Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Guenter Roeck | 2164 | 96.26% | 6 | 46.15% |
Axel Lin | 77 | 3.43% | 3 | 23.08% |
Darrick J. Wong | 3 | 0.13% | 1 | 7.69% |
Thomas Gleixner | 2 | 0.09% | 1 | 7.69% |
Paul Fertser | 1 | 0.04% | 1 | 7.69% |
Uwe Kleine-König | 1 | 0.04% | 1 | 7.69% |
Total | 2248 | 13 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * Driver for Lineage Compact Power Line series of power entry modules. * * Copyright (C) 2010, 2011 Ericsson AB. * * Documentation: * http://www.lineagepower.com/oem/pdf/CPLI2C.pdf */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/init.h> #include <linux/err.h> #include <linux/slab.h> #include <linux/i2c.h> #include <linux/hwmon.h> #include <linux/hwmon-sysfs.h> #include <linux/jiffies.h> /* * This driver supports various Lineage Compact Power Line DC/DC and AC/DC * converters such as CP1800, CP2000AC, CP2000DC, CP2100DC, and others. * * The devices are nominally PMBus compliant. However, most standard PMBus * commands are not supported. Specifically, all hardware monitoring and * status reporting commands are non-standard. For this reason, a standard * PMBus driver can not be used. * * All Lineage CPL devices have a built-in I2C bus master selector (PCA9541). * To ensure device access, this driver should only be used as client driver * to the pca9541 I2C master selector driver. */ /* Command codes */ #define PEM_OPERATION 0x01 #define PEM_CLEAR_INFO_FLAGS 0x03 #define PEM_VOUT_COMMAND 0x21 #define PEM_VOUT_OV_FAULT_LIMIT 0x40 #define PEM_READ_DATA_STRING 0xd0 #define PEM_READ_INPUT_STRING 0xdc #define PEM_READ_FIRMWARE_REV 0xdd #define PEM_READ_RUN_TIMER 0xde #define PEM_FAN_HI_SPEED 0xdf #define PEM_FAN_NORMAL_SPEED 0xe0 #define PEM_READ_FAN_SPEED 0xe1 /* offsets in data string */ #define PEM_DATA_STATUS_2 0 #define PEM_DATA_STATUS_1 1 #define PEM_DATA_ALARM_2 2 #define PEM_DATA_ALARM_1 3 #define PEM_DATA_VOUT_LSB 4 #define PEM_DATA_VOUT_MSB 5 #define PEM_DATA_CURRENT 6 #define PEM_DATA_TEMP 7 /* Virtual entries, to report constants */ #define PEM_DATA_TEMP_MAX 10 #define PEM_DATA_TEMP_CRIT 11 /* offsets in input string */ #define PEM_INPUT_VOLTAGE 0 #define PEM_INPUT_POWER_LSB 1 #define PEM_INPUT_POWER_MSB 2 /* offsets in fan data */ #define PEM_FAN_ADJUSTMENT 0 #define PEM_FAN_FAN1 1 #define PEM_FAN_FAN2 2 #define PEM_FAN_FAN3 3 /* Status register bits */ #define STS1_OUTPUT_ON (1 << 0) #define STS1_LEDS_FLASHING (1 << 1) #define STS1_EXT_FAULT (1 << 2) #define STS1_SERVICE_LED_ON (1 << 3) #define STS1_SHUTDOWN_OCCURRED (1 << 4) #define STS1_INT_FAULT (1 << 5) #define STS1_ISOLATION_TEST_OK (1 << 6) #define STS2_ENABLE_PIN_HI (1 << 0) #define STS2_DATA_OUT_RANGE (1 << 1) #define STS2_RESTARTED_OK (1 << 1) #define STS2_ISOLATION_TEST_FAIL (1 << 3) #define STS2_HIGH_POWER_CAP (1 << 4) #define STS2_INVALID_INSTR (1 << 5) #define STS2_WILL_RESTART (1 << 6) #define STS2_PEC_ERR (1 << 7) /* Alarm register bits */ #define ALRM1_VIN_OUT_LIMIT (1 << 0) #define ALRM1_VOUT_OUT_LIMIT (1 << 1) #define ALRM1_OV_VOLT_SHUTDOWN (1 << 2) #define ALRM1_VIN_OVERCURRENT (1 << 3) #define ALRM1_TEMP_WARNING (1 << 4) #define ALRM1_TEMP_SHUTDOWN (1 << 5) #define ALRM1_PRIMARY_FAULT (1 << 6) #define ALRM1_POWER_LIMIT (1 << 7) #define ALRM2_5V_OUT_LIMIT (1 << 1) #define ALRM2_TEMP_FAULT (1 << 2) #define ALRM2_OV_LOW (1 << 3) #define ALRM2_DCDC_TEMP_HIGH (1 << 4) #define ALRM2_PRI_TEMP_HIGH (1 << 5) #define ALRM2_NO_PRIMARY (1 << 6) #define ALRM2_FAN_FAULT (1 << 7) #define FIRMWARE_REV_LEN 4 #define DATA_STRING_LEN 9 #define INPUT_STRING_LEN 5 /* 4 for most devices */ #define FAN_SPEED_LEN 5 struct pem_data { struct i2c_client *client; const struct attribute_group *groups[4]; struct mutex update_lock; bool valid; bool fans_supported; int input_length; unsigned long last_updated; /* in jiffies */ u8 firmware_rev[FIRMWARE_REV_LEN]; u8 data_string[DATA_STRING_LEN]; u8 input_string[INPUT_STRING_LEN]; u8 fan_speed[FAN_SPEED_LEN]; }; static int pem_read_block(struct i2c_client *client, u8 command, u8 *data, int data_len) { u8 block_buffer[I2C_SMBUS_BLOCK_MAX]; int result; result = i2c_smbus_read_block_data(client, command, block_buffer); if (unlikely(result < 0)) goto abort; if (unlikely(result == 0xff || result != data_len)) { result = -EIO; goto abort; } memcpy(data, block_buffer, data_len); result = 0; abort: return result; } static struct pem_data *pem_update_device(struct device *dev) { struct pem_data *data = dev_get_drvdata(dev); struct i2c_client *client = data->client; struct pem_data *ret = data; mutex_lock(&data->update_lock); if (time_after(jiffies, data->last_updated + HZ) || !data->valid) { int result; /* Read data string */ result = pem_read_block(client, PEM_READ_DATA_STRING, data->data_string, sizeof(data->data_string)); if (unlikely(result < 0)) { ret = ERR_PTR(result); goto abort; } /* Read input string */ if (data->input_length) { result = pem_read_block(client, PEM_READ_INPUT_STRING, data->input_string, data->input_length); if (unlikely(result < 0)) { ret = ERR_PTR(result); goto abort; } } /* Read fan speeds */ if (data->fans_supported) { result = pem_read_block(client, PEM_READ_FAN_SPEED, data->fan_speed, sizeof(data->fan_speed)); if (unlikely(result < 0)) { ret = ERR_PTR(result); goto abort; } } i2c_smbus_write_byte(client, PEM_CLEAR_INFO_FLAGS); data->last_updated = jiffies; data->valid = true; } abort: mutex_unlock(&data->update_lock); return ret; } static long pem_get_data(u8 *data, int len, int index) { long val; switch (index) { case PEM_DATA_VOUT_LSB: val = (data[index] + (data[index+1] << 8)) * 5 / 2; break; case PEM_DATA_CURRENT: val = data[index] * 200; break; case PEM_DATA_TEMP: val = data[index] * 1000; break; case PEM_DATA_TEMP_MAX: val = 97 * 1000; /* 97 degrees C per datasheet */ break; case PEM_DATA_TEMP_CRIT: val = 107 * 1000; /* 107 degrees C per datasheet */ break; default: WARN_ON_ONCE(1); val = 0; } return val; } static long pem_get_input(u8 *data, int len, int index) { long val; switch (index) { case PEM_INPUT_VOLTAGE: if (len == INPUT_STRING_LEN) val = (data[index] + (data[index+1] << 8) - 75) * 1000; else val = (data[index] - 75) * 1000; break; case PEM_INPUT_POWER_LSB: if (len == INPUT_STRING_LEN) index++; val = (data[index] + (data[index+1] << 8)) * 1000000L; break; default: WARN_ON_ONCE(1); val = 0; } return val; } static long pem_get_fan(u8 *data, int len, int index) { long val; switch (index) { case PEM_FAN_FAN1: case PEM_FAN_FAN2: case PEM_FAN_FAN3: val = data[index] * 100; break; default: WARN_ON_ONCE(1); val = 0; } return val; } /* * Show boolean, either a fault or an alarm. * .nr points to the register, .index is the bit mask to check */ static ssize_t pem_bool_show(struct device *dev, struct device_attribute *da, char *buf) { struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(da); struct pem_data *data = pem_update_device(dev); u8 status; if (IS_ERR(data)) return PTR_ERR(data); status = data->data_string[attr->nr] & attr->index; return sysfs_emit(buf, "%d\n", !!status); } static ssize_t pem_data_show(struct device *dev, struct device_attribute *da, char *buf) { struct sensor_device_attribute *attr = to_sensor_dev_attr(da); struct pem_data *data = pem_update_device(dev); long value; if (IS_ERR(data)) return PTR_ERR(data); value = pem_get_data(data->data_string, sizeof(data->data_string), attr->index); return sysfs_emit(buf, "%ld\n", value); } static ssize_t pem_input_show(struct device *dev, struct device_attribute *da, char *buf) { struct sensor_device_attribute *attr = to_sensor_dev_attr(da); struct pem_data *data = pem_update_device(dev); long value; if (IS_ERR(data)) return PTR_ERR(data); value = pem_get_input(data->input_string, sizeof(data->input_string), attr->index); return sysfs_emit(buf, "%ld\n", value); } static ssize_t pem_fan_show(struct device *dev, struct device_attribute *da, char *buf) { struct sensor_device_attribute *attr = to_sensor_dev_attr(da); struct pem_data *data = pem_update_device(dev); long value; if (IS_ERR(data)) return PTR_ERR(data); value = pem_get_fan(data->fan_speed, sizeof(data->fan_speed), attr->index); return sysfs_emit(buf, "%ld\n", value); } /* Voltages */ static SENSOR_DEVICE_ATTR_RO(in1_input, pem_data, PEM_DATA_VOUT_LSB); static SENSOR_DEVICE_ATTR_2_RO(in1_alarm, pem_bool, PEM_DATA_ALARM_1, ALRM1_VOUT_OUT_LIMIT); static SENSOR_DEVICE_ATTR_2_RO(in1_crit_alarm, pem_bool, PEM_DATA_ALARM_1, ALRM1_OV_VOLT_SHUTDOWN); static SENSOR_DEVICE_ATTR_RO(in2_input, pem_input, PEM_INPUT_VOLTAGE); static SENSOR_DEVICE_ATTR_2_RO(in2_alarm, pem_bool, PEM_DATA_ALARM_1, ALRM1_VIN_OUT_LIMIT | ALRM1_PRIMARY_FAULT); /* Currents */ static SENSOR_DEVICE_ATTR_RO(curr1_input, pem_data, PEM_DATA_CURRENT); static SENSOR_DEVICE_ATTR_2_RO(curr1_alarm, pem_bool, PEM_DATA_ALARM_1, ALRM1_VIN_OVERCURRENT); /* Power */ static SENSOR_DEVICE_ATTR_RO(power1_input, pem_input, PEM_INPUT_POWER_LSB); static SENSOR_DEVICE_ATTR_2_RO(power1_alarm, pem_bool, PEM_DATA_ALARM_1, ALRM1_POWER_LIMIT); /* Fans */ static SENSOR_DEVICE_ATTR_RO(fan1_input, pem_fan, PEM_FAN_FAN1); static SENSOR_DEVICE_ATTR_RO(fan2_input, pem_fan, PEM_FAN_FAN2); static SENSOR_DEVICE_ATTR_RO(fan3_input, pem_fan, PEM_FAN_FAN3); static SENSOR_DEVICE_ATTR_2_RO(fan1_alarm, pem_bool, PEM_DATA_ALARM_2, ALRM2_FAN_FAULT); /* Temperatures */ static SENSOR_DEVICE_ATTR_RO(temp1_input, pem_data, PEM_DATA_TEMP); static SENSOR_DEVICE_ATTR_RO(temp1_max, pem_data, PEM_DATA_TEMP_MAX); static SENSOR_DEVICE_ATTR_RO(temp1_crit, pem_data, PEM_DATA_TEMP_CRIT); static SENSOR_DEVICE_ATTR_2_RO(temp1_alarm, pem_bool, PEM_DATA_ALARM_1, ALRM1_TEMP_WARNING); static SENSOR_DEVICE_ATTR_2_RO(temp1_crit_alarm, pem_bool, PEM_DATA_ALARM_1, ALRM1_TEMP_SHUTDOWN); static SENSOR_DEVICE_ATTR_2_RO(temp1_fault, pem_bool, PEM_DATA_ALARM_2, ALRM2_TEMP_FAULT); static struct attribute *pem_attributes[] = { &sensor_dev_attr_in1_input.dev_attr.attr, &sensor_dev_attr_in1_alarm.dev_attr.attr, &sensor_dev_attr_in1_crit_alarm.dev_attr.attr, &sensor_dev_attr_in2_alarm.dev_attr.attr, &sensor_dev_attr_curr1_alarm.dev_attr.attr, &sensor_dev_attr_power1_alarm.dev_attr.attr, &sensor_dev_attr_fan1_alarm.dev_attr.attr, &sensor_dev_attr_temp1_input.dev_attr.attr, &sensor_dev_attr_temp1_max.dev_attr.attr, &sensor_dev_attr_temp1_crit.dev_attr.attr, &sensor_dev_attr_temp1_alarm.dev_attr.attr, &sensor_dev_attr_temp1_crit_alarm.dev_attr.attr, &sensor_dev_attr_temp1_fault.dev_attr.attr, NULL, }; static const struct attribute_group pem_group = { .attrs = pem_attributes, }; static struct attribute *pem_input_attributes[] = { &sensor_dev_attr_in2_input.dev_attr.attr, &sensor_dev_attr_curr1_input.dev_attr.attr, &sensor_dev_attr_power1_input.dev_attr.attr, NULL }; static const struct attribute_group pem_input_group = { .attrs = pem_input_attributes, }; static struct attribute *pem_fan_attributes[] = { &sensor_dev_attr_fan1_input.dev_attr.attr, &sensor_dev_attr_fan2_input.dev_attr.attr, &sensor_dev_attr_fan3_input.dev_attr.attr, NULL }; static const struct attribute_group pem_fan_group = { .attrs = pem_fan_attributes, }; static int pem_probe(struct i2c_client *client) { struct i2c_adapter *adapter = client->adapter; struct device *dev = &client->dev; struct device *hwmon_dev; struct pem_data *data; int ret, idx = 0; if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BLOCK_DATA | I2C_FUNC_SMBUS_WRITE_BYTE)) return -ENODEV; data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL); if (!data) return -ENOMEM; data->client = client; mutex_init(&data->update_lock); /* * We use the next two commands to determine if the device is really * there. */ ret = pem_read_block(client, PEM_READ_FIRMWARE_REV, data->firmware_rev, sizeof(data->firmware_rev)); if (ret < 0) return ret; ret = i2c_smbus_write_byte(client, PEM_CLEAR_INFO_FLAGS); if (ret < 0) return ret; dev_info(dev, "Firmware revision %d.%d.%d\n", data->firmware_rev[0], data->firmware_rev[1], data->firmware_rev[2]); /* sysfs hooks */ data->groups[idx++] = &pem_group; /* * Check if input readings are supported. * This is the case if we can read input data, * and if the returned data is not all zeros. * Note that input alarms are always supported. */ ret = pem_read_block(client, PEM_READ_INPUT_STRING, data->input_string, sizeof(data->input_string) - 1); if (!ret && (data->input_string[0] || data->input_string[1] || data->input_string[2])) data->input_length = sizeof(data->input_string) - 1; else if (ret < 0) { /* Input string is one byte longer for some devices */ ret = pem_read_block(client, PEM_READ_INPUT_STRING, data->input_string, sizeof(data->input_string)); if (!ret && (data->input_string[0] || data->input_string[1] || data->input_string[2] || data->input_string[3])) data->input_length = sizeof(data->input_string); } if (data->input_length) data->groups[idx++] = &pem_input_group; /* * Check if fan speed readings are supported. * This is the case if we can read fan speed data, * and if the returned data is not all zeros. * Note that the fan alarm is always supported. */ ret = pem_read_block(client, PEM_READ_FAN_SPEED, data->fan_speed, sizeof(data->fan_speed)); if (!ret && (data->fan_speed[0] || data->fan_speed[1] || data->fan_speed[2] || data->fan_speed[3])) { data->fans_supported = true; data->groups[idx++] = &pem_fan_group; } hwmon_dev = devm_hwmon_device_register_with_groups(dev, client->name, data, data->groups); return PTR_ERR_OR_ZERO(hwmon_dev); } static const struct i2c_device_id pem_id[] = { {"lineage_pem"}, {} }; MODULE_DEVICE_TABLE(i2c, pem_id); static struct i2c_driver pem_driver = { .driver = { .name = "lineage_pem", }, .probe = pem_probe, .id_table = pem_id, }; module_i2c_driver(pem_driver); MODULE_AUTHOR("Guenter Roeck <linux@roeck-us.net>"); MODULE_DESCRIPTION("Lineage CPL PEM hardware monitoring driver"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1