Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Wilken Gottwalt | 3886 | 98.93% | 13 | 81.25% |
Armin Wolf | 38 | 0.97% | 1 | 6.25% |
Colin Ian King | 3 | 0.08% | 1 | 6.25% |
Krzysztof Kozlowski | 1 | 0.03% | 1 | 6.25% |
Total | 3928 | 16 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * corsair-psu.c - Linux driver for Corsair power supplies with HID sensors interface * Copyright (C) 2020 Wilken Gottwalt <wilken.gottwalt@posteo.net> */ #include <linux/completion.h> #include <linux/debugfs.h> #include <linux/errno.h> #include <linux/hid.h> #include <linux/hwmon.h> #include <linux/hwmon-sysfs.h> #include <linux/jiffies.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/mutex.h> #include <linux/slab.h> #include <linux/types.h> /* * Corsair protocol for PSUs * * message size = 64 bytes (request and response, little endian) * request: * [length][command][param0][param1][paramX]... * reply: * [echo of length][echo of command][data0][data1][dataX]... * * - commands are byte sized opcodes * - length is the sum of all bytes of the commands/params * - the micro-controller of most of these PSUs support concatenation in the request and reply, * but it is better to not rely on this (it is also hard to parse) * - the driver uses raw events to be accessible from userspace (though this is not really * supported, it is just there for convenience, may be removed in the future) * - a reply always starts with the length and command in the same order the request used it * - length of the reply data is specific to the command used * - some of the commands work on a rail and can be switched to a specific rail (0 = 12v, * 1 = 5v, 2 = 3.3v) * - the format of the init command 0xFE is swapped length/command bytes * - parameter bytes amount and values are specific to the command (rail setting is the only * one for now that uses non-zero values) * - the driver supports debugfs for values not fitting into the hwmon class * - not every device class (HXi or RMi) supports all commands * - if configured wrong the PSU resets or shuts down, often before actually hitting the * reported critical temperature * - new models like HX1500i Series 2023 have changes in the reported vendor and product * strings, both are slightly longer now, report vendor and product in one string and are * the same now */ #define DRIVER_NAME "corsair-psu" #define REPLY_SIZE 24 /* max length of a reply to a single command */ #define CMD_BUFFER_SIZE 64 #define CMD_TIMEOUT_MS 250 #define SECONDS_PER_HOUR (60 * 60) #define SECONDS_PER_DAY (SECONDS_PER_HOUR * 24) #define RAIL_COUNT 3 /* 3v3 + 5v + 12v */ #define TEMP_COUNT 2 #define OCP_MULTI_RAIL 0x02 #define PSU_CMD_SELECT_RAIL 0x00 /* expects length 2 */ #define PSU_CMD_FAN_PWM 0x3B /* the rest of the commands expect length 3 */ #define PSU_CMD_RAIL_VOLTS_HCRIT 0x40 #define PSU_CMD_RAIL_VOLTS_LCRIT 0x44 #define PSU_CMD_RAIL_AMPS_HCRIT 0x46 #define PSU_CMD_TEMP_HCRIT 0x4F #define PSU_CMD_IN_VOLTS 0x88 #define PSU_CMD_IN_AMPS 0x89 #define PSU_CMD_RAIL_VOLTS 0x8B #define PSU_CMD_RAIL_AMPS 0x8C #define PSU_CMD_TEMP0 0x8D #define PSU_CMD_TEMP1 0x8E #define PSU_CMD_FAN 0x90 #define PSU_CMD_RAIL_WATTS 0x96 #define PSU_CMD_VEND_STR 0x99 #define PSU_CMD_PROD_STR 0x9A #define PSU_CMD_TOTAL_UPTIME 0xD1 #define PSU_CMD_UPTIME 0xD2 #define PSU_CMD_OCPMODE 0xD8 #define PSU_CMD_TOTAL_WATTS 0xEE #define PSU_CMD_FAN_PWM_ENABLE 0xF0 #define PSU_CMD_INIT 0xFE #define L_IN_VOLTS "v_in" #define L_OUT_VOLTS_12V "v_out +12v" #define L_OUT_VOLTS_5V "v_out +5v" #define L_OUT_VOLTS_3_3V "v_out +3.3v" #define L_IN_AMPS "curr in" #define L_AMPS_12V "curr +12v" #define L_AMPS_5V "curr +5v" #define L_AMPS_3_3V "curr +3.3v" #define L_FAN "psu fan" #define L_TEMP0 "vrm temp" #define L_TEMP1 "case temp" #define L_WATTS "power total" #define L_WATTS_12V "power +12v" #define L_WATTS_5V "power +5v" #define L_WATTS_3_3V "power +3.3v" static const char *const label_watts[] = { L_WATTS, L_WATTS_12V, L_WATTS_5V, L_WATTS_3_3V }; static const char *const label_volts[] = { L_IN_VOLTS, L_OUT_VOLTS_12V, L_OUT_VOLTS_5V, L_OUT_VOLTS_3_3V }; static const char *const label_amps[] = { L_IN_AMPS, L_AMPS_12V, L_AMPS_5V, L_AMPS_3_3V }; struct corsairpsu_data { struct hid_device *hdev; struct device *hwmon_dev; struct dentry *debugfs; struct completion wait_completion; struct mutex lock; /* for locking access to cmd_buffer */ u8 *cmd_buffer; char vendor[REPLY_SIZE]; char product[REPLY_SIZE]; long temp_crit[TEMP_COUNT]; long in_crit[RAIL_COUNT]; long in_lcrit[RAIL_COUNT]; long curr_crit[RAIL_COUNT]; u8 temp_crit_support; u8 in_crit_support; u8 in_lcrit_support; u8 curr_crit_support; bool in_curr_cmd_support; /* not all commands are supported on every PSU */ }; /* some values are SMBus LINEAR11 data which need a conversion */ static int corsairpsu_linear11_to_int(const u16 val, const int scale) { const int exp = ((s16)val) >> 11; const int mant = (((s16)(val & 0x7ff)) << 5) >> 5; const int result = mant * scale; return (exp >= 0) ? (result << exp) : (result >> -exp); } /* the micro-controller uses percentage values to control pwm */ static int corsairpsu_dutycycle_to_pwm(const long dutycycle) { const int result = (256 << 16) / 100; return (result * dutycycle) >> 16; } static int corsairpsu_usb_cmd(struct corsairpsu_data *priv, u8 p0, u8 p1, u8 p2, void *data) { unsigned long time; int ret; memset(priv->cmd_buffer, 0, CMD_BUFFER_SIZE); priv->cmd_buffer[0] = p0; priv->cmd_buffer[1] = p1; priv->cmd_buffer[2] = p2; reinit_completion(&priv->wait_completion); ret = hid_hw_output_report(priv->hdev, priv->cmd_buffer, CMD_BUFFER_SIZE); if (ret < 0) return ret; time = wait_for_completion_timeout(&priv->wait_completion, msecs_to_jiffies(CMD_TIMEOUT_MS)); if (!time) return -ETIMEDOUT; /* * at the start of the reply is an echo of the send command/length in the same order it * was send, not every command is supported on every device class, if a command is not * supported, the length value in the reply is okay, but the command value is set to 0 */ if (p0 != priv->cmd_buffer[0] || p1 != priv->cmd_buffer[1]) return -EOPNOTSUPP; if (data) memcpy(data, priv->cmd_buffer + 2, REPLY_SIZE); return 0; } static int corsairpsu_init(struct corsairpsu_data *priv) { /* * PSU_CMD_INIT uses swapped length/command and expects 2 parameter bytes, this command * actually generates a reply, but we don't need it */ return corsairpsu_usb_cmd(priv, PSU_CMD_INIT, 3, 0, NULL); } static int corsairpsu_fwinfo(struct corsairpsu_data *priv) { int ret; ret = corsairpsu_usb_cmd(priv, 3, PSU_CMD_VEND_STR, 0, priv->vendor); if (ret < 0) return ret; ret = corsairpsu_usb_cmd(priv, 3, PSU_CMD_PROD_STR, 0, priv->product); if (ret < 0) return ret; return 0; } static int corsairpsu_request(struct corsairpsu_data *priv, u8 cmd, u8 rail, void *data) { int ret; mutex_lock(&priv->lock); switch (cmd) { case PSU_CMD_RAIL_VOLTS_HCRIT: case PSU_CMD_RAIL_VOLTS_LCRIT: case PSU_CMD_RAIL_AMPS_HCRIT: case PSU_CMD_RAIL_VOLTS: case PSU_CMD_RAIL_AMPS: case PSU_CMD_RAIL_WATTS: ret = corsairpsu_usb_cmd(priv, 2, PSU_CMD_SELECT_RAIL, rail, NULL); if (ret < 0) goto cmd_fail; break; default: break; } ret = corsairpsu_usb_cmd(priv, 3, cmd, 0, data); cmd_fail: mutex_unlock(&priv->lock); return ret; } static int corsairpsu_get_value(struct corsairpsu_data *priv, u8 cmd, u8 rail, long *val) { u8 data[REPLY_SIZE]; long tmp; int ret; ret = corsairpsu_request(priv, cmd, rail, data); if (ret < 0) return ret; /* * the biggest value here comes from the uptime command and to exceed MAXINT total uptime * needs to be about 68 years, the rest are u16 values and the biggest value coming out of * the LINEAR11 conversion are the watts values which are about 1500 for the strongest psu * supported (HX1500i) */ tmp = ((long)data[3] << 24) + (data[2] << 16) + (data[1] << 8) + data[0]; switch (cmd) { case PSU_CMD_RAIL_VOLTS_HCRIT: case PSU_CMD_RAIL_VOLTS_LCRIT: case PSU_CMD_RAIL_AMPS_HCRIT: case PSU_CMD_TEMP_HCRIT: case PSU_CMD_IN_VOLTS: case PSU_CMD_IN_AMPS: case PSU_CMD_RAIL_VOLTS: case PSU_CMD_RAIL_AMPS: case PSU_CMD_TEMP0: case PSU_CMD_TEMP1: *val = corsairpsu_linear11_to_int(tmp & 0xFFFF, 1000); break; case PSU_CMD_FAN: *val = corsairpsu_linear11_to_int(tmp & 0xFFFF, 1); break; case PSU_CMD_FAN_PWM_ENABLE: *val = corsairpsu_linear11_to_int(tmp & 0xFFFF, 1); /* * 0 = automatic mode, means the micro-controller controls the fan using a plan * which can be modified, but changing this plan is not supported by this * driver, the matching PWM mode is automatic fan speed control = PWM 2 * 1 = fixed mode, fan runs at a fixed speed represented by a percentage * value 0-100, this matches the PWM manual fan speed control = PWM 1 * technically there is no PWM no fan speed control mode, it would be a combination * of 1 at 100% */ if (*val == 0) *val = 2; break; case PSU_CMD_FAN_PWM: *val = corsairpsu_linear11_to_int(tmp & 0xFFFF, 1); *val = corsairpsu_dutycycle_to_pwm(*val); break; case PSU_CMD_RAIL_WATTS: case PSU_CMD_TOTAL_WATTS: *val = corsairpsu_linear11_to_int(tmp & 0xFFFF, 1000000); break; case PSU_CMD_TOTAL_UPTIME: case PSU_CMD_UPTIME: case PSU_CMD_OCPMODE: *val = tmp; break; default: ret = -EOPNOTSUPP; break; } return ret; } static void corsairpsu_get_criticals(struct corsairpsu_data *priv) { long tmp; int rail; for (rail = 0; rail < TEMP_COUNT; ++rail) { if (!corsairpsu_get_value(priv, PSU_CMD_TEMP_HCRIT, rail, &tmp)) { priv->temp_crit_support |= BIT(rail); priv->temp_crit[rail] = tmp; } } for (rail = 0; rail < RAIL_COUNT; ++rail) { if (!corsairpsu_get_value(priv, PSU_CMD_RAIL_VOLTS_HCRIT, rail, &tmp)) { priv->in_crit_support |= BIT(rail); priv->in_crit[rail] = tmp; } if (!corsairpsu_get_value(priv, PSU_CMD_RAIL_VOLTS_LCRIT, rail, &tmp)) { priv->in_lcrit_support |= BIT(rail); priv->in_lcrit[rail] = tmp; } if (!corsairpsu_get_value(priv, PSU_CMD_RAIL_AMPS_HCRIT, rail, &tmp)) { priv->curr_crit_support |= BIT(rail); priv->curr_crit[rail] = tmp; } } } static void corsairpsu_check_cmd_support(struct corsairpsu_data *priv) { long tmp; priv->in_curr_cmd_support = !corsairpsu_get_value(priv, PSU_CMD_IN_AMPS, 0, &tmp); } static umode_t corsairpsu_hwmon_temp_is_visible(const struct corsairpsu_data *priv, u32 attr, int channel) { umode_t res = 0444; switch (attr) { case hwmon_temp_input: case hwmon_temp_label: case hwmon_temp_crit: if (channel > 0 && !(priv->temp_crit_support & BIT(channel - 1))) res = 0; break; default: break; } return res; } static umode_t corsairpsu_hwmon_fan_is_visible(const struct corsairpsu_data *priv, u32 attr, int channel) { switch (attr) { case hwmon_fan_input: case hwmon_fan_label: return 0444; default: return 0; } } static umode_t corsairpsu_hwmon_pwm_is_visible(const struct corsairpsu_data *priv, u32 attr, int channel) { switch (attr) { case hwmon_pwm_input: case hwmon_pwm_enable: return 0444; default: return 0; } } static umode_t corsairpsu_hwmon_power_is_visible(const struct corsairpsu_data *priv, u32 attr, int channel) { switch (attr) { case hwmon_power_input: case hwmon_power_label: return 0444; default: return 0; } } static umode_t corsairpsu_hwmon_in_is_visible(const struct corsairpsu_data *priv, u32 attr, int channel) { umode_t res = 0444; switch (attr) { case hwmon_in_input: case hwmon_in_label: case hwmon_in_crit: if (channel > 0 && !(priv->in_crit_support & BIT(channel - 1))) res = 0; break; case hwmon_in_lcrit: if (channel > 0 && !(priv->in_lcrit_support & BIT(channel - 1))) res = 0; break; default: break; } return res; } static umode_t corsairpsu_hwmon_curr_is_visible(const struct corsairpsu_data *priv, u32 attr, int channel) { umode_t res = 0444; switch (attr) { case hwmon_curr_input: if (channel == 0 && !priv->in_curr_cmd_support) res = 0; break; case hwmon_curr_label: case hwmon_curr_crit: if (channel > 0 && !(priv->curr_crit_support & BIT(channel - 1))) res = 0; break; default: break; } return res; } static umode_t corsairpsu_hwmon_ops_is_visible(const void *data, enum hwmon_sensor_types type, u32 attr, int channel) { const struct corsairpsu_data *priv = data; switch (type) { case hwmon_temp: return corsairpsu_hwmon_temp_is_visible(priv, attr, channel); case hwmon_fan: return corsairpsu_hwmon_fan_is_visible(priv, attr, channel); case hwmon_pwm: return corsairpsu_hwmon_pwm_is_visible(priv, attr, channel); case hwmon_power: return corsairpsu_hwmon_power_is_visible(priv, attr, channel); case hwmon_in: return corsairpsu_hwmon_in_is_visible(priv, attr, channel); case hwmon_curr: return corsairpsu_hwmon_curr_is_visible(priv, attr, channel); default: return 0; } } static int corsairpsu_hwmon_temp_read(struct corsairpsu_data *priv, u32 attr, int channel, long *val) { int err = -EOPNOTSUPP; switch (attr) { case hwmon_temp_input: return corsairpsu_get_value(priv, channel ? PSU_CMD_TEMP1 : PSU_CMD_TEMP0, channel, val); case hwmon_temp_crit: *val = priv->temp_crit[channel]; err = 0; break; default: break; } return err; } static int corsairpsu_hwmon_pwm_read(struct corsairpsu_data *priv, u32 attr, int channel, long *val) { switch (attr) { case hwmon_pwm_input: return corsairpsu_get_value(priv, PSU_CMD_FAN_PWM, 0, val); case hwmon_pwm_enable: return corsairpsu_get_value(priv, PSU_CMD_FAN_PWM_ENABLE, 0, val); default: break; } return -EOPNOTSUPP; } static int corsairpsu_hwmon_power_read(struct corsairpsu_data *priv, u32 attr, int channel, long *val) { if (attr == hwmon_power_input) { switch (channel) { case 0: return corsairpsu_get_value(priv, PSU_CMD_TOTAL_WATTS, 0, val); case 1 ... 3: return corsairpsu_get_value(priv, PSU_CMD_RAIL_WATTS, channel - 1, val); default: break; } } return -EOPNOTSUPP; } static int corsairpsu_hwmon_in_read(struct corsairpsu_data *priv, u32 attr, int channel, long *val) { int err = -EOPNOTSUPP; switch (attr) { case hwmon_in_input: switch (channel) { case 0: return corsairpsu_get_value(priv, PSU_CMD_IN_VOLTS, 0, val); case 1 ... 3: return corsairpsu_get_value(priv, PSU_CMD_RAIL_VOLTS, channel - 1, val); default: break; } break; case hwmon_in_crit: *val = priv->in_crit[channel - 1]; err = 0; break; case hwmon_in_lcrit: *val = priv->in_lcrit[channel - 1]; err = 0; break; } return err; } static int corsairpsu_hwmon_curr_read(struct corsairpsu_data *priv, u32 attr, int channel, long *val) { int err = -EOPNOTSUPP; switch (attr) { case hwmon_curr_input: switch (channel) { case 0: return corsairpsu_get_value(priv, PSU_CMD_IN_AMPS, 0, val); case 1 ... 3: return corsairpsu_get_value(priv, PSU_CMD_RAIL_AMPS, channel - 1, val); default: break; } break; case hwmon_curr_crit: *val = priv->curr_crit[channel - 1]; err = 0; break; default: break; } return err; } static int corsairpsu_hwmon_ops_read(struct device *dev, enum hwmon_sensor_types type, u32 attr, int channel, long *val) { struct corsairpsu_data *priv = dev_get_drvdata(dev); switch (type) { case hwmon_temp: return corsairpsu_hwmon_temp_read(priv, attr, channel, val); case hwmon_fan: if (attr == hwmon_fan_input) return corsairpsu_get_value(priv, PSU_CMD_FAN, 0, val); return -EOPNOTSUPP; case hwmon_pwm: return corsairpsu_hwmon_pwm_read(priv, attr, channel, val); case hwmon_power: return corsairpsu_hwmon_power_read(priv, attr, channel, val); case hwmon_in: return corsairpsu_hwmon_in_read(priv, attr, channel, val); case hwmon_curr: return corsairpsu_hwmon_curr_read(priv, attr, channel, val); default: return -EOPNOTSUPP; } } static int corsairpsu_hwmon_ops_read_string(struct device *dev, enum hwmon_sensor_types type, u32 attr, int channel, const char **str) { if (type == hwmon_temp && attr == hwmon_temp_label) { *str = channel ? L_TEMP1 : L_TEMP0; return 0; } else if (type == hwmon_fan && attr == hwmon_fan_label) { *str = L_FAN; return 0; } else if (type == hwmon_power && attr == hwmon_power_label && channel < 4) { *str = label_watts[channel]; return 0; } else if (type == hwmon_in && attr == hwmon_in_label && channel < 4) { *str = label_volts[channel]; return 0; } else if (type == hwmon_curr && attr == hwmon_curr_label && channel < 4) { *str = label_amps[channel]; return 0; } return -EOPNOTSUPP; } static const struct hwmon_ops corsairpsu_hwmon_ops = { .is_visible = corsairpsu_hwmon_ops_is_visible, .read = corsairpsu_hwmon_ops_read, .read_string = corsairpsu_hwmon_ops_read_string, }; static const struct hwmon_channel_info *const corsairpsu_info[] = { HWMON_CHANNEL_INFO(chip, HWMON_C_REGISTER_TZ), HWMON_CHANNEL_INFO(temp, HWMON_T_INPUT | HWMON_T_LABEL | HWMON_T_CRIT, HWMON_T_INPUT | HWMON_T_LABEL | HWMON_T_CRIT), HWMON_CHANNEL_INFO(fan, HWMON_F_INPUT | HWMON_F_LABEL), HWMON_CHANNEL_INFO(pwm, HWMON_PWM_INPUT | HWMON_PWM_ENABLE), HWMON_CHANNEL_INFO(power, HWMON_P_INPUT | HWMON_P_LABEL, HWMON_P_INPUT | HWMON_P_LABEL, HWMON_P_INPUT | HWMON_P_LABEL, HWMON_P_INPUT | HWMON_P_LABEL), HWMON_CHANNEL_INFO(in, HWMON_I_INPUT | HWMON_I_LABEL, HWMON_I_INPUT | HWMON_I_LABEL | HWMON_I_LCRIT | HWMON_I_CRIT, HWMON_I_INPUT | HWMON_I_LABEL | HWMON_I_LCRIT | HWMON_I_CRIT, HWMON_I_INPUT | HWMON_I_LABEL | HWMON_I_LCRIT | HWMON_I_CRIT), HWMON_CHANNEL_INFO(curr, HWMON_C_INPUT | HWMON_C_LABEL, HWMON_C_INPUT | HWMON_C_LABEL | HWMON_C_CRIT, HWMON_C_INPUT | HWMON_C_LABEL | HWMON_C_CRIT, HWMON_C_INPUT | HWMON_C_LABEL | HWMON_C_CRIT), NULL }; static const struct hwmon_chip_info corsairpsu_chip_info = { .ops = &corsairpsu_hwmon_ops, .info = corsairpsu_info, }; #ifdef CONFIG_DEBUG_FS static void print_uptime(struct seq_file *seqf, u8 cmd) { struct corsairpsu_data *priv = seqf->private; long val; int ret; ret = corsairpsu_get_value(priv, cmd, 0, &val); if (ret < 0) { seq_puts(seqf, "N/A\n"); return; } if (val > SECONDS_PER_DAY) { seq_printf(seqf, "%ld day(s), %02ld:%02ld:%02ld\n", val / SECONDS_PER_DAY, val % SECONDS_PER_DAY / SECONDS_PER_HOUR, val % SECONDS_PER_HOUR / 60, val % 60); return; } seq_printf(seqf, "%02ld:%02ld:%02ld\n", val % SECONDS_PER_DAY / SECONDS_PER_HOUR, val % SECONDS_PER_HOUR / 60, val % 60); } static int uptime_show(struct seq_file *seqf, void *unused) { print_uptime(seqf, PSU_CMD_UPTIME); return 0; } DEFINE_SHOW_ATTRIBUTE(uptime); static int uptime_total_show(struct seq_file *seqf, void *unused) { print_uptime(seqf, PSU_CMD_TOTAL_UPTIME); return 0; } DEFINE_SHOW_ATTRIBUTE(uptime_total); static int vendor_show(struct seq_file *seqf, void *unused) { struct corsairpsu_data *priv = seqf->private; seq_printf(seqf, "%s\n", priv->vendor); return 0; } DEFINE_SHOW_ATTRIBUTE(vendor); static int product_show(struct seq_file *seqf, void *unused) { struct corsairpsu_data *priv = seqf->private; seq_printf(seqf, "%s\n", priv->product); return 0; } DEFINE_SHOW_ATTRIBUTE(product); static int ocpmode_show(struct seq_file *seqf, void *unused) { struct corsairpsu_data *priv = seqf->private; long val; int ret; /* * The rail mode is switchable on the fly. The RAW interface can be used for this. But it * will not be included here, because I consider it somewhat dangerous for the health of the * PSU. The returned value can be a bogus one, if the PSU is in the process of switching and * getting of the value itself can also fail during this. Because of this every other value * than OCP_MULTI_RAIL can be considered as "single rail". */ ret = corsairpsu_get_value(priv, PSU_CMD_OCPMODE, 0, &val); if (ret < 0) seq_puts(seqf, "N/A\n"); else seq_printf(seqf, "%s\n", (val == OCP_MULTI_RAIL) ? "multi rail" : "single rail"); return 0; } DEFINE_SHOW_ATTRIBUTE(ocpmode); static void corsairpsu_debugfs_init(struct corsairpsu_data *priv) { char name[32]; scnprintf(name, sizeof(name), "%s-%s", DRIVER_NAME, dev_name(&priv->hdev->dev)); priv->debugfs = debugfs_create_dir(name, NULL); debugfs_create_file("uptime", 0444, priv->debugfs, priv, &uptime_fops); debugfs_create_file("uptime_total", 0444, priv->debugfs, priv, &uptime_total_fops); debugfs_create_file("vendor", 0444, priv->debugfs, priv, &vendor_fops); debugfs_create_file("product", 0444, priv->debugfs, priv, &product_fops); debugfs_create_file("ocpmode", 0444, priv->debugfs, priv, &ocpmode_fops); } #else static void corsairpsu_debugfs_init(struct corsairpsu_data *priv) { } #endif static int corsairpsu_probe(struct hid_device *hdev, const struct hid_device_id *id) { struct corsairpsu_data *priv; int ret; priv = devm_kzalloc(&hdev->dev, sizeof(struct corsairpsu_data), GFP_KERNEL); if (!priv) return -ENOMEM; priv->cmd_buffer = devm_kmalloc(&hdev->dev, CMD_BUFFER_SIZE, GFP_KERNEL); if (!priv->cmd_buffer) return -ENOMEM; ret = hid_parse(hdev); if (ret) return ret; ret = hid_hw_start(hdev, HID_CONNECT_HIDRAW); if (ret) return ret; ret = hid_hw_open(hdev); if (ret) goto fail_and_stop; priv->hdev = hdev; hid_set_drvdata(hdev, priv); mutex_init(&priv->lock); init_completion(&priv->wait_completion); hid_device_io_start(hdev); ret = corsairpsu_init(priv); if (ret < 0) { dev_err(&hdev->dev, "unable to initialize device (%d)\n", ret); goto fail_and_stop; } ret = corsairpsu_fwinfo(priv); if (ret < 0) { dev_err(&hdev->dev, "unable to query firmware (%d)\n", ret); goto fail_and_stop; } corsairpsu_get_criticals(priv); corsairpsu_check_cmd_support(priv); priv->hwmon_dev = hwmon_device_register_with_info(&hdev->dev, "corsairpsu", priv, &corsairpsu_chip_info, NULL); if (IS_ERR(priv->hwmon_dev)) { ret = PTR_ERR(priv->hwmon_dev); goto fail_and_close; } corsairpsu_debugfs_init(priv); return 0; fail_and_close: hid_hw_close(hdev); fail_and_stop: hid_hw_stop(hdev); return ret; } static void corsairpsu_remove(struct hid_device *hdev) { struct corsairpsu_data *priv = hid_get_drvdata(hdev); debugfs_remove_recursive(priv->debugfs); hwmon_device_unregister(priv->hwmon_dev); hid_hw_close(hdev); hid_hw_stop(hdev); } static int corsairpsu_raw_event(struct hid_device *hdev, struct hid_report *report, u8 *data, int size) { struct corsairpsu_data *priv = hid_get_drvdata(hdev); if (completion_done(&priv->wait_completion)) return 0; memcpy(priv->cmd_buffer, data, min(CMD_BUFFER_SIZE, size)); complete(&priv->wait_completion); return 0; } #ifdef CONFIG_PM static int corsairpsu_resume(struct hid_device *hdev) { struct corsairpsu_data *priv = hid_get_drvdata(hdev); /* some PSUs turn off the microcontroller during standby, so a reinit is required */ return corsairpsu_init(priv); } #endif static const struct hid_device_id corsairpsu_idtable[] = { { HID_USB_DEVICE(0x1b1c, 0x1c03) }, /* Corsair HX550i */ { HID_USB_DEVICE(0x1b1c, 0x1c04) }, /* Corsair HX650i */ { HID_USB_DEVICE(0x1b1c, 0x1c05) }, /* Corsair HX750i */ { HID_USB_DEVICE(0x1b1c, 0x1c06) }, /* Corsair HX850i */ { HID_USB_DEVICE(0x1b1c, 0x1c07) }, /* Corsair HX1000i Legacy */ { HID_USB_DEVICE(0x1b1c, 0x1c08) }, /* Corsair HX1200i Legacy */ { HID_USB_DEVICE(0x1b1c, 0x1c09) }, /* Corsair RM550i */ { HID_USB_DEVICE(0x1b1c, 0x1c0a) }, /* Corsair RM650i */ { HID_USB_DEVICE(0x1b1c, 0x1c0b) }, /* Corsair RM750i */ { HID_USB_DEVICE(0x1b1c, 0x1c0c) }, /* Corsair RM850i */ { HID_USB_DEVICE(0x1b1c, 0x1c0d) }, /* Corsair RM1000i */ { HID_USB_DEVICE(0x1b1c, 0x1c1e) }, /* Corsair HX1000i Series 2023 */ { HID_USB_DEVICE(0x1b1c, 0x1c1f) }, /* Corsair HX1500i Legacy and Series 2023 */ { HID_USB_DEVICE(0x1b1c, 0x1c23) }, /* Corsair HX1200i Series 2023 */ { }, }; MODULE_DEVICE_TABLE(hid, corsairpsu_idtable); static struct hid_driver corsairpsu_driver = { .name = DRIVER_NAME, .id_table = corsairpsu_idtable, .probe = corsairpsu_probe, .remove = corsairpsu_remove, .raw_event = corsairpsu_raw_event, #ifdef CONFIG_PM .resume = corsairpsu_resume, .reset_resume = corsairpsu_resume, #endif }; static int __init corsair_init(void) { return hid_register_driver(&corsairpsu_driver); } static void __exit corsair_exit(void) { hid_unregister_driver(&corsairpsu_driver); } /* * With module_init() the driver would load before the HID bus when * built-in, so use late_initcall() instead. */ late_initcall(corsair_init); module_exit(corsair_exit); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Wilken Gottwalt <wilken.gottwalt@posteo.net>"); MODULE_DESCRIPTION("Linux driver for Corsair power supplies with HID sensors interface");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1