CC2_RH_MAX; return tmp / ((1 << 14) - 1); } /* convert %RH to a register value */ static u16 cc2_rh_to_reg(long data) { return data * ((1 << 14) - 1) / CC2_RH_MAX; } /* temperature in milli degrees celsius from a register value */ static long cc2_temp_convert(u16 data) { unsigned long tmp = ((data >> 2) * 165 * 1000U) / ((1 << 14) - 1); return tmp - 40 * 1000U; } static int cc2_enable(struct cc2_data *data) { int ret; /* exclusive regulator, check in case a disable failed */ if (regulator_is_enabled(data->regulator)) return 0; /* clear any pending completion */ try_wait_for_completion(&data->complete); ret = regulator_enable(data->regulator); if (ret < 0) return ret; usleep_range(CC2_STARTUP_TIME_US, CC2_STARTUP_TIME_US + 125); data->process_irqs = true; return 0; } static void cc2_disable(struct cc2_data *data) { int err; /* ignore alarms triggered by voltage toggling when powering up */ data->process_irqs = false; /* exclusive regulator, check in case an enable failed */ if (regulator_is_enabled(data->regulator)) { err = regulator_disable(data->regulator); if (err) dev_dbg(&data->client->dev, "Failed to disable device"); } } static int cc2_cmd_response_diagnostic(struct device *dev, u8 status) { int resp; if (FIELD_GET(CC2_STATUS_FIELD, status) != CC2_STATUS_CMD_MODE) { dev_dbg(dev, "Command sent out of command window\n"); return -ETIMEDOUT; } resp = FIELD_GET(CC2_RESPONSE_FIELD, status); switch (resp) { case CC2_RESPONSE_ACK: return 0; case CC2_RESPONSE_BUSY: return -EBUSY; case CC2_RESPONSE_NACK: if (resp & CC2_ERR_CORR_EEPROM) dev_dbg(dev, "Command failed: corrected EEPROM\n"); if (resp & CC2_ERR_UNCORR_EEPROM) dev_dbg(dev, "Command failed: uncorrected EEPROM\n"); if (resp & CC2_ERR_RAM_PARITY) dev_dbg(dev, "Command failed: RAM parity\n"); if (resp & CC2_ERR_RAM_PARITY) dev_dbg(dev, "Command failed: configuration error\n"); return -ENODATA; default: dev_dbg(dev, "Unknown command reply\n"); return -EINVAL; } } static int cc2_read_command_status(struct i2c_client *client) { u8 status; int ret; ret = i2c_master_recv(client, &status, 1); if (ret != 1) { ret = ret < 0 ? ret : -EIO; return ret; } return cc2_cmd_response_diagnostic(&client->dev, status); } /* * The command mode is only accessible after sending the START_CM command in the * first 10 ms after power-up. Only in case the command window is missed, * CC2_CM_RETRIES retries are attempted before giving up and returning an error. */ static int cc2_command_mode_start(struct cc2_data *data) { unsigned long timeout; int i, ret; for (i = 0; i < CC2_CM_RETRIES; i++) { ret = cc2_enable(data); if (ret < 0) return ret; ret = i2c_smbus_write_word_data(data->client, CC2_START_CM, 0); if (ret < 0) return ret; if (data->irq_ready > 0) { timeout = usecs_to_jiffies(2 * CC2_RESP_START_CM_US); ret = wait_for_completion_timeout(&data->complete, timeout); if (!ret) return -ETIMEDOUT; } else { usleep_range(CC2_RESP_START_CM_US, 2 * CC2_RESP_START_CM_US); } ret = cc2_read_command_status(data->client); if (ret != -ETIMEDOUT || i == CC2_CM_RETRIES) break; /* command window missed, prepare for a retry */ cc2_disable(data); msleep(CC2_POWER_CYCLE_MS); } return ret; } /* Sending a Start_NOM command finishes the command mode immediately with no * reply and the device enters normal operation mode */ static int cc2_command_mode_finish(struct cc2_data *data) { int ret; ret = i2c_smbus_write_word_data(data->client, CC2_START_NOM, 0); if (ret < 0) return ret; return 0; } static int cc2_write_reg(struct cc2_data *data, u8 reg, u16 val) { unsigned long timeout; int ret; ret = cc2_command_mode_start(data); if (ret < 0) goto disable; cpu_to_be16s(&val); ret = i2c_smbus_write_word_data(data->client, reg, val); if (ret < 0) goto disable; if (data->irq_ready > 0) { timeout = msecs_to_jiffies(2 * CC2_RESP_EEPROM_W_MS); ret = wait_for_completion_timeout(&data->complete, timeout); if (!ret) { ret = -ETIMEDOUT; goto disable; } } else { msleep(CC2_RESP_EEPROM_W_MS); } ret = cc2_read_command_status(data->client); disable: cc2_disable(data); return ret; } static int cc2_read_reg(struct cc2_data *data, u8 reg, u16 *val) { u8 buf[CC2_EEPROM_DATA_LEN]; unsigned long timeout; int ret; ret = cc2_command_mode_start(data); if (ret < 0) return ret; ret = i2c_smbus_write_word_data(data->client, reg, 0); if (ret < 0) return ret; if (data->irq_ready > 0) { timeout = usecs_to_jiffies(2 * CC2_RESP_EEPROM_R_US); ret = wait_for_completion_timeout(&data->complete, timeout); if (!ret) return -ETIMEDOUT; } else { usleep_range(CC2_RESP_EEPROM_R_US, CC2_RESP_EEPROM_R_US + 10); } ret = i2c_master_recv(data->client, buf, CC2_EEPROM_DATA_LEN); if (ret != CC2_EEPROM_DATA_LEN) return ret < 0 ? ret : -EIO; *val = be16_to_cpup((__be16 *)&buf[1]); return cc2_read_command_status(data->client); } static int cc2_get_reg_val(struct cc2_data *data, u8 reg, long *val) { u16 reg_val; int ret; ret = cc2_read_reg(data, reg, ®_val); if (!ret) *val = cc2_rh_convert(reg_val); cc2_disable(data); return ret; } static int cc2_data_fetch(struct i2c_client *client, enum hwmon_sensor_types type, long *val) { u8 data[CC2_MEASUREMENT_DATA_LEN]; u8 status; int ret; ret = i2c_master_recv(client, data, CC2_MEASUREMENT_DATA_LEN); if (ret != CC2_MEASUREMENT_DATA_LEN) { ret = ret < 0 ? ret : -EIO; return ret; } status = FIELD_GET(CC2_STATUS_FIELD, data[0]); if (status == CC2_STATUS_STALE_DATA) return -EBUSY; if (status != CC2_STATUS_VALID_DATA) return -EIO; switch (type) { case hwmon_humidity: *val = cc2_rh_convert(be16_to_cpup((__be16 *)&data[0])); break; case hwmon_temp: *val = cc2_temp_convert(be16_to_cpup((__be16 *)&data[2])); break; default: return -EINVAL; } return 0; } static int cc2_read_measurement(struct cc2_data *data, enum hwmon_sensor_types type, long *val) { unsigned long timeout; int ret; if (data->irq_ready > 0) { timeout = msecs_to_jiffies(CC2_STARTUP_TO_DATA_MS * 2); ret = wait_for_completion_timeout(&data->complete, timeout); if (!ret) return -ETIMEDOUT; } else { msleep(CC2_STARTUP_TO_DATA_MS); } ret = cc2_data_fetch(data->client, type, val); return ret; } /* * A measurement requires enabling the device, waiting for the automatic * measurement to finish, reading the measurement data and disabling the device * again. */ static int cc2_measurement(struct cc2_data *data, enum hwmon_sensor_types type, long *val) { int ret; ret = cc2_enable(data); if (ret) return ret; ret = cc2_read_measurement(data, type, val); cc2_disable(data); return ret; } /* * In order to check alarm status, the corresponding ALARM_OFF (hysteresis) * register must be read and a new measurement must be carried out to trigger * the alarm signals. Given that the device carries out a measurement after * exiting the command mode, there is no need to force two power-up sequences. * Instead, a NOM command is sent and the device is disabled after the * measurement is read. */ static int cc2_read_hyst_and_measure(struct cc2_data *data, u8 reg, long *hyst, long *measurement) { u16 reg_val; int ret; ret = cc2_read_reg(data, reg, ®_val); if (ret) goto disable; *hyst = cc2_rh_convert(reg_val); ret = cc2_command_mode_finish(data); if (ret) goto disable; ret = cc2_read_measurement(data, hwmon_humidity, measurement); disable: cc2_disable(data); return ret; } static umode_t cc2_is_visible(const void *data, enum hwmon_sensor_types type, u32 attr, int channel) { const struct cc2_data *cc2 = data; switch (type) { case hwmon_humidity: switch (attr) { case hwmon_humidity_input: return 0444; case hwmon_humidity_min_alarm: return cc2->rh_alarm.low_alarm_visible ? 0444 : 0; case hwmon_humidity_max_alarm: return cc2->rh_alarm.high_alarm_visible ? 0444 : 0; case hwmon_humidity_min: case hwmon_humidity_min_hyst: return cc2->rh_alarm.low_alarm_visible ? 0644 : 0; case hwmon_humidity_max: case hwmon_humidity_max_hyst: return cc2->rh_alarm.high_alarm_visible ? 0644 : 0; default: return 0; } case hwmon_temp: switch (attr) { case hwmon_temp_input: return 0444; default: return 0; } default: break; } return 0; } static irqreturn_t cc2_ready_interrupt(int irq, void *data) { struct cc2_data *cc2 = data; if (cc2->process_irqs) complete(&cc2->complete); return IRQ_HANDLED; } static irqreturn_t cc2_low_interrupt(int irq, void *data) { struct cc2_data *cc2 = data; if (cc2->process_irqs) { hwmon_notify_event(cc2->hwmon, hwmon_humidity, hwmon_humidity_min_alarm, CC2_CHAN_HUMIDITY); cc2->rh_alarm.low_alarm = true; } return IRQ_HANDLED; } static irqreturn_t cc2_high_interrupt(int irq, void *data) { struct cc2_data *cc2 = data; if (cc2->process_irqs) { hwmon_notify_event(cc2->hwmon, hwmon_humidity, hwmon_humidity_max_alarm, CC2_CHAN_HUMIDITY); cc2->rh_alarm.high_alarm = true; } return IRQ_HANDLED; } static int cc2_humidity_min_alarm_status(struct cc2_data *data, long *val) { long measurement, min_hyst; int ret; ret = cc2_read_hyst_and_measure(data, CC2_R_ALARM_L_OFF, &min_hyst, &measurement); if (ret < 0) return ret; if (data->rh_alarm.low_alarm) { *val = (measurement < min_hyst) ? 1 : 0; data->rh_alarm.low_alarm = *val; } else { *val = 0; } return 0; } static int cc2_humidity_max_alarm_status(struct cc2_data *data, long *val) { long measurement, max_hyst; int ret; ret = cc2_read_hyst_and_measure(data, CC2_R_ALARM_H_OFF, &max_hyst, &measurement); if (ret < 0) return ret; if (data->rh_alarm.high_alarm) { *val = (measurement > max_hyst) ? 1 : 0; data->rh_alarm.high_alarm = *val; } else { *val = 0; } return 0; } static int cc2_read(struct device *dev, enum hwmon_sensor_types type, u32 attr, int channel, long *val) { struct cc2_data *data = dev_get_drvdata(dev); int ret = 0; mutex_lock(&data->dev_access_lock); switch (type) { case hwmon_temp: ret = cc2_measurement(data, type, val); break; case hwmon_humidity: switch (attr) { case hwmon_humidity_input: ret = cc2_measurement(data, type, val); break; case hwmon_humidity_min: ret = cc2_get_reg_val(data, CC2_R_ALARM_L_ON, val); break; case hwmon_humidity_min_hyst: ret = cc2_get_reg_val(data, CC2_R_ALARM_L_OFF, val); break; case hwmon_humidity_max: ret = cc2_get_reg_val(data, CC2_R_ALARM_H_ON, val); break; case hwmon_humidity_max_hyst: ret = cc2_get_reg_val(data, CC2_R_ALARM_H_OFF, val); break; case hwmon_humidity_min_alarm: ret = cc2_humidity_min_alarm_status(data, val); break; case hwmon_humidity_max_alarm: ret = cc2_humidity_max_alarm_status(data, val); break; default: ret = -EOPNOTSUPP; } break; default: ret = -EOPNOTSUPP; } mutex_unlock(&data->dev_access_lock); return ret; } static int cc2_write(struct device *dev, enum hwmon_sensor_types type, u32 attr, int channel, long val) { struct cc2_data *data = dev_get_drvdata(dev); int ret; u16 arg; u8 cmd; if (type != hwmon_humidity) return -EOPNOTSUPP; if (val < 0 || val > CC2_RH_MAX) return -EINVAL; mutex_lock(&data->dev_access_lock); switch (attr) { case hwmon_humidity_min: cmd = CC2_W_ALARM_L_ON; arg = cc2_rh_to_reg(val); ret = cc2_write_reg(data, cmd, arg); break; case hwmon_humidity_min_hyst: cmd = CC2_W_ALARM_L_OFF; arg = cc2_rh_to_reg(val); ret = cc2_write_reg(data, cmd, arg); break; case hwmon_humidity_max: cmd = CC2_W_ALARM_H_ON; arg = cc2_rh_to_reg(val); ret = cc2_write_reg(data, cmd, arg); break; case hwmon_humidity_max_hyst: cmd = CC2_W_ALARM_H_OFF; arg = cc2_rh_to_reg(val); ret = cc2_write_reg(data, cmd, arg); break; default: ret = -EOPNOTSUPP; break; } mutex_unlock(&data->dev_access_lock); return ret; } static int cc2_request_ready_irq(struct cc2_data *data, struct device *dev) { int ret = 0; data->irq_ready = fwnode_irq_get_byname(dev_fwnode(dev), "ready"); if (data->irq_ready > 0) { init_completion(&data->complete); ret = devm_request_threaded_irq(dev, data->irq_ready, NULL, cc2_ready_interrupt, IRQF_ONESHOT | IRQF_TRIGGER_RISING, dev_name(dev), data); } return ret; } static int cc2_request_alarm_irqs(struct cc2_data *data, struct device *dev) { int ret = 0; data->irq_low = fwnode_irq_get_byname(dev_fwnode(dev), "low"); if (data->irq_low > 0) { ret = devm_request_threaded_irq(dev, data->irq_low, NULL, cc2_low_interrupt, IRQF_ONESHOT | IRQF_TRIGGER_RISING, dev_name(dev), data); if (ret) return ret; data->rh_alarm.low_alarm_visible = true; } data->irq_high = fwnode_irq_get_byname(dev_fwnode(dev), "high"); if (data->irq_high > 0) { ret = devm_request_threaded_irq(dev, data->irq_high, NULL, cc2_high_interrupt, IRQF_ONESHOT | IRQF_TRIGGER_RISING, dev_name(dev), data); if (ret) return ret; data->rh_alarm.high_alarm_visible = true; } return ret; } static const struct hwmon_channel_info *cc2_info[] = { HWMON_CHANNEL_INFO(temp, HWMON_T_INPUT), HWMON_CHANNEL_INFO(humidity, HWMON_H_INPUT | HWMON_H_MIN | HWMON_H_MAX | HWMON_H_MIN_HYST | HWMON_H_MAX_HYST | HWMON_H_MIN_ALARM | HWMON_H_MAX_ALARM), NULL }; static const struct hwmon_ops cc2_hwmon_ops = { .is_visible = cc2_is_visible, .read = cc2_read, .write = cc2_write, }; static const struct hwmon_chip_info cc2_chip_info = { .ops = &cc2_hwmon_ops, .info = cc2_info, }; static int cc2_probe(struct i2c_client *client) { struct cc2_data *data; struct device *dev = &client->dev; int ret; if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) return -EOPNOTSUPP; data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL); if (!data) return -ENOMEM; i2c_set_clientdata(client, data); mutex_init(&data->dev_access_lock); data->client = client; data->regulator = devm_regulator_get_exclusive(dev, "vdd"); if (IS_ERR(data->regulator)) { dev_err_probe(dev, PTR_ERR(data->regulator), "Failed to get regulator\n"); return PTR_ERR(data->regulator); } ret = cc2_request_ready_irq(data, dev); if (ret) { dev_err_probe(dev, ret, "Failed to request ready irq\n"); return ret; } ret = cc2_request_alarm_irqs(data, dev); if (ret) { dev_err_probe(dev, ret, "Failed to request alarm irqs\n"); goto disable; } data->hwmon = devm_hwmon_device_register_with_info(dev, client->name, data, &cc2_chip_info, NULL); if (IS_ERR(data->hwmon)) { dev_err_probe(dev, PTR_ERR(data->hwmon), "Failed to register hwmon device\n"); ret = PTR_ERR(data->hwmon); } disable: cc2_disable(data); return ret; } static void cc2_remove(struct i2c_client *client) { struct cc2_data *data = i2c_get_clientdata(client); cc2_disable(data); } static const struct i2c_device_id cc2_id[] = { { "cc2d23" }, { "cc2d23s" }, { "cc2d25" }, { "cc2d25s" }, { "cc2d33" }, { "cc2d33s" }, { "cc2d35" }, { "cc2d35s" }, { } }; MODULE_DEVICE_TABLE(i2c, cc2_id); static const struct of_device_id cc2_of_match[] = { { .compatible = "amphenol,cc2d23" }, { .compatible = "amphenol,cc2d23s" }, { .compatible = "amphenol,cc2d25" }, { .compatible = "amphenol,cc2d25s" }, { .compatible = "amphenol,cc2d33" }, { .compatible = "amphenol,cc2d33s" }, { .compatible = "amphenol,cc2d35" }, { .compatible = "amphenol,cc2d35s" }, { }, }; MODULE_DEVICE_TABLE(of, cc2_of_match); static struct i2c_driver cc2_driver = { .driver = { .name = "cc2d23", .of_match_table = cc2_of_match, }, .probe = cc2_probe, .remove = cc2_remove, .id_table = cc2_id, }; module_i2c_driver(cc2_driver); MODULE_AUTHOR("Javier Carrasco <javier.carrasco.cruz@gamil.com>"); MODULE_DESCRIPTION("Amphenol ChipCap 2 humidity and temperature sensor driver"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1