Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Jean Delvare | 3791 | 70.33% | 12 | 30.00% |
Guenter Roeck | 781 | 14.49% | 5 | 12.50% |
Mark M. Hoffman | 320 | 5.94% | 3 | 7.50% |
Jason Gunthorpe | 142 | 2.63% | 1 | 2.50% |
Mahoda Ratnayaka | 129 | 2.39% | 1 | 2.50% |
Yani Ioannou | 97 | 1.80% | 1 | 2.50% |
Javier Martinez Canillas | 37 | 0.69% | 1 | 2.50% |
Ben Hutchings | 22 | 0.41% | 3 | 7.50% |
Ingo Molnar | 19 | 0.35% | 1 | 2.50% |
Julia Lawall | 15 | 0.28% | 1 | 2.50% |
Axel Lin | 11 | 0.20% | 2 | 5.00% |
Alexey Dobriyan | 8 | 0.15% | 1 | 2.50% |
Jingoo Han | 8 | 0.15% | 1 | 2.50% |
Paul Fertser | 3 | 0.06% | 1 | 2.50% |
Greg Kroah-Hartman | 2 | 0.04% | 1 | 2.50% |
Uwe Kleine-König | 1 | 0.02% | 1 | 2.50% |
Alexander A. Klimov | 1 | 0.02% | 1 | 2.50% |
Thomas Gleixner | 1 | 0.02% | 1 | 2.50% |
Wolfram Sang | 1 | 0.02% | 1 | 2.50% |
Tony Jones | 1 | 0.02% | 1 | 2.50% |
Total | 5390 | 40 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * lm87.c * * Copyright (C) 2000 Frodo Looijaard <frodol@dds.nl> * Philip Edelbrock <phil@netroedge.com> * Stephen Rousset <stephen.rousset@rocketlogix.com> * Dan Eaton <dan.eaton@rocketlogix.com> * Copyright (C) 2004-2008 Jean Delvare <jdelvare@suse.de> * * Original port to Linux 2.6 by Jeff Oliver. * * The LM87 is a sensor chip made by National Semiconductor. It monitors up * to 8 voltages (including its own power source), up to three temperatures * (its own plus up to two external ones) and up to two fans. The default * configuration is 6 voltages, two temperatures and two fans (see below). * Voltages are scaled internally with ratios such that the nominal value of * each voltage correspond to a register value of 192 (which means a * resolution of about 0.5% of the nominal value). Temperature values are * reported with a 1 deg resolution and a 3-4 deg accuracy. Complete * datasheet can be obtained from National's website at: * http://www.national.com/pf/LM/LM87.html * * Some functions share pins, so not all functions are available at the same * time. Which are depends on the hardware setup. This driver normally * assumes that firmware configured the chip correctly. Where this is not * the case, platform code must set the I2C client's platform_data to point * to a u8 value to be written to the channel register. * For reference, here is the list of exclusive functions: * - in0+in5 (default) or temp3 * - fan1 (default) or in6 * - fan2 (default) or in7 * - VID lines (default) or IRQ lines (not handled by this driver) * * The LM87 additionally features an analog output, supposedly usable to * control the speed of a fan. All new chips use pulse width modulation * instead. The LM87 is the only hardware monitoring chipset I know of * which uses amplitude modulation. Be careful when using this feature. * * This driver also supports the ADM1024, a sensor chip made by Analog * Devices. That chip is fully compatible with the LM87. Complete * datasheet can be obtained from Analog's website at: * https://www.analog.com/en/prod/0,2877,ADM1024,00.html */ #include <linux/module.h> #include <linux/init.h> #include <linux/slab.h> #include <linux/jiffies.h> #include <linux/i2c.h> #include <linux/hwmon.h> #include <linux/hwmon-sysfs.h> #include <linux/hwmon-vid.h> #include <linux/err.h> #include <linux/mutex.h> #include <linux/regulator/consumer.h> /* * Addresses to scan * LM87 has three possible addresses: 0x2c, 0x2d and 0x2e. */ static const unsigned short normal_i2c[] = { 0x2c, 0x2d, 0x2e, I2C_CLIENT_END }; /* * The LM87 registers */ /* nr in 0..5 */ #define LM87_REG_IN(nr) (0x20 + (nr)) #define LM87_REG_IN_MAX(nr) (0x2B + (nr) * 2) #define LM87_REG_IN_MIN(nr) (0x2C + (nr) * 2) /* nr in 0..1 */ #define LM87_REG_AIN(nr) (0x28 + (nr)) #define LM87_REG_AIN_MIN(nr) (0x1A + (nr)) #define LM87_REG_AIN_MAX(nr) (0x3B + (nr)) static u8 LM87_REG_TEMP[3] = { 0x27, 0x26, 0x20 }; static u8 LM87_REG_TEMP_HIGH[3] = { 0x39, 0x37, 0x2B }; static u8 LM87_REG_TEMP_LOW[3] = { 0x3A, 0x38, 0x2C }; #define LM87_REG_TEMP_HW_INT_LOCK 0x13 #define LM87_REG_TEMP_HW_EXT_LOCK 0x14 #define LM87_REG_TEMP_HW_INT 0x17 #define LM87_REG_TEMP_HW_EXT 0x18 /* nr in 0..1 */ #define LM87_REG_FAN(nr) (0x28 + (nr)) #define LM87_REG_FAN_MIN(nr) (0x3B + (nr)) #define LM87_REG_AOUT 0x19 #define LM87_REG_CONFIG 0x40 #define LM87_REG_CHANNEL_MODE 0x16 #define LM87_REG_VID_FAN_DIV 0x47 #define LM87_REG_VID4 0x49 #define LM87_REG_ALARMS1 0x41 #define LM87_REG_ALARMS2 0x42 #define LM87_REG_COMPANY_ID 0x3E #define LM87_REG_REVISION 0x3F /* * Conversions and various macros * The LM87 uses signed 8-bit values for temperatures. */ #define IN_FROM_REG(reg, scale) (((reg) * (scale) + 96) / 192) #define IN_TO_REG(val, scale) ((val) <= 0 ? 0 : \ (val) >= (scale) * 255 / 192 ? 255 : \ ((val) * 192 + (scale) / 2) / (scale)) #define TEMP_FROM_REG(reg) ((reg) * 1000) #define TEMP_TO_REG(val) ((val) <= -127500 ? -128 : \ (val) >= 126500 ? 127 : \ (((val) < 0 ? (val) - 500 : \ (val) + 500) / 1000)) #define FAN_FROM_REG(reg, div) ((reg) == 255 || (reg) == 0 ? 0 : \ (1350000 + (reg)*(div) / 2) / ((reg) * (div))) #define FAN_TO_REG(val, div) ((val) * (div) * 255 <= 1350000 ? 255 : \ (1350000 + (val)*(div) / 2) / ((val) * (div))) #define FAN_DIV_FROM_REG(reg) (1 << (reg)) /* analog out is 9.80mV/LSB */ #define AOUT_FROM_REG(reg) (((reg) * 98 + 5) / 10) #define AOUT_TO_REG(val) ((val) <= 0 ? 0 : \ (val) >= 2500 ? 255 : \ ((val) * 10 + 49) / 98) /* nr in 0..1 */ #define CHAN_NO_FAN(nr) (1 << (nr)) #define CHAN_TEMP3 (1 << 2) #define CHAN_VCC_5V (1 << 3) #define CHAN_NO_VID (1 << 7) /* * Client data (each client gets its own) */ struct lm87_data { struct mutex update_lock; bool valid; /* false until following fields are valid */ unsigned long last_updated; /* In jiffies */ u8 channel; /* register value */ u8 config; /* original register value */ u8 in[8]; /* register value */ u8 in_max[8]; /* register value */ u8 in_min[8]; /* register value */ u16 in_scale[8]; s8 temp[3]; /* register value */ s8 temp_high[3]; /* register value */ s8 temp_low[3]; /* register value */ s8 temp_crit_int; /* min of two register values */ s8 temp_crit_ext; /* min of two register values */ u8 fan[2]; /* register value */ u8 fan_min[2]; /* register value */ u8 fan_div[2]; /* register value, shifted right */ u8 aout; /* register value */ u16 alarms; /* register values, combined */ u8 vid; /* register values, combined */ u8 vrm; const struct attribute_group *attr_groups[6]; }; static inline int lm87_read_value(struct i2c_client *client, u8 reg) { return i2c_smbus_read_byte_data(client, reg); } static inline int lm87_write_value(struct i2c_client *client, u8 reg, u8 value) { return i2c_smbus_write_byte_data(client, reg, value); } static struct lm87_data *lm87_update_device(struct device *dev) { struct i2c_client *client = dev_get_drvdata(dev); struct lm87_data *data = i2c_get_clientdata(client); mutex_lock(&data->update_lock); if (time_after(jiffies, data->last_updated + HZ) || !data->valid) { int i, j; dev_dbg(&client->dev, "Updating data.\n"); i = (data->channel & CHAN_TEMP3) ? 1 : 0; j = (data->channel & CHAN_TEMP3) ? 5 : 6; for (; i < j; i++) { data->in[i] = lm87_read_value(client, LM87_REG_IN(i)); data->in_min[i] = lm87_read_value(client, LM87_REG_IN_MIN(i)); data->in_max[i] = lm87_read_value(client, LM87_REG_IN_MAX(i)); } for (i = 0; i < 2; i++) { if (data->channel & CHAN_NO_FAN(i)) { data->in[6+i] = lm87_read_value(client, LM87_REG_AIN(i)); data->in_max[6+i] = lm87_read_value(client, LM87_REG_AIN_MAX(i)); data->in_min[6+i] = lm87_read_value(client, LM87_REG_AIN_MIN(i)); } else { data->fan[i] = lm87_read_value(client, LM87_REG_FAN(i)); data->fan_min[i] = lm87_read_value(client, LM87_REG_FAN_MIN(i)); } } j = (data->channel & CHAN_TEMP3) ? 3 : 2; for (i = 0 ; i < j; i++) { data->temp[i] = lm87_read_value(client, LM87_REG_TEMP[i]); data->temp_high[i] = lm87_read_value(client, LM87_REG_TEMP_HIGH[i]); data->temp_low[i] = lm87_read_value(client, LM87_REG_TEMP_LOW[i]); } i = lm87_read_value(client, LM87_REG_TEMP_HW_INT_LOCK); j = lm87_read_value(client, LM87_REG_TEMP_HW_INT); data->temp_crit_int = min(i, j); i = lm87_read_value(client, LM87_REG_TEMP_HW_EXT_LOCK); j = lm87_read_value(client, LM87_REG_TEMP_HW_EXT); data->temp_crit_ext = min(i, j); i = lm87_read_value(client, LM87_REG_VID_FAN_DIV); data->fan_div[0] = (i >> 4) & 0x03; data->fan_div[1] = (i >> 6) & 0x03; data->vid = (i & 0x0F) | (lm87_read_value(client, LM87_REG_VID4) & 0x01) << 4; data->alarms = lm87_read_value(client, LM87_REG_ALARMS1) | (lm87_read_value(client, LM87_REG_ALARMS2) << 8); data->aout = lm87_read_value(client, LM87_REG_AOUT); data->last_updated = jiffies; data->valid = true; } mutex_unlock(&data->update_lock); return data; } /* * Sysfs stuff */ static ssize_t in_input_show(struct device *dev, struct device_attribute *attr, char *buf) { struct lm87_data *data = lm87_update_device(dev); int nr = to_sensor_dev_attr(attr)->index; return sprintf(buf, "%u\n", IN_FROM_REG(data->in[nr], data->in_scale[nr])); } static ssize_t in_min_show(struct device *dev, struct device_attribute *attr, char *buf) { struct lm87_data *data = lm87_update_device(dev); int nr = to_sensor_dev_attr(attr)->index; return sprintf(buf, "%u\n", IN_FROM_REG(data->in_min[nr], data->in_scale[nr])); } static ssize_t in_max_show(struct device *dev, struct device_attribute *attr, char *buf) { struct lm87_data *data = lm87_update_device(dev); int nr = to_sensor_dev_attr(attr)->index; return sprintf(buf, "%u\n", IN_FROM_REG(data->in_max[nr], data->in_scale[nr])); } static ssize_t in_min_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct i2c_client *client = dev_get_drvdata(dev); struct lm87_data *data = i2c_get_clientdata(client); int nr = to_sensor_dev_attr(attr)->index; long val; int err; err = kstrtol(buf, 10, &val); if (err) return err; mutex_lock(&data->update_lock); data->in_min[nr] = IN_TO_REG(val, data->in_scale[nr]); lm87_write_value(client, nr < 6 ? LM87_REG_IN_MIN(nr) : LM87_REG_AIN_MIN(nr - 6), data->in_min[nr]); mutex_unlock(&data->update_lock); return count; } static ssize_t in_max_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct i2c_client *client = dev_get_drvdata(dev); struct lm87_data *data = i2c_get_clientdata(client); int nr = to_sensor_dev_attr(attr)->index; long val; int err; err = kstrtol(buf, 10, &val); if (err) return err; mutex_lock(&data->update_lock); data->in_max[nr] = IN_TO_REG(val, data->in_scale[nr]); lm87_write_value(client, nr < 6 ? LM87_REG_IN_MAX(nr) : LM87_REG_AIN_MAX(nr - 6), data->in_max[nr]); mutex_unlock(&data->update_lock); return count; } static SENSOR_DEVICE_ATTR_RO(in0_input, in_input, 0); static SENSOR_DEVICE_ATTR_RW(in0_min, in_min, 0); static SENSOR_DEVICE_ATTR_RW(in0_max, in_max, 0); static SENSOR_DEVICE_ATTR_RO(in1_input, in_input, 1); static SENSOR_DEVICE_ATTR_RW(in1_min, in_min, 1); static SENSOR_DEVICE_ATTR_RW(in1_max, in_max, 1); static SENSOR_DEVICE_ATTR_RO(in2_input, in_input, 2); static SENSOR_DEVICE_ATTR_RW(in2_min, in_min, 2); static SENSOR_DEVICE_ATTR_RW(in2_max, in_max, 2); static SENSOR_DEVICE_ATTR_RO(in3_input, in_input, 3); static SENSOR_DEVICE_ATTR_RW(in3_min, in_min, 3); static SENSOR_DEVICE_ATTR_RW(in3_max, in_max, 3); static SENSOR_DEVICE_ATTR_RO(in4_input, in_input, 4); static SENSOR_DEVICE_ATTR_RW(in4_min, in_min, 4); static SENSOR_DEVICE_ATTR_RW(in4_max, in_max, 4); static SENSOR_DEVICE_ATTR_RO(in5_input, in_input, 5); static SENSOR_DEVICE_ATTR_RW(in5_min, in_min, 5); static SENSOR_DEVICE_ATTR_RW(in5_max, in_max, 5); static SENSOR_DEVICE_ATTR_RO(in6_input, in_input, 6); static SENSOR_DEVICE_ATTR_RW(in6_min, in_min, 6); static SENSOR_DEVICE_ATTR_RW(in6_max, in_max, 6); static SENSOR_DEVICE_ATTR_RO(in7_input, in_input, 7); static SENSOR_DEVICE_ATTR_RW(in7_min, in_min, 7); static SENSOR_DEVICE_ATTR_RW(in7_max, in_max, 7); static ssize_t temp_input_show(struct device *dev, struct device_attribute *attr, char *buf) { struct lm87_data *data = lm87_update_device(dev); int nr = to_sensor_dev_attr(attr)->index; return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp[nr])); } static ssize_t temp_low_show(struct device *dev, struct device_attribute *attr, char *buf) { struct lm87_data *data = lm87_update_device(dev); int nr = to_sensor_dev_attr(attr)->index; return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_low[nr])); } static ssize_t temp_high_show(struct device *dev, struct device_attribute *attr, char *buf) { struct lm87_data *data = lm87_update_device(dev); int nr = to_sensor_dev_attr(attr)->index; return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_high[nr])); } static ssize_t temp_low_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct i2c_client *client = dev_get_drvdata(dev); struct lm87_data *data = i2c_get_clientdata(client); int nr = to_sensor_dev_attr(attr)->index; long val; int err; err = kstrtol(buf, 10, &val); if (err) return err; mutex_lock(&data->update_lock); data->temp_low[nr] = TEMP_TO_REG(val); lm87_write_value(client, LM87_REG_TEMP_LOW[nr], data->temp_low[nr]); mutex_unlock(&data->update_lock); return count; } static ssize_t temp_high_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct i2c_client *client = dev_get_drvdata(dev); struct lm87_data *data = i2c_get_clientdata(client); int nr = to_sensor_dev_attr(attr)->index; long val; int err; err = kstrtol(buf, 10, &val); if (err) return err; mutex_lock(&data->update_lock); data->temp_high[nr] = TEMP_TO_REG(val); lm87_write_value(client, LM87_REG_TEMP_HIGH[nr], data->temp_high[nr]); mutex_unlock(&data->update_lock); return count; } static SENSOR_DEVICE_ATTR_RO(temp1_input, temp_input, 0); static SENSOR_DEVICE_ATTR_RW(temp1_min, temp_low, 0); static SENSOR_DEVICE_ATTR_RW(temp1_max, temp_high, 0); static SENSOR_DEVICE_ATTR_RO(temp2_input, temp_input, 1); static SENSOR_DEVICE_ATTR_RW(temp2_min, temp_low, 1); static SENSOR_DEVICE_ATTR_RW(temp2_max, temp_high, 1); static SENSOR_DEVICE_ATTR_RO(temp3_input, temp_input, 2); static SENSOR_DEVICE_ATTR_RW(temp3_min, temp_low, 2); static SENSOR_DEVICE_ATTR_RW(temp3_max, temp_high, 2); static ssize_t temp1_crit_show(struct device *dev, struct device_attribute *attr, char *buf) { struct lm87_data *data = lm87_update_device(dev); return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_crit_int)); } static ssize_t temp2_crit_show(struct device *dev, struct device_attribute *attr, char *buf) { struct lm87_data *data = lm87_update_device(dev); return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_crit_ext)); } static DEVICE_ATTR_RO(temp1_crit); static DEVICE_ATTR_RO(temp2_crit); static DEVICE_ATTR(temp3_crit, 0444, temp2_crit_show, NULL); static ssize_t fan_input_show(struct device *dev, struct device_attribute *attr, char *buf) { struct lm87_data *data = lm87_update_device(dev); int nr = to_sensor_dev_attr(attr)->index; return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan[nr], FAN_DIV_FROM_REG(data->fan_div[nr]))); } static ssize_t fan_min_show(struct device *dev, struct device_attribute *attr, char *buf) { struct lm87_data *data = lm87_update_device(dev); int nr = to_sensor_dev_attr(attr)->index; return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan_min[nr], FAN_DIV_FROM_REG(data->fan_div[nr]))); } static ssize_t fan_div_show(struct device *dev, struct device_attribute *attr, char *buf) { struct lm87_data *data = lm87_update_device(dev); int nr = to_sensor_dev_attr(attr)->index; return sprintf(buf, "%d\n", FAN_DIV_FROM_REG(data->fan_div[nr])); } static ssize_t fan_min_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct i2c_client *client = dev_get_drvdata(dev); struct lm87_data *data = i2c_get_clientdata(client); int nr = to_sensor_dev_attr(attr)->index; long val; int err; err = kstrtol(buf, 10, &val); if (err) return err; mutex_lock(&data->update_lock); data->fan_min[nr] = FAN_TO_REG(val, FAN_DIV_FROM_REG(data->fan_div[nr])); lm87_write_value(client, LM87_REG_FAN_MIN(nr), data->fan_min[nr]); mutex_unlock(&data->update_lock); return count; } /* * Note: we save and restore the fan minimum here, because its value is * determined in part by the fan clock divider. This follows the principle * of least surprise; the user doesn't expect the fan minimum to change just * because the divider changed. */ static ssize_t fan_div_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct i2c_client *client = dev_get_drvdata(dev); struct lm87_data *data = i2c_get_clientdata(client); int nr = to_sensor_dev_attr(attr)->index; long val; int err; unsigned long min; u8 reg; err = kstrtol(buf, 10, &val); if (err) return err; mutex_lock(&data->update_lock); min = FAN_FROM_REG(data->fan_min[nr], FAN_DIV_FROM_REG(data->fan_div[nr])); switch (val) { case 1: data->fan_div[nr] = 0; break; case 2: data->fan_div[nr] = 1; break; case 4: data->fan_div[nr] = 2; break; case 8: data->fan_div[nr] = 3; break; default: mutex_unlock(&data->update_lock); return -EINVAL; } reg = lm87_read_value(client, LM87_REG_VID_FAN_DIV); switch (nr) { case 0: reg = (reg & 0xCF) | (data->fan_div[0] << 4); break; case 1: reg = (reg & 0x3F) | (data->fan_div[1] << 6); break; } lm87_write_value(client, LM87_REG_VID_FAN_DIV, reg); data->fan_min[nr] = FAN_TO_REG(min, val); lm87_write_value(client, LM87_REG_FAN_MIN(nr), data->fan_min[nr]); mutex_unlock(&data->update_lock); return count; } static SENSOR_DEVICE_ATTR_RO(fan1_input, fan_input, 0); static SENSOR_DEVICE_ATTR_RW(fan1_min, fan_min, 0); static SENSOR_DEVICE_ATTR_RW(fan1_div, fan_div, 0); static SENSOR_DEVICE_ATTR_RO(fan2_input, fan_input, 1); static SENSOR_DEVICE_ATTR_RW(fan2_min, fan_min, 1); static SENSOR_DEVICE_ATTR_RW(fan2_div, fan_div, 1); static ssize_t alarms_show(struct device *dev, struct device_attribute *attr, char *buf) { struct lm87_data *data = lm87_update_device(dev); return sprintf(buf, "%d\n", data->alarms); } static DEVICE_ATTR_RO(alarms); static ssize_t cpu0_vid_show(struct device *dev, struct device_attribute *attr, char *buf) { struct lm87_data *data = lm87_update_device(dev); return sprintf(buf, "%d\n", vid_from_reg(data->vid, data->vrm)); } static DEVICE_ATTR_RO(cpu0_vid); static ssize_t vrm_show(struct device *dev, struct device_attribute *attr, char *buf) { struct lm87_data *data = dev_get_drvdata(dev); return sprintf(buf, "%d\n", data->vrm); } static ssize_t vrm_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct lm87_data *data = dev_get_drvdata(dev); unsigned long val; int err; err = kstrtoul(buf, 10, &val); if (err) return err; if (val > 255) return -EINVAL; data->vrm = val; return count; } static DEVICE_ATTR_RW(vrm); static ssize_t aout_output_show(struct device *dev, struct device_attribute *attr, char *buf) { struct lm87_data *data = lm87_update_device(dev); return sprintf(buf, "%d\n", AOUT_FROM_REG(data->aout)); } static ssize_t aout_output_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct i2c_client *client = dev_get_drvdata(dev); struct lm87_data *data = i2c_get_clientdata(client); long val; int err; err = kstrtol(buf, 10, &val); if (err) return err; mutex_lock(&data->update_lock); data->aout = AOUT_TO_REG(val); lm87_write_value(client, LM87_REG_AOUT, data->aout); mutex_unlock(&data->update_lock); return count; } static DEVICE_ATTR_RW(aout_output); static ssize_t alarm_show(struct device *dev, struct device_attribute *attr, char *buf) { struct lm87_data *data = lm87_update_device(dev); int bitnr = to_sensor_dev_attr(attr)->index; return sprintf(buf, "%u\n", (data->alarms >> bitnr) & 1); } static SENSOR_DEVICE_ATTR_RO(in0_alarm, alarm, 0); static SENSOR_DEVICE_ATTR_RO(in1_alarm, alarm, 1); static SENSOR_DEVICE_ATTR_RO(in2_alarm, alarm, 2); static SENSOR_DEVICE_ATTR_RO(in3_alarm, alarm, 3); static SENSOR_DEVICE_ATTR_RO(in4_alarm, alarm, 8); static SENSOR_DEVICE_ATTR_RO(in5_alarm, alarm, 9); static SENSOR_DEVICE_ATTR_RO(in6_alarm, alarm, 6); static SENSOR_DEVICE_ATTR_RO(in7_alarm, alarm, 7); static SENSOR_DEVICE_ATTR_RO(temp1_alarm, alarm, 4); static SENSOR_DEVICE_ATTR_RO(temp2_alarm, alarm, 5); static SENSOR_DEVICE_ATTR_RO(temp3_alarm, alarm, 5); static SENSOR_DEVICE_ATTR_RO(fan1_alarm, alarm, 6); static SENSOR_DEVICE_ATTR_RO(fan2_alarm, alarm, 7); static SENSOR_DEVICE_ATTR_RO(temp2_fault, alarm, 14); static SENSOR_DEVICE_ATTR_RO(temp3_fault, alarm, 15); /* * Real code */ static struct attribute *lm87_attributes[] = { &sensor_dev_attr_in1_input.dev_attr.attr, &sensor_dev_attr_in1_min.dev_attr.attr, &sensor_dev_attr_in1_max.dev_attr.attr, &sensor_dev_attr_in1_alarm.dev_attr.attr, &sensor_dev_attr_in2_input.dev_attr.attr, &sensor_dev_attr_in2_min.dev_attr.attr, &sensor_dev_attr_in2_max.dev_attr.attr, &sensor_dev_attr_in2_alarm.dev_attr.attr, &sensor_dev_attr_in3_input.dev_attr.attr, &sensor_dev_attr_in3_min.dev_attr.attr, &sensor_dev_attr_in3_max.dev_attr.attr, &sensor_dev_attr_in3_alarm.dev_attr.attr, &sensor_dev_attr_in4_input.dev_attr.attr, &sensor_dev_attr_in4_min.dev_attr.attr, &sensor_dev_attr_in4_max.dev_attr.attr, &sensor_dev_attr_in4_alarm.dev_attr.attr, &sensor_dev_attr_temp1_input.dev_attr.attr, &sensor_dev_attr_temp1_max.dev_attr.attr, &sensor_dev_attr_temp1_min.dev_attr.attr, &dev_attr_temp1_crit.attr, &sensor_dev_attr_temp1_alarm.dev_attr.attr, &sensor_dev_attr_temp2_input.dev_attr.attr, &sensor_dev_attr_temp2_max.dev_attr.attr, &sensor_dev_attr_temp2_min.dev_attr.attr, &dev_attr_temp2_crit.attr, &sensor_dev_attr_temp2_alarm.dev_attr.attr, &sensor_dev_attr_temp2_fault.dev_attr.attr, &dev_attr_alarms.attr, &dev_attr_aout_output.attr, NULL }; static const struct attribute_group lm87_group = { .attrs = lm87_attributes, }; static struct attribute *lm87_attributes_in6[] = { &sensor_dev_attr_in6_input.dev_attr.attr, &sensor_dev_attr_in6_min.dev_attr.attr, &sensor_dev_attr_in6_max.dev_attr.attr, &sensor_dev_attr_in6_alarm.dev_attr.attr, NULL }; static const struct attribute_group lm87_group_in6 = { .attrs = lm87_attributes_in6, }; static struct attribute *lm87_attributes_fan1[] = { &sensor_dev_attr_fan1_input.dev_attr.attr, &sensor_dev_attr_fan1_min.dev_attr.attr, &sensor_dev_attr_fan1_div.dev_attr.attr, &sensor_dev_attr_fan1_alarm.dev_attr.attr, NULL }; static const struct attribute_group lm87_group_fan1 = { .attrs = lm87_attributes_fan1, }; static struct attribute *lm87_attributes_in7[] = { &sensor_dev_attr_in7_input.dev_attr.attr, &sensor_dev_attr_in7_min.dev_attr.attr, &sensor_dev_attr_in7_max.dev_attr.attr, &sensor_dev_attr_in7_alarm.dev_attr.attr, NULL }; static const struct attribute_group lm87_group_in7 = { .attrs = lm87_attributes_in7, }; static struct attribute *lm87_attributes_fan2[] = { &sensor_dev_attr_fan2_input.dev_attr.attr, &sensor_dev_attr_fan2_min.dev_attr.attr, &sensor_dev_attr_fan2_div.dev_attr.attr, &sensor_dev_attr_fan2_alarm.dev_attr.attr, NULL }; static const struct attribute_group lm87_group_fan2 = { .attrs = lm87_attributes_fan2, }; static struct attribute *lm87_attributes_temp3[] = { &sensor_dev_attr_temp3_input.dev_attr.attr, &sensor_dev_attr_temp3_max.dev_attr.attr, &sensor_dev_attr_temp3_min.dev_attr.attr, &dev_attr_temp3_crit.attr, &sensor_dev_attr_temp3_alarm.dev_attr.attr, &sensor_dev_attr_temp3_fault.dev_attr.attr, NULL }; static const struct attribute_group lm87_group_temp3 = { .attrs = lm87_attributes_temp3, }; static struct attribute *lm87_attributes_in0_5[] = { &sensor_dev_attr_in0_input.dev_attr.attr, &sensor_dev_attr_in0_min.dev_attr.attr, &sensor_dev_attr_in0_max.dev_attr.attr, &sensor_dev_attr_in0_alarm.dev_attr.attr, &sensor_dev_attr_in5_input.dev_attr.attr, &sensor_dev_attr_in5_min.dev_attr.attr, &sensor_dev_attr_in5_max.dev_attr.attr, &sensor_dev_attr_in5_alarm.dev_attr.attr, NULL }; static const struct attribute_group lm87_group_in0_5 = { .attrs = lm87_attributes_in0_5, }; static struct attribute *lm87_attributes_vid[] = { &dev_attr_cpu0_vid.attr, &dev_attr_vrm.attr, NULL }; static const struct attribute_group lm87_group_vid = { .attrs = lm87_attributes_vid, }; /* Return 0 if detection is successful, -ENODEV otherwise */ static int lm87_detect(struct i2c_client *client, struct i2c_board_info *info) { struct i2c_adapter *adapter = client->adapter; const char *name; u8 cid, rev; if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) return -ENODEV; if (lm87_read_value(client, LM87_REG_CONFIG) & 0x80) return -ENODEV; /* Now, we do the remaining detection. */ cid = lm87_read_value(client, LM87_REG_COMPANY_ID); rev = lm87_read_value(client, LM87_REG_REVISION); if (cid == 0x02 /* National Semiconductor */ && (rev >= 0x01 && rev <= 0x08)) name = "lm87"; else if (cid == 0x41 /* Analog Devices */ && (rev & 0xf0) == 0x10) name = "adm1024"; else { dev_dbg(&adapter->dev, "LM87 detection failed at 0x%02x\n", client->addr); return -ENODEV; } strscpy(info->type, name, I2C_NAME_SIZE); return 0; } static void lm87_restore_config(void *arg) { struct i2c_client *client = arg; struct lm87_data *data = i2c_get_clientdata(client); lm87_write_value(client, LM87_REG_CONFIG, data->config); } static int lm87_init_client(struct i2c_client *client) { struct lm87_data *data = i2c_get_clientdata(client); int rc; struct device_node *of_node = client->dev.of_node; u8 val = 0; struct regulator *vcc = NULL; if (of_node) { if (of_property_read_bool(of_node, "has-temp3")) val |= CHAN_TEMP3; if (of_property_read_bool(of_node, "has-in6")) val |= CHAN_NO_FAN(0); if (of_property_read_bool(of_node, "has-in7")) val |= CHAN_NO_FAN(1); vcc = devm_regulator_get_optional(&client->dev, "vcc"); if (!IS_ERR(vcc)) { if (regulator_get_voltage(vcc) == 5000000) val |= CHAN_VCC_5V; } data->channel = val; lm87_write_value(client, LM87_REG_CHANNEL_MODE, data->channel); } else if (dev_get_platdata(&client->dev)) { data->channel = *(u8 *)dev_get_platdata(&client->dev); lm87_write_value(client, LM87_REG_CHANNEL_MODE, data->channel); } else { data->channel = lm87_read_value(client, LM87_REG_CHANNEL_MODE); } data->config = lm87_read_value(client, LM87_REG_CONFIG) & 0x6F; rc = devm_add_action(&client->dev, lm87_restore_config, client); if (rc) return rc; if (!(data->config & 0x01)) { int i; /* Limits are left uninitialized after power-up */ for (i = 1; i < 6; i++) { lm87_write_value(client, LM87_REG_IN_MIN(i), 0x00); lm87_write_value(client, LM87_REG_IN_MAX(i), 0xFF); } for (i = 0; i < 2; i++) { lm87_write_value(client, LM87_REG_TEMP_HIGH[i], 0x7F); lm87_write_value(client, LM87_REG_TEMP_LOW[i], 0x00); lm87_write_value(client, LM87_REG_AIN_MIN(i), 0x00); lm87_write_value(client, LM87_REG_AIN_MAX(i), 0xFF); } if (data->channel & CHAN_TEMP3) { lm87_write_value(client, LM87_REG_TEMP_HIGH[2], 0x7F); lm87_write_value(client, LM87_REG_TEMP_LOW[2], 0x00); } else { lm87_write_value(client, LM87_REG_IN_MIN(0), 0x00); lm87_write_value(client, LM87_REG_IN_MAX(0), 0xFF); } } /* Make sure Start is set and INT#_Clear is clear */ if ((data->config & 0x09) != 0x01) lm87_write_value(client, LM87_REG_CONFIG, (data->config & 0x77) | 0x01); return 0; } static int lm87_probe(struct i2c_client *client) { struct lm87_data *data; struct device *hwmon_dev; int err; unsigned int group_tail = 0; data = devm_kzalloc(&client->dev, sizeof(struct lm87_data), GFP_KERNEL); if (!data) return -ENOMEM; i2c_set_clientdata(client, data); mutex_init(&data->update_lock); /* Initialize the LM87 chip */ err = lm87_init_client(client); if (err) return err; data->in_scale[0] = 2500; data->in_scale[1] = 2700; data->in_scale[2] = (data->channel & CHAN_VCC_5V) ? 5000 : 3300; data->in_scale[3] = 5000; data->in_scale[4] = 12000; data->in_scale[5] = 2700; data->in_scale[6] = 1875; data->in_scale[7] = 1875; /* * Construct the list of attributes, the list depends on the * configuration of the chip */ data->attr_groups[group_tail++] = &lm87_group; if (data->channel & CHAN_NO_FAN(0)) data->attr_groups[group_tail++] = &lm87_group_in6; else data->attr_groups[group_tail++] = &lm87_group_fan1; if (data->channel & CHAN_NO_FAN(1)) data->attr_groups[group_tail++] = &lm87_group_in7; else data->attr_groups[group_tail++] = &lm87_group_fan2; if (data->channel & CHAN_TEMP3) data->attr_groups[group_tail++] = &lm87_group_temp3; else data->attr_groups[group_tail++] = &lm87_group_in0_5; if (!(data->channel & CHAN_NO_VID)) { data->vrm = vid_which_vrm(); data->attr_groups[group_tail++] = &lm87_group_vid; } hwmon_dev = devm_hwmon_device_register_with_groups( &client->dev, client->name, client, data->attr_groups); return PTR_ERR_OR_ZERO(hwmon_dev); } /* * Driver data (common to all clients) */ static const struct i2c_device_id lm87_id[] = { { "lm87" }, { "adm1024" }, { } }; MODULE_DEVICE_TABLE(i2c, lm87_id); static const struct of_device_id lm87_of_match[] = { { .compatible = "ti,lm87" }, { .compatible = "adi,adm1024" }, { }, }; MODULE_DEVICE_TABLE(of, lm87_of_match); static struct i2c_driver lm87_driver = { .class = I2C_CLASS_HWMON, .driver = { .name = "lm87", .of_match_table = lm87_of_match, }, .probe = lm87_probe, .id_table = lm87_id, .detect = lm87_detect, .address_list = normal_i2c, }; module_i2c_driver(lm87_driver); MODULE_AUTHOR("Jean Delvare <jdelvare@suse.de> and others"); MODULE_DESCRIPTION("LM87 driver"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1