Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Guenter Roeck | 9590 | 76.61% | 88 | 55.00% |
Jean Delvare | 864 | 6.90% | 27 | 16.88% |
Slawomir Stepien | 559 | 4.47% | 5 | 3.12% |
Javier Martinez Canillas | 431 | 3.44% | 1 | 0.62% |
Wei Ni | 400 | 3.20% | 5 | 3.12% |
Dmitry Osipenko | 233 | 1.86% | 4 | 2.50% |
Nate Case | 97 | 0.77% | 2 | 1.25% |
Stijn Devriendt | 81 | 0.65% | 1 | 0.62% |
Ben Hutchings | 64 | 0.51% | 1 | 0.62% |
Boyang Yu | 63 | 0.50% | 1 | 0.62% |
Josh Lehan | 39 | 0.31% | 1 | 0.62% |
Rainer Birkenmaier | 23 | 0.18% | 1 | 0.62% |
Mark M. Hoffman | 13 | 0.10% | 3 | 1.88% |
Benjamin Tissoires | 11 | 0.09% | 1 | 0.62% |
Holger Brunck | 10 | 0.08% | 1 | 0.62% |
Matti Vaittinen | 5 | 0.04% | 1 | 0.62% |
Ingo Molnar | 4 | 0.03% | 1 | 0.62% |
Laurent Riffard | 4 | 0.03% | 1 | 0.62% |
Wolfram Sang | 4 | 0.03% | 3 | 1.88% |
Alexey Dobriyan | 4 | 0.03% | 1 | 0.62% |
Jonathan Cameron | 4 | 0.03% | 1 | 0.62% |
Christophe Jaillet | 3 | 0.02% | 1 | 0.62% |
James Chapman | 3 | 0.02% | 1 | 0.62% |
Yani Ioannou | 2 | 0.02% | 1 | 0.62% |
Michael Walle | 1 | 0.01% | 1 | 0.62% |
Andrew F. Davis | 1 | 0.01% | 1 | 0.62% |
Axel Lin | 1 | 0.01% | 1 | 0.62% |
Rob Herring | 1 | 0.01% | 1 | 0.62% |
Thomas Gleixner | 1 | 0.01% | 1 | 0.62% |
Krzysztof Kozlowski | 1 | 0.01% | 1 | 0.62% |
Uwe Kleine-König | 1 | 0.01% | 1 | 0.62% |
Total | 12518 | 160 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * lm90.c - Part of lm_sensors, Linux kernel modules for hardware * monitoring * Copyright (C) 2003-2010 Jean Delvare <jdelvare@suse.de> * * Based on the lm83 driver. The LM90 is a sensor chip made by National * Semiconductor. It reports up to two temperatures (its own plus up to * one external one) with a 0.125 deg resolution (1 deg for local * temperature) and a 3-4 deg accuracy. * * This driver also supports the LM89 and LM99, two other sensor chips * made by National Semiconductor. Both have an increased remote * temperature measurement accuracy (1 degree), and the LM99 * additionally shifts remote temperatures (measured and limits) by 16 * degrees, which allows for higher temperatures measurement. * Note that there is no way to differentiate between both chips. * When device is auto-detected, the driver will assume an LM99. * * This driver also supports the LM86, another sensor chip made by * National Semiconductor. It is exactly similar to the LM90 except it * has a higher accuracy. * * This driver also supports the ADM1032, a sensor chip made by Analog * Devices. That chip is similar to the LM90, with a few differences * that are not handled by this driver. Among others, it has a higher * accuracy than the LM90, much like the LM86 does. * * This driver also supports the MAX6657, MAX6658 and MAX6659 sensor * chips made by Maxim. These chips are similar to the LM86. * Note that there is no easy way to differentiate between the three * variants. We use the device address to detect MAX6659, which will result * in a detection as max6657 if it is on address 0x4c. The extra address * and features of the MAX6659 are only supported if the chip is configured * explicitly as max6659, or if its address is not 0x4c. * These chips lack the remote temperature offset feature. * * This driver also supports the MAX6654 chip made by Maxim. This chip can be * at 9 different addresses, similar to MAX6680/MAX6681. The MAX6654 is similar * to MAX6657/MAX6658/MAX6659, but does not support critical temperature * limits. Extended range is available by setting the configuration register * accordingly, and is done during initialization. Extended precision is only * available at conversion rates of 1 Hz and slower. Note that extended * precision is not enabled by default, as this driver initializes all chips * to 2 Hz by design. The driver also supports MAX6690, which is practically * identical to MAX6654. * * This driver also supports the MAX6646, MAX6647, MAX6648, MAX6649 and * MAX6692 chips made by Maxim. These are again similar to the LM86, * but they use unsigned temperature values and can report temperatures * from 0 to 145 degrees. * * This driver also supports the MAX6680 and MAX6681, two other sensor * chips made by Maxim. These are quite similar to the other Maxim * chips. The MAX6680 and MAX6681 only differ in the pinout so they can * be treated identically. * * This driver also supports the MAX6695 and MAX6696, two other sensor * chips made by Maxim. These are also quite similar to other Maxim * chips, but support three temperature sensors instead of two. MAX6695 * and MAX6696 only differ in the pinout so they can be treated identically. * * This driver also supports ADT7461 and ADT7461A from Analog Devices as well as * NCT1008 from ON Semiconductor. The chips are supported in both compatibility * and extended mode. They are mostly compatible with LM90 except for a data * format difference for the temperature value registers. * * This driver also supports ADT7481, ADT7482, and ADT7483 from Analog Devices * / ON Semiconductor. The chips are similar to ADT7461 but support two external * temperature sensors. * * This driver also supports NCT72, NCT214, and NCT218 from ON Semiconductor. * The chips are similar to ADT7461/ADT7461A but have full PEC support * (undocumented). * * This driver also supports the SA56004 from Philips. This device is * pin-compatible with the LM86, the ED/EDP parts are also address-compatible. * * This driver also supports the G781 from GMT. This device is compatible * with the ADM1032. * * This driver also supports TMP451 and TMP461 from Texas Instruments. * Those devices are supported in both compatibility and extended mode. * They are mostly compatible with ADT7461 except for local temperature * low byte register and max conversion rate. * * This driver also supports MAX1617 and various clones such as G767 * and NE1617. Such clones will be detected as MAX1617. * * This driver also supports NE1618 from Philips. It is similar to NE1617 * but supports 11 bit external temperature values. * * Since the LM90 was the first chipset supported by this driver, most * comments will refer to this chipset, but are actually general and * concern all supported chipsets, unless mentioned otherwise. */ #include <linux/bits.h> #include <linux/device.h> #include <linux/err.h> #include <linux/i2c.h> #include <linux/init.h> #include <linux/interrupt.h> #include <linux/jiffies.h> #include <linux/hwmon.h> #include <linux/kstrtox.h> #include <linux/module.h> #include <linux/mutex.h> #include <linux/of.h> #include <linux/regulator/consumer.h> #include <linux/slab.h> #include <linux/workqueue.h> /* The maximum number of channels currently supported */ #define MAX_CHANNELS 3 /* * Addresses to scan * Address is fully defined internally and cannot be changed except for * MAX6659, MAX6680 and MAX6681. * LM86, LM89, LM90, LM99, ADM1032, ADM1032-1, ADT7461, ADT7461A, MAX6649, * MAX6657, MAX6658, NCT1008 and W83L771 have address 0x4c. * ADM1032-2, ADT7461-2, ADT7461A-2, LM89-1, LM99-1, MAX6646, and NCT1008D * have address 0x4d. * MAX6647 has address 0x4e. * MAX6659 can have address 0x4c, 0x4d or 0x4e. * MAX6654, MAX6680, and MAX6681 can have address 0x18, 0x19, 0x1a, 0x29, * 0x2a, 0x2b, 0x4c, 0x4d or 0x4e. * SA56004 can have address 0x48 through 0x4F. */ static const unsigned short normal_i2c[] = { 0x18, 0x19, 0x1a, 0x29, 0x2a, 0x2b, 0x48, 0x49, 0x4a, 0x4b, 0x4c, 0x4d, 0x4e, 0x4f, I2C_CLIENT_END }; enum chips { adm1023, adm1032, adt7461, adt7461a, adt7481, g781, lm84, lm90, lm99, max1617, max6642, max6646, max6648, max6654, max6657, max6659, max6680, max6696, nct210, nct72, ne1618, sa56004, tmp451, tmp461, w83l771, }; /* * The LM90 registers */ #define LM90_REG_MAN_ID 0xFE #define LM90_REG_CHIP_ID 0xFF #define LM90_REG_CONFIG1 0x03 #define LM90_REG_CONFIG2 0xBF #define LM90_REG_CONVRATE 0x04 #define LM90_REG_STATUS 0x02 #define LM90_REG_LOCAL_TEMP 0x00 #define LM90_REG_LOCAL_HIGH 0x05 #define LM90_REG_LOCAL_LOW 0x06 #define LM90_REG_LOCAL_CRIT 0x20 #define LM90_REG_REMOTE_TEMPH 0x01 #define LM90_REG_REMOTE_TEMPL 0x10 #define LM90_REG_REMOTE_OFFSH 0x11 #define LM90_REG_REMOTE_OFFSL 0x12 #define LM90_REG_REMOTE_HIGHH 0x07 #define LM90_REG_REMOTE_HIGHL 0x13 #define LM90_REG_REMOTE_LOWH 0x08 #define LM90_REG_REMOTE_LOWL 0x14 #define LM90_REG_REMOTE_CRIT 0x19 #define LM90_REG_TCRIT_HYST 0x21 /* MAX6646/6647/6649/6654/6657/6658/6659/6695/6696 registers */ #define MAX6657_REG_LOCAL_TEMPL 0x11 #define MAX6696_REG_STATUS2 0x12 #define MAX6659_REG_REMOTE_EMERG 0x16 #define MAX6659_REG_LOCAL_EMERG 0x17 /* SA56004 registers */ #define SA56004_REG_LOCAL_TEMPL 0x22 #define LM90_MAX_CONVRATE_MS 16000 /* Maximum conversion rate in ms */ /* TMP451/TMP461 registers */ #define TMP451_REG_LOCAL_TEMPL 0x15 #define TMP451_REG_CONALERT 0x22 #define TMP461_REG_CHEN 0x16 #define TMP461_REG_DFC 0x24 /* ADT7481 registers */ #define ADT7481_REG_STATUS2 0x23 #define ADT7481_REG_CONFIG2 0x24 #define ADT7481_REG_MAN_ID 0x3e #define ADT7481_REG_CHIP_ID 0x3d /* Device features */ #define LM90_HAVE_EXTENDED_TEMP BIT(0) /* extended temperature support */ #define LM90_HAVE_OFFSET BIT(1) /* temperature offset register */ #define LM90_HAVE_UNSIGNED_TEMP BIT(2) /* temperatures are unsigned */ #define LM90_HAVE_REM_LIMIT_EXT BIT(3) /* extended remote limit */ #define LM90_HAVE_EMERGENCY BIT(4) /* 3rd upper (emergency) limit */ #define LM90_HAVE_EMERGENCY_ALARM BIT(5)/* emergency alarm */ #define LM90_HAVE_TEMP3 BIT(6) /* 3rd temperature sensor */ #define LM90_HAVE_BROKEN_ALERT BIT(7) /* Broken alert */ #define LM90_PAUSE_FOR_CONFIG BIT(8) /* Pause conversion for config */ #define LM90_HAVE_CRIT BIT(9) /* Chip supports CRIT/OVERT register */ #define LM90_HAVE_CRIT_ALRM_SWP BIT(10) /* critical alarm bits swapped */ #define LM90_HAVE_PEC BIT(11) /* Chip supports PEC */ #define LM90_HAVE_PARTIAL_PEC BIT(12) /* Partial PEC support (adm1032)*/ #define LM90_HAVE_ALARMS BIT(13) /* Create 'alarms' attribute */ #define LM90_HAVE_EXT_UNSIGNED BIT(14) /* extended unsigned temperature*/ #define LM90_HAVE_LOW BIT(15) /* low limits */ #define LM90_HAVE_CONVRATE BIT(16) /* conversion rate */ #define LM90_HAVE_REMOTE_EXT BIT(17) /* extended remote temperature */ #define LM90_HAVE_FAULTQUEUE BIT(18) /* configurable samples count */ /* LM90 status */ #define LM90_STATUS_LTHRM BIT(0) /* local THERM limit tripped */ #define LM90_STATUS_RTHRM BIT(1) /* remote THERM limit tripped */ #define LM90_STATUS_ROPEN BIT(2) /* remote is an open circuit */ #define LM90_STATUS_RLOW BIT(3) /* remote low temp limit tripped */ #define LM90_STATUS_RHIGH BIT(4) /* remote high temp limit tripped */ #define LM90_STATUS_LLOW BIT(5) /* local low temp limit tripped */ #define LM90_STATUS_LHIGH BIT(6) /* local high temp limit tripped */ #define LM90_STATUS_BUSY BIT(7) /* conversion is ongoing */ /* MAX6695/6696 and ADT7481 2nd status register */ #define MAX6696_STATUS2_R2THRM BIT(1) /* remote2 THERM limit tripped */ #define MAX6696_STATUS2_R2OPEN BIT(2) /* remote2 is an open circuit */ #define MAX6696_STATUS2_R2LOW BIT(3) /* remote2 low temp limit tripped */ #define MAX6696_STATUS2_R2HIGH BIT(4) /* remote2 high temp limit tripped */ #define MAX6696_STATUS2_ROT2 BIT(5) /* remote emergency limit tripped */ #define MAX6696_STATUS2_R2OT2 BIT(6) /* remote2 emergency limit tripped */ #define MAX6696_STATUS2_LOT2 BIT(7) /* local emergency limit tripped */ /* * Driver data (common to all clients) */ static const struct i2c_device_id lm90_id[] = { { "adm1020", max1617 }, { "adm1021", max1617 }, { "adm1023", adm1023 }, { "adm1032", adm1032 }, { "adt7421", adt7461a }, { "adt7461", adt7461 }, { "adt7461a", adt7461a }, { "adt7481", adt7481 }, { "adt7482", adt7481 }, { "adt7483a", adt7481 }, { "g781", g781 }, { "gl523sm", max1617 }, { "lm84", lm84 }, { "lm86", lm90 }, { "lm89", lm90 }, { "lm90", lm90 }, { "lm99", lm99 }, { "max1617", max1617 }, { "max6642", max6642 }, { "max6646", max6646 }, { "max6647", max6646 }, { "max6648", max6648 }, { "max6649", max6646 }, { "max6654", max6654 }, { "max6657", max6657 }, { "max6658", max6657 }, { "max6659", max6659 }, { "max6680", max6680 }, { "max6681", max6680 }, { "max6690", max6654 }, { "max6692", max6648 }, { "max6695", max6696 }, { "max6696", max6696 }, { "mc1066", max1617 }, { "nct1008", adt7461a }, { "nct210", nct210 }, { "nct214", nct72 }, { "nct218", nct72 }, { "nct72", nct72 }, { "ne1618", ne1618 }, { "w83l771", w83l771 }, { "sa56004", sa56004 }, { "thmc10", max1617 }, { "tmp451", tmp451 }, { "tmp461", tmp461 }, { } }; MODULE_DEVICE_TABLE(i2c, lm90_id); static const struct of_device_id __maybe_unused lm90_of_match[] = { { .compatible = "adi,adm1032", .data = (void *)adm1032 }, { .compatible = "adi,adt7461", .data = (void *)adt7461 }, { .compatible = "adi,adt7461a", .data = (void *)adt7461a }, { .compatible = "adi,adt7481", .data = (void *)adt7481 }, { .compatible = "gmt,g781", .data = (void *)g781 }, { .compatible = "national,lm90", .data = (void *)lm90 }, { .compatible = "national,lm86", .data = (void *)lm90 }, { .compatible = "national,lm89", .data = (void *)lm90 }, { .compatible = "national,lm99", .data = (void *)lm99 }, { .compatible = "dallas,max6646", .data = (void *)max6646 }, { .compatible = "dallas,max6647", .data = (void *)max6646 }, { .compatible = "dallas,max6649", .data = (void *)max6646 }, { .compatible = "dallas,max6654", .data = (void *)max6654 }, { .compatible = "dallas,max6657", .data = (void *)max6657 }, { .compatible = "dallas,max6658", .data = (void *)max6657 }, { .compatible = "dallas,max6659", .data = (void *)max6659 }, { .compatible = "dallas,max6680", .data = (void *)max6680 }, { .compatible = "dallas,max6681", .data = (void *)max6680 }, { .compatible = "dallas,max6695", .data = (void *)max6696 }, { .compatible = "dallas,max6696", .data = (void *)max6696 }, { .compatible = "onnn,nct1008", .data = (void *)adt7461a }, { .compatible = "onnn,nct214", .data = (void *)nct72 }, { .compatible = "onnn,nct218", .data = (void *)nct72 }, { .compatible = "onnn,nct72", .data = (void *)nct72 }, { .compatible = "winbond,w83l771", .data = (void *)w83l771 }, { .compatible = "nxp,sa56004", .data = (void *)sa56004 }, { .compatible = "ti,tmp451", .data = (void *)tmp451 }, { .compatible = "ti,tmp461", .data = (void *)tmp461 }, { }, }; MODULE_DEVICE_TABLE(of, lm90_of_match); /* * chip type specific parameters */ struct lm90_params { u32 flags; /* Capabilities */ u16 alert_alarms; /* Which alarm bits trigger ALERT# */ /* Upper 8 bits for max6695/96 */ u8 max_convrate; /* Maximum conversion rate register value */ u8 resolution; /* 16-bit resolution (default 11 bit) */ u8 reg_status2; /* 2nd status register (optional) */ u8 reg_local_ext; /* Extended local temp register (optional) */ u8 faultqueue_mask; /* fault queue bit mask */ u8 faultqueue_depth; /* fault queue depth if mask is used */ }; static const struct lm90_params lm90_params[] = { [adm1023] = { .flags = LM90_HAVE_ALARMS | LM90_HAVE_OFFSET | LM90_HAVE_BROKEN_ALERT | LM90_HAVE_REM_LIMIT_EXT | LM90_HAVE_LOW | LM90_HAVE_CONVRATE | LM90_HAVE_REMOTE_EXT, .alert_alarms = 0x7c, .resolution = 8, .max_convrate = 7, }, [adm1032] = { .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT | LM90_HAVE_BROKEN_ALERT | LM90_HAVE_CRIT | LM90_HAVE_PARTIAL_PEC | LM90_HAVE_ALARMS | LM90_HAVE_LOW | LM90_HAVE_CONVRATE | LM90_HAVE_REMOTE_EXT | LM90_HAVE_FAULTQUEUE, .alert_alarms = 0x7c, .max_convrate = 10, }, [adt7461] = { /* * Standard temperature range is supposed to be unsigned, * but that does not match reality. Negative temperatures * are always reported. */ .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT | LM90_HAVE_BROKEN_ALERT | LM90_HAVE_EXTENDED_TEMP | LM90_HAVE_CRIT | LM90_HAVE_PARTIAL_PEC | LM90_HAVE_ALARMS | LM90_HAVE_LOW | LM90_HAVE_CONVRATE | LM90_HAVE_REMOTE_EXT | LM90_HAVE_FAULTQUEUE, .alert_alarms = 0x7c, .max_convrate = 10, .resolution = 10, }, [adt7461a] = { .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT | LM90_HAVE_BROKEN_ALERT | LM90_HAVE_EXTENDED_TEMP | LM90_HAVE_CRIT | LM90_HAVE_PEC | LM90_HAVE_ALARMS | LM90_HAVE_LOW | LM90_HAVE_CONVRATE | LM90_HAVE_REMOTE_EXT | LM90_HAVE_FAULTQUEUE, .alert_alarms = 0x7c, .max_convrate = 10, }, [adt7481] = { .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT | LM90_HAVE_BROKEN_ALERT | LM90_HAVE_EXTENDED_TEMP | LM90_HAVE_UNSIGNED_TEMP | LM90_HAVE_PEC | LM90_HAVE_TEMP3 | LM90_HAVE_CRIT | LM90_HAVE_LOW | LM90_HAVE_CONVRATE | LM90_HAVE_REMOTE_EXT | LM90_HAVE_FAULTQUEUE, .alert_alarms = 0x1c7c, .max_convrate = 11, .resolution = 10, .reg_status2 = ADT7481_REG_STATUS2, }, [g781] = { .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT | LM90_HAVE_BROKEN_ALERT | LM90_HAVE_CRIT | LM90_HAVE_ALARMS | LM90_HAVE_LOW | LM90_HAVE_CONVRATE | LM90_HAVE_REMOTE_EXT | LM90_HAVE_FAULTQUEUE, .alert_alarms = 0x7c, .max_convrate = 7, }, [lm84] = { .flags = LM90_HAVE_ALARMS, .resolution = 8, }, [lm90] = { .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT | LM90_HAVE_CRIT | LM90_HAVE_ALARMS | LM90_HAVE_LOW | LM90_HAVE_CONVRATE | LM90_HAVE_REMOTE_EXT | LM90_HAVE_FAULTQUEUE, .alert_alarms = 0x7b, .max_convrate = 9, .faultqueue_mask = BIT(0), .faultqueue_depth = 3, }, [lm99] = { .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT | LM90_HAVE_CRIT | LM90_HAVE_ALARMS | LM90_HAVE_LOW | LM90_HAVE_CONVRATE | LM90_HAVE_REMOTE_EXT | LM90_HAVE_FAULTQUEUE, .alert_alarms = 0x7b, .max_convrate = 9, .faultqueue_mask = BIT(0), .faultqueue_depth = 3, }, [max1617] = { .flags = LM90_HAVE_CONVRATE | LM90_HAVE_BROKEN_ALERT | LM90_HAVE_LOW | LM90_HAVE_ALARMS, .alert_alarms = 0x78, .resolution = 8, .max_convrate = 7, }, [max6642] = { .flags = LM90_HAVE_BROKEN_ALERT | LM90_HAVE_EXT_UNSIGNED | LM90_HAVE_REMOTE_EXT | LM90_HAVE_FAULTQUEUE, .alert_alarms = 0x50, .resolution = 10, .reg_local_ext = MAX6657_REG_LOCAL_TEMPL, .faultqueue_mask = BIT(4), .faultqueue_depth = 2, }, [max6646] = { .flags = LM90_HAVE_CRIT | LM90_HAVE_BROKEN_ALERT | LM90_HAVE_EXT_UNSIGNED | LM90_HAVE_ALARMS | LM90_HAVE_LOW | LM90_HAVE_CONVRATE | LM90_HAVE_REMOTE_EXT, .alert_alarms = 0x7c, .max_convrate = 6, .reg_local_ext = MAX6657_REG_LOCAL_TEMPL, }, [max6648] = { .flags = LM90_HAVE_UNSIGNED_TEMP | LM90_HAVE_CRIT | LM90_HAVE_BROKEN_ALERT | LM90_HAVE_LOW | LM90_HAVE_CONVRATE | LM90_HAVE_REMOTE_EXT, .alert_alarms = 0x7c, .max_convrate = 6, .reg_local_ext = MAX6657_REG_LOCAL_TEMPL, }, [max6654] = { .flags = LM90_HAVE_BROKEN_ALERT | LM90_HAVE_ALARMS | LM90_HAVE_LOW | LM90_HAVE_CONVRATE | LM90_HAVE_REMOTE_EXT, .alert_alarms = 0x7c, .max_convrate = 7, .reg_local_ext = MAX6657_REG_LOCAL_TEMPL, }, [max6657] = { .flags = LM90_PAUSE_FOR_CONFIG | LM90_HAVE_CRIT | LM90_HAVE_ALARMS | LM90_HAVE_LOW | LM90_HAVE_CONVRATE | LM90_HAVE_REMOTE_EXT, .alert_alarms = 0x7c, .max_convrate = 8, .reg_local_ext = MAX6657_REG_LOCAL_TEMPL, }, [max6659] = { .flags = LM90_HAVE_EMERGENCY | LM90_HAVE_CRIT | LM90_HAVE_ALARMS | LM90_HAVE_LOW | LM90_HAVE_CONVRATE | LM90_HAVE_REMOTE_EXT, .alert_alarms = 0x7c, .max_convrate = 8, .reg_local_ext = MAX6657_REG_LOCAL_TEMPL, }, [max6680] = { /* * Apparent temperatures of 128 degrees C or higher are reported * and treated as negative temperatures (meaning min_alarm will * be set). */ .flags = LM90_HAVE_OFFSET | LM90_HAVE_CRIT | LM90_HAVE_CRIT_ALRM_SWP | LM90_HAVE_BROKEN_ALERT | LM90_HAVE_ALARMS | LM90_HAVE_LOW | LM90_HAVE_CONVRATE | LM90_HAVE_REMOTE_EXT, .alert_alarms = 0x7c, .max_convrate = 7, }, [max6696] = { .flags = LM90_HAVE_EMERGENCY | LM90_HAVE_EMERGENCY_ALARM | LM90_HAVE_TEMP3 | LM90_HAVE_CRIT | LM90_HAVE_ALARMS | LM90_HAVE_LOW | LM90_HAVE_CONVRATE | LM90_HAVE_REMOTE_EXT | LM90_HAVE_FAULTQUEUE, .alert_alarms = 0x1c7c, .max_convrate = 6, .reg_status2 = MAX6696_REG_STATUS2, .reg_local_ext = MAX6657_REG_LOCAL_TEMPL, .faultqueue_mask = BIT(5), .faultqueue_depth = 4, }, [nct72] = { .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT | LM90_HAVE_BROKEN_ALERT | LM90_HAVE_EXTENDED_TEMP | LM90_HAVE_CRIT | LM90_HAVE_PEC | LM90_HAVE_UNSIGNED_TEMP | LM90_HAVE_LOW | LM90_HAVE_CONVRATE | LM90_HAVE_REMOTE_EXT | LM90_HAVE_FAULTQUEUE, .alert_alarms = 0x7c, .max_convrate = 10, .resolution = 10, }, [nct210] = { .flags = LM90_HAVE_ALARMS | LM90_HAVE_BROKEN_ALERT | LM90_HAVE_REM_LIMIT_EXT | LM90_HAVE_LOW | LM90_HAVE_CONVRATE | LM90_HAVE_REMOTE_EXT, .alert_alarms = 0x7c, .resolution = 11, .max_convrate = 7, }, [ne1618] = { .flags = LM90_PAUSE_FOR_CONFIG | LM90_HAVE_BROKEN_ALERT | LM90_HAVE_LOW | LM90_HAVE_CONVRATE | LM90_HAVE_REMOTE_EXT, .alert_alarms = 0x7c, .resolution = 11, .max_convrate = 7, }, [w83l771] = { .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT | LM90_HAVE_CRIT | LM90_HAVE_ALARMS | LM90_HAVE_LOW | LM90_HAVE_CONVRATE | LM90_HAVE_REMOTE_EXT, .alert_alarms = 0x7c, .max_convrate = 8, }, [sa56004] = { /* * Apparent temperatures of 128 degrees C or higher are reported * and treated as negative temperatures (meaning min_alarm will * be set). */ .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT | LM90_HAVE_CRIT | LM90_HAVE_ALARMS | LM90_HAVE_LOW | LM90_HAVE_CONVRATE | LM90_HAVE_REMOTE_EXT | LM90_HAVE_FAULTQUEUE, .alert_alarms = 0x7b, .max_convrate = 9, .reg_local_ext = SA56004_REG_LOCAL_TEMPL, .faultqueue_mask = BIT(0), .faultqueue_depth = 3, }, [tmp451] = { .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT | LM90_HAVE_BROKEN_ALERT | LM90_HAVE_EXTENDED_TEMP | LM90_HAVE_CRIT | LM90_HAVE_UNSIGNED_TEMP | LM90_HAVE_ALARMS | LM90_HAVE_LOW | LM90_HAVE_CONVRATE | LM90_HAVE_REMOTE_EXT | LM90_HAVE_FAULTQUEUE, .alert_alarms = 0x7c, .max_convrate = 9, .resolution = 12, .reg_local_ext = TMP451_REG_LOCAL_TEMPL, }, [tmp461] = { .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT | LM90_HAVE_BROKEN_ALERT | LM90_HAVE_EXTENDED_TEMP | LM90_HAVE_CRIT | LM90_HAVE_ALARMS | LM90_HAVE_LOW | LM90_HAVE_CONVRATE | LM90_HAVE_REMOTE_EXT | LM90_HAVE_FAULTQUEUE, .alert_alarms = 0x7c, .max_convrate = 9, .resolution = 12, .reg_local_ext = TMP451_REG_LOCAL_TEMPL, }, }; /* * temperature register index */ enum lm90_temp_reg_index { LOCAL_LOW = 0, LOCAL_HIGH, LOCAL_CRIT, REMOTE_CRIT, LOCAL_EMERG, /* max6659 and max6695/96 */ REMOTE_EMERG, /* max6659 and max6695/96 */ REMOTE2_CRIT, /* max6695/96 only */ REMOTE2_EMERG, /* max6695/96 only */ REMOTE_TEMP, REMOTE_LOW, REMOTE_HIGH, REMOTE_OFFSET, /* except max6646, max6657/58/59, and max6695/96 */ LOCAL_TEMP, REMOTE2_TEMP, /* max6695/96 only */ REMOTE2_LOW, /* max6695/96 only */ REMOTE2_HIGH, /* max6695/96 only */ REMOTE2_OFFSET, TEMP_REG_NUM }; /* * Client data (each client gets its own) */ struct lm90_data { struct i2c_client *client; struct device *hwmon_dev; u32 chip_config[2]; u32 channel_config[MAX_CHANNELS + 1]; const char *channel_label[MAX_CHANNELS]; struct hwmon_channel_info chip_info; struct hwmon_channel_info temp_info; const struct hwmon_channel_info *info[3]; struct hwmon_chip_info chip; struct mutex update_lock; struct delayed_work alert_work; struct work_struct report_work; bool valid; /* true if register values are valid */ bool alarms_valid; /* true if status register values are valid */ unsigned long last_updated; /* in jiffies */ unsigned long alarms_updated; /* in jiffies */ int kind; u32 flags; unsigned int update_interval; /* in milliseconds */ u8 config; /* Current configuration register value */ u8 config_orig; /* Original configuration register value */ u8 convrate_orig; /* Original conversion rate register value */ u8 resolution; /* temperature resolution in bit */ u16 alert_alarms; /* Which alarm bits trigger ALERT# */ /* Upper 8 bits for max6695/96 */ u8 max_convrate; /* Maximum conversion rate */ u8 reg_status2; /* 2nd status register (optional) */ u8 reg_local_ext; /* local extension register offset */ u8 reg_remote_ext; /* remote temperature low byte */ u8 faultqueue_mask; /* fault queue mask */ u8 faultqueue_depth; /* fault queue mask */ /* registers values */ u16 temp[TEMP_REG_NUM]; u8 temp_hyst; u8 conalert; u16 reported_alarms; /* alarms reported as sysfs/udev events */ u16 current_alarms; /* current alarms, reported by chip */ u16 alarms; /* alarms not yet reported to user */ }; /* * Support functions */ /* * If the chip supports PEC but not on write byte transactions, we need * to explicitly ask for a transaction without PEC. */ static inline s32 lm90_write_no_pec(struct i2c_client *client, u8 value) { return i2c_smbus_xfer(client->adapter, client->addr, client->flags & ~I2C_CLIENT_PEC, I2C_SMBUS_WRITE, value, I2C_SMBUS_BYTE, NULL); } /* * It is assumed that client->update_lock is held (unless we are in * detection or initialization steps). This matters when PEC is enabled * for chips with partial PEC support, because we don't want the address * pointer to change between the write byte and the read byte transactions. */ static int lm90_read_reg(struct i2c_client *client, u8 reg) { struct lm90_data *data = i2c_get_clientdata(client); bool partial_pec = (client->flags & I2C_CLIENT_PEC) && (data->flags & LM90_HAVE_PARTIAL_PEC); int err; if (partial_pec) { err = lm90_write_no_pec(client, reg); if (err) return err; return i2c_smbus_read_byte(client); } return i2c_smbus_read_byte_data(client, reg); } /* * Return register write address * * The write address for registers 0x03 .. 0x08 is the read address plus 6. * For other registers the write address matches the read address. */ static u8 lm90_write_reg_addr(u8 reg) { if (reg >= LM90_REG_CONFIG1 && reg <= LM90_REG_REMOTE_LOWH) return reg + 6; return reg; } /* * Write into LM90 register. * Convert register address to write address if needed, then execute the * operation. */ static int lm90_write_reg(struct i2c_client *client, u8 reg, u8 val) { return i2c_smbus_write_byte_data(client, lm90_write_reg_addr(reg), val); } /* * Write into 16-bit LM90 register. * Convert register addresses to write address if needed, then execute the * operation. */ static int lm90_write16(struct i2c_client *client, u8 regh, u8 regl, u16 val) { int ret; ret = lm90_write_reg(client, regh, val >> 8); if (ret < 0 || !regl) return ret; return lm90_write_reg(client, regl, val & 0xff); } static int lm90_read16(struct i2c_client *client, u8 regh, u8 regl, bool is_volatile) { int oldh, newh, l; oldh = lm90_read_reg(client, regh); if (oldh < 0) return oldh; if (!regl) return oldh << 8; l = lm90_read_reg(client, regl); if (l < 0) return l; if (!is_volatile) return (oldh << 8) | l; /* * For volatile registers we have to use a trick. * We have to read two registers to have the sensor temperature, * but we have to beware a conversion could occur between the * readings. The datasheet says we should either use * the one-shot conversion register, which we don't want to do * (disables hardware monitoring) or monitor the busy bit, which is * impossible (we can't read the values and monitor that bit at the * exact same time). So the solution used here is to read the high * the high byte again. If the new high byte matches the old one, * then we have a valid reading. Otherwise we have to read the low * byte again, and now we believe we have a correct reading. */ newh = lm90_read_reg(client, regh); if (newh < 0) return newh; if (oldh != newh) { l = lm90_read_reg(client, regl); if (l < 0) return l; } return (newh << 8) | l; } static int lm90_update_confreg(struct lm90_data *data, u8 config) { if (data->config != config) { int err; err = lm90_write_reg(data->client, LM90_REG_CONFIG1, config); if (err) return err; data->config = config; } return 0; } /* * client->update_lock must be held when calling this function (unless we are * in detection or initialization steps), and while a remote channel other * than channel 0 is selected. Also, calling code must make sure to re-select * external channel 0 before releasing the lock. This is necessary because * various registers have different meanings as a result of selecting a * non-default remote channel. */ static int lm90_select_remote_channel(struct lm90_data *data, bool second) { u8 config = data->config & ~0x08; if (second) config |= 0x08; return lm90_update_confreg(data, config); } static int lm90_write_convrate(struct lm90_data *data, int val) { u8 config = data->config; int err; /* Save config and pause conversion */ if (data->flags & LM90_PAUSE_FOR_CONFIG) { err = lm90_update_confreg(data, config | 0x40); if (err < 0) return err; } /* Set conv rate */ err = lm90_write_reg(data->client, LM90_REG_CONVRATE, val); /* Revert change to config */ lm90_update_confreg(data, config); return err; } /* * Set conversion rate. * client->update_lock must be held when calling this function (unless we are * in detection or initialization steps). */ static int lm90_set_convrate(struct i2c_client *client, struct lm90_data *data, unsigned int interval) { unsigned int update_interval; int i, err; /* Shift calculations to avoid rounding errors */ interval <<= 6; /* find the nearest update rate */ for (i = 0, update_interval = LM90_MAX_CONVRATE_MS << 6; i < data->max_convrate; i++, update_interval >>= 1) if (interval >= update_interval * 3 / 4) break; err = lm90_write_convrate(data, i); data->update_interval = DIV_ROUND_CLOSEST(update_interval, 64); return err; } static int lm90_set_faultqueue(struct i2c_client *client, struct lm90_data *data, int val) { int err; if (data->faultqueue_mask) { err = lm90_update_confreg(data, val <= data->faultqueue_depth / 2 ? data->config & ~data->faultqueue_mask : data->config | data->faultqueue_mask); } else { static const u8 values[4] = {0, 2, 6, 0x0e}; data->conalert = (data->conalert & 0xf1) | values[val - 1]; err = lm90_write_reg(data->client, TMP451_REG_CONALERT, data->conalert); } return err; } static int lm90_update_limits(struct device *dev) { struct lm90_data *data = dev_get_drvdata(dev); struct i2c_client *client = data->client; int val; if (data->flags & LM90_HAVE_CRIT) { val = lm90_read_reg(client, LM90_REG_LOCAL_CRIT); if (val < 0) return val; data->temp[LOCAL_CRIT] = val << 8; val = lm90_read_reg(client, LM90_REG_REMOTE_CRIT); if (val < 0) return val; data->temp[REMOTE_CRIT] = val << 8; val = lm90_read_reg(client, LM90_REG_TCRIT_HYST); if (val < 0) return val; data->temp_hyst = val; } if ((data->flags & LM90_HAVE_FAULTQUEUE) && !data->faultqueue_mask) { val = lm90_read_reg(client, TMP451_REG_CONALERT); if (val < 0) return val; data->conalert = val; } val = lm90_read16(client, LM90_REG_REMOTE_LOWH, (data->flags & LM90_HAVE_REM_LIMIT_EXT) ? LM90_REG_REMOTE_LOWL : 0, false); if (val < 0) return val; data->temp[REMOTE_LOW] = val; val = lm90_read16(client, LM90_REG_REMOTE_HIGHH, (data->flags & LM90_HAVE_REM_LIMIT_EXT) ? LM90_REG_REMOTE_HIGHL : 0, false); if (val < 0) return val; data->temp[REMOTE_HIGH] = val; if (data->flags & LM90_HAVE_OFFSET) { val = lm90_read16(client, LM90_REG_REMOTE_OFFSH, LM90_REG_REMOTE_OFFSL, false); if (val < 0) return val; data->temp[REMOTE_OFFSET] = val; } if (data->flags & LM90_HAVE_EMERGENCY) { val = lm90_read_reg(client, MAX6659_REG_LOCAL_EMERG); if (val < 0) return val; data->temp[LOCAL_EMERG] = val << 8; val = lm90_read_reg(client, MAX6659_REG_REMOTE_EMERG); if (val < 0) return val; data->temp[REMOTE_EMERG] = val << 8; } if (data->flags & LM90_HAVE_TEMP3) { val = lm90_select_remote_channel(data, true); if (val < 0) return val; val = lm90_read_reg(client, LM90_REG_REMOTE_CRIT); if (val < 0) return val; data->temp[REMOTE2_CRIT] = val << 8; if (data->flags & LM90_HAVE_EMERGENCY) { val = lm90_read_reg(client, MAX6659_REG_REMOTE_EMERG); if (val < 0) return val; data->temp[REMOTE2_EMERG] = val << 8; } val = lm90_read_reg(client, LM90_REG_REMOTE_LOWH); if (val < 0) return val; data->temp[REMOTE2_LOW] = val << 8; val = lm90_read_reg(client, LM90_REG_REMOTE_HIGHH); if (val < 0) return val; data->temp[REMOTE2_HIGH] = val << 8; if (data->flags & LM90_HAVE_OFFSET) { val = lm90_read16(client, LM90_REG_REMOTE_OFFSH, LM90_REG_REMOTE_OFFSL, false); if (val < 0) return val; data->temp[REMOTE2_OFFSET] = val; } lm90_select_remote_channel(data, false); } return 0; } static void lm90_report_alarms(struct work_struct *work) { struct lm90_data *data = container_of(work, struct lm90_data, report_work); u16 cleared_alarms, new_alarms, current_alarms; struct device *hwmon_dev = data->hwmon_dev; struct device *dev = &data->client->dev; int st, st2; current_alarms = data->current_alarms; cleared_alarms = data->reported_alarms & ~current_alarms; new_alarms = current_alarms & ~data->reported_alarms; if (!cleared_alarms && !new_alarms) return; st = new_alarms & 0xff; st2 = new_alarms >> 8; if ((st & (LM90_STATUS_LLOW | LM90_STATUS_LHIGH | LM90_STATUS_LTHRM)) || (st2 & MAX6696_STATUS2_LOT2)) dev_dbg(dev, "temp%d out of range, please check!\n", 1); if ((st & (LM90_STATUS_RLOW | LM90_STATUS_RHIGH | LM90_STATUS_RTHRM)) || (st2 & MAX6696_STATUS2_ROT2)) dev_dbg(dev, "temp%d out of range, please check!\n", 2); if (st & LM90_STATUS_ROPEN) dev_dbg(dev, "temp%d diode open, please check!\n", 2); if (st2 & (MAX6696_STATUS2_R2LOW | MAX6696_STATUS2_R2HIGH | MAX6696_STATUS2_R2THRM | MAX6696_STATUS2_R2OT2)) dev_dbg(dev, "temp%d out of range, please check!\n", 3); if (st2 & MAX6696_STATUS2_R2OPEN) dev_dbg(dev, "temp%d diode open, please check!\n", 3); st |= cleared_alarms & 0xff; st2 |= cleared_alarms >> 8; if (st & LM90_STATUS_LLOW) hwmon_notify_event(hwmon_dev, hwmon_temp, hwmon_temp_min_alarm, 0); if (st & LM90_STATUS_RLOW) hwmon_notify_event(hwmon_dev, hwmon_temp, hwmon_temp_min_alarm, 1); if (st2 & MAX6696_STATUS2_R2LOW) hwmon_notify_event(hwmon_dev, hwmon_temp, hwmon_temp_min_alarm, 2); if (st & LM90_STATUS_LHIGH) hwmon_notify_event(hwmon_dev, hwmon_temp, hwmon_temp_max_alarm, 0); if (st & LM90_STATUS_RHIGH) hwmon_notify_event(hwmon_dev, hwmon_temp, hwmon_temp_max_alarm, 1); if (st2 & MAX6696_STATUS2_R2HIGH) hwmon_notify_event(hwmon_dev, hwmon_temp, hwmon_temp_max_alarm, 2); if (st & LM90_STATUS_LTHRM) hwmon_notify_event(hwmon_dev, hwmon_temp, hwmon_temp_crit_alarm, 0); if (st & LM90_STATUS_RTHRM) hwmon_notify_event(hwmon_dev, hwmon_temp, hwmon_temp_crit_alarm, 1); if (st2 & MAX6696_STATUS2_R2THRM) hwmon_notify_event(hwmon_dev, hwmon_temp, hwmon_temp_crit_alarm, 2); if (st2 & MAX6696_STATUS2_LOT2) hwmon_notify_event(hwmon_dev, hwmon_temp, hwmon_temp_emergency_alarm, 0); if (st2 & MAX6696_STATUS2_ROT2) hwmon_notify_event(hwmon_dev, hwmon_temp, hwmon_temp_emergency_alarm, 1); if (st2 & MAX6696_STATUS2_R2OT2) hwmon_notify_event(hwmon_dev, hwmon_temp, hwmon_temp_emergency_alarm, 2); data->reported_alarms = current_alarms; } static int lm90_update_alarms_locked(struct lm90_data *data, bool force) { if (force || !data->alarms_valid || time_after(jiffies, data->alarms_updated + msecs_to_jiffies(data->update_interval))) { struct i2c_client *client = data->client; bool check_enable; u16 alarms; int val; data->alarms_valid = false; val = lm90_read_reg(client, LM90_REG_STATUS); if (val < 0) return val; alarms = val & ~LM90_STATUS_BUSY; if (data->reg_status2) { val = lm90_read_reg(client, data->reg_status2); if (val < 0) return val; alarms |= val << 8; } /* * If the update is forced (called from interrupt or alert * handler) and alarm data is valid, the alarms may have been * updated after the last update interval, and the status * register may still be cleared. Only add additional alarms * in this case. Alarms will be cleared later if appropriate. */ if (force && data->alarms_valid) data->current_alarms |= alarms; else data->current_alarms = alarms; data->alarms |= alarms; check_enable = (client->irq || !(data->config_orig & 0x80)) && (data->config & 0x80); if (force || check_enable) schedule_work(&data->report_work); /* * Re-enable ALERT# output if it was originally enabled, relevant * alarms are all clear, and alerts are currently disabled. * Otherwise (re)schedule worker if needed. */ if (check_enable) { if (!(data->current_alarms & data->alert_alarms)) { dev_dbg(&client->dev, "Re-enabling ALERT#\n"); lm90_update_confreg(data, data->config & ~0x80); /* * We may have been called from the update handler. * If so, the worker, if scheduled, is no longer * needed. Cancel it. Don't synchronize because * it may already be running. */ cancel_delayed_work(&data->alert_work); } else { schedule_delayed_work(&data->alert_work, max_t(int, HZ, msecs_to_jiffies(data->update_interval))); } } data->alarms_updated = jiffies; data->alarms_valid = true; } return 0; } static int lm90_update_alarms(struct lm90_data *data, bool force) { int err; mutex_lock(&data->update_lock); err = lm90_update_alarms_locked(data, force); mutex_unlock(&data->update_lock); return err; } static void lm90_alert_work(struct work_struct *__work) { struct delayed_work *delayed_work = container_of(__work, struct delayed_work, work); struct lm90_data *data = container_of(delayed_work, struct lm90_data, alert_work); /* Nothing to do if alerts are enabled */ if (!(data->config & 0x80)) return; lm90_update_alarms(data, true); } static int lm90_update_device(struct device *dev) { struct lm90_data *data = dev_get_drvdata(dev); struct i2c_client *client = data->client; unsigned long next_update; int val; if (!data->valid) { val = lm90_update_limits(dev); if (val < 0) return val; } next_update = data->last_updated + msecs_to_jiffies(data->update_interval); if (time_after(jiffies, next_update) || !data->valid) { dev_dbg(&client->dev, "Updating lm90 data.\n"); data->valid = false; val = lm90_read_reg(client, LM90_REG_LOCAL_LOW); if (val < 0) return val; data->temp[LOCAL_LOW] = val << 8; val = lm90_read_reg(client, LM90_REG_LOCAL_HIGH); if (val < 0) return val; data->temp[LOCAL_HIGH] = val << 8; val = lm90_read16(client, LM90_REG_LOCAL_TEMP, data->reg_local_ext, true); if (val < 0) return val; data->temp[LOCAL_TEMP] = val; val = lm90_read16(client, LM90_REG_REMOTE_TEMPH, data->reg_remote_ext, true); if (val < 0) return val; data->temp[REMOTE_TEMP] = val; if (data->flags & LM90_HAVE_TEMP3) { val = lm90_select_remote_channel(data, true); if (val < 0) return val; val = lm90_read16(client, LM90_REG_REMOTE_TEMPH, data->reg_remote_ext, true); if (val < 0) { lm90_select_remote_channel(data, false); return val; } data->temp[REMOTE2_TEMP] = val; lm90_select_remote_channel(data, false); } val = lm90_update_alarms_locked(data, false); if (val < 0) return val; data->last_updated = jiffies; data->valid = true; } return 0; } static int lm90_temp_get_resolution(struct lm90_data *data, int index) { switch (index) { case REMOTE_TEMP: if (data->reg_remote_ext) return data->resolution; return 8; case REMOTE_OFFSET: case REMOTE2_OFFSET: case REMOTE2_TEMP: return data->resolution; case LOCAL_TEMP: if (data->reg_local_ext) return data->resolution; return 8; case REMOTE_LOW: case REMOTE_HIGH: case REMOTE2_LOW: case REMOTE2_HIGH: if (data->flags & LM90_HAVE_REM_LIMIT_EXT) return data->resolution; return 8; default: return 8; } } static int lm90_temp_from_reg(u32 flags, u16 regval, u8 resolution) { int val; if (flags & LM90_HAVE_EXTENDED_TEMP) val = regval - 0x4000; else if (flags & (LM90_HAVE_UNSIGNED_TEMP | LM90_HAVE_EXT_UNSIGNED)) val = regval; else val = (s16)regval; return ((val >> (16 - resolution)) * 1000) >> (resolution - 8); } static int lm90_get_temp(struct lm90_data *data, int index, int channel) { int temp = lm90_temp_from_reg(data->flags, data->temp[index], lm90_temp_get_resolution(data, index)); /* +16 degrees offset for remote temperature on LM99 */ if (data->kind == lm99 && channel) temp += 16000; return temp; } static u16 lm90_temp_to_reg(u32 flags, long val, u8 resolution) { int fraction = resolution > 8 ? 1000 - DIV_ROUND_CLOSEST(1000, BIT(resolution - 8)) : 0; if (flags & LM90_HAVE_EXTENDED_TEMP) { val = clamp_val(val, -64000, 191000 + fraction); val += 64000; } else if (flags & LM90_HAVE_EXT_UNSIGNED) { val = clamp_val(val, 0, 255000 + fraction); } else if (flags & LM90_HAVE_UNSIGNED_TEMP) { val = clamp_val(val, 0, 127000 + fraction); } else { val = clamp_val(val, -128000, 127000 + fraction); } return DIV_ROUND_CLOSEST(val << (resolution - 8), 1000) << (16 - resolution); } static int lm90_set_temp(struct lm90_data *data, int index, int channel, long val) { static const u8 regs[] = { [LOCAL_LOW] = LM90_REG_LOCAL_LOW, [LOCAL_HIGH] = LM90_REG_LOCAL_HIGH, [LOCAL_CRIT] = LM90_REG_LOCAL_CRIT, [REMOTE_CRIT] = LM90_REG_REMOTE_CRIT, [LOCAL_EMERG] = MAX6659_REG_LOCAL_EMERG, [REMOTE_EMERG] = MAX6659_REG_REMOTE_EMERG, [REMOTE2_CRIT] = LM90_REG_REMOTE_CRIT, [REMOTE2_EMERG] = MAX6659_REG_REMOTE_EMERG, [REMOTE_LOW] = LM90_REG_REMOTE_LOWH, [REMOTE_HIGH] = LM90_REG_REMOTE_HIGHH, [REMOTE2_LOW] = LM90_REG_REMOTE_LOWH, [REMOTE2_HIGH] = LM90_REG_REMOTE_HIGHH, }; struct i2c_client *client = data->client; u8 regh = regs[index]; u8 regl = 0; int err; if (channel && (data->flags & LM90_HAVE_REM_LIMIT_EXT)) { if (index == REMOTE_LOW || index == REMOTE2_LOW) regl = LM90_REG_REMOTE_LOWL; else if (index == REMOTE_HIGH || index == REMOTE2_HIGH) regl = LM90_REG_REMOTE_HIGHL; } /* +16 degrees offset for remote temperature on LM99 */ if (data->kind == lm99 && channel) { /* prevent integer underflow */ val = max(val, -128000l); val -= 16000; } data->temp[index] = lm90_temp_to_reg(data->flags, val, lm90_temp_get_resolution(data, index)); if (channel > 1) lm90_select_remote_channel(data, true); err = lm90_write16(client, regh, regl, data->temp[index]); if (channel > 1) lm90_select_remote_channel(data, false); return err; } static int lm90_get_temphyst(struct lm90_data *data, int index, int channel) { int temp = lm90_get_temp(data, index, channel); return temp - data->temp_hyst * 1000; } static int lm90_set_temphyst(struct lm90_data *data, long val) { int temp = lm90_get_temp(data, LOCAL_CRIT, 0); /* prevent integer overflow/underflow */ val = clamp_val(val, -128000l, 255000l); data->temp_hyst = clamp_val(DIV_ROUND_CLOSEST(temp - val, 1000), 0, 31); return lm90_write_reg(data->client, LM90_REG_TCRIT_HYST, data->temp_hyst); } static int lm90_get_temp_offset(struct lm90_data *data, int index) { int res = lm90_temp_get_resolution(data, index); return lm90_temp_from_reg(0, data->temp[index], res); } static int lm90_set_temp_offset(struct lm90_data *data, int index, int channel, long val) { int err; val = lm90_temp_to_reg(0, val, lm90_temp_get_resolution(data, index)); /* For ADT7481 we can use the same registers for remote channel 1 and 2 */ if (channel > 1) lm90_select_remote_channel(data, true); err = lm90_write16(data->client, LM90_REG_REMOTE_OFFSH, LM90_REG_REMOTE_OFFSL, val); if (channel > 1) lm90_select_remote_channel(data, false); if (err) return err; data->temp[index] = val; return 0; } static const u8 lm90_temp_index[MAX_CHANNELS] = { LOCAL_TEMP, REMOTE_TEMP, REMOTE2_TEMP }; static const u8 lm90_temp_min_index[MAX_CHANNELS] = { LOCAL_LOW, REMOTE_LOW, REMOTE2_LOW }; static const u8 lm90_temp_max_index[MAX_CHANNELS] = { LOCAL_HIGH, REMOTE_HIGH, REMOTE2_HIGH }; static const u8 lm90_temp_crit_index[MAX_CHANNELS] = { LOCAL_CRIT, REMOTE_CRIT, REMOTE2_CRIT }; static const u8 lm90_temp_emerg_index[MAX_CHANNELS] = { LOCAL_EMERG, REMOTE_EMERG, REMOTE2_EMERG }; static const s8 lm90_temp_offset_index[MAX_CHANNELS] = { -1, REMOTE_OFFSET, REMOTE2_OFFSET }; static const u16 lm90_min_alarm_bits[MAX_CHANNELS] = { BIT(5), BIT(3), BIT(11) }; static const u16 lm90_max_alarm_bits[MAX_CHANNELS] = { BIT(6), BIT(4), BIT(12) }; static const u16 lm90_crit_alarm_bits[MAX_CHANNELS] = { BIT(0), BIT(1), BIT(9) }; static const u16 lm90_crit_alarm_bits_swapped[MAX_CHANNELS] = { BIT(1), BIT(0), BIT(9) }; static const u16 lm90_emergency_alarm_bits[MAX_CHANNELS] = { BIT(15), BIT(13), BIT(14) }; static const u16 lm90_fault_bits[MAX_CHANNELS] = { BIT(0), BIT(2), BIT(10) }; static int lm90_temp_read(struct device *dev, u32 attr, int channel, long *val) { struct lm90_data *data = dev_get_drvdata(dev); int err; u16 bit; mutex_lock(&data->update_lock); err = lm90_update_device(dev); mutex_unlock(&data->update_lock); if (err) return err; switch (attr) { case hwmon_temp_input: *val = lm90_get_temp(data, lm90_temp_index[channel], channel); break; case hwmon_temp_min_alarm: case hwmon_temp_max_alarm: case hwmon_temp_crit_alarm: case hwmon_temp_emergency_alarm: case hwmon_temp_fault: switch (attr) { case hwmon_temp_min_alarm: bit = lm90_min_alarm_bits[channel]; break; case hwmon_temp_max_alarm: bit = lm90_max_alarm_bits[channel]; break; case hwmon_temp_crit_alarm: if (data->flags & LM90_HAVE_CRIT_ALRM_SWP) bit = lm90_crit_alarm_bits_swapped[channel]; else bit = lm90_crit_alarm_bits[channel]; break; case hwmon_temp_emergency_alarm: bit = lm90_emergency_alarm_bits[channel]; break; case hwmon_temp_fault: bit = lm90_fault_bits[channel]; break; } *val = !!(data->alarms & bit); data->alarms &= ~bit; data->alarms |= data->current_alarms; break; case hwmon_temp_min: *val = lm90_get_temp(data, lm90_temp_min_index[channel], channel); break; case hwmon_temp_max: *val = lm90_get_temp(data, lm90_temp_max_index[channel], channel); break; case hwmon_temp_crit: *val = lm90_get_temp(data, lm90_temp_crit_index[channel], channel); break; case hwmon_temp_crit_hyst: *val = lm90_get_temphyst(data, lm90_temp_crit_index[channel], channel); break; case hwmon_temp_emergency: *val = lm90_get_temp(data, lm90_temp_emerg_index[channel], channel); break; case hwmon_temp_emergency_hyst: *val = lm90_get_temphyst(data, lm90_temp_emerg_index[channel], channel); break; case hwmon_temp_offset: *val = lm90_get_temp_offset(data, lm90_temp_offset_index[channel]); break; default: return -EOPNOTSUPP; } return 0; } static int lm90_temp_write(struct device *dev, u32 attr, int channel, long val) { struct lm90_data *data = dev_get_drvdata(dev); int err; mutex_lock(&data->update_lock); err = lm90_update_device(dev); if (err) goto error; switch (attr) { case hwmon_temp_min: err = lm90_set_temp(data, lm90_temp_min_index[channel], channel, val); break; case hwmon_temp_max: err = lm90_set_temp(data, lm90_temp_max_index[channel], channel, val); break; case hwmon_temp_crit: err = lm90_set_temp(data, lm90_temp_crit_index[channel], channel, val); break; case hwmon_temp_crit_hyst: err = lm90_set_temphyst(data, val); break; case hwmon_temp_emergency: err = lm90_set_temp(data, lm90_temp_emerg_index[channel], channel, val); break; case hwmon_temp_offset: err = lm90_set_temp_offset(data, lm90_temp_offset_index[channel], channel, val); break; default: err = -EOPNOTSUPP; break; } error: mutex_unlock(&data->update_lock); return err; } static umode_t lm90_temp_is_visible(const void *data, u32 attr, int channel) { switch (attr) { case hwmon_temp_input: case hwmon_temp_min_alarm: case hwmon_temp_max_alarm: case hwmon_temp_crit_alarm: case hwmon_temp_emergency_alarm: case hwmon_temp_emergency_hyst: case hwmon_temp_fault: case hwmon_temp_label: return 0444; case hwmon_temp_min: case hwmon_temp_max: case hwmon_temp_crit: case hwmon_temp_emergency: case hwmon_temp_offset: return 0644; case hwmon_temp_crit_hyst: if (channel == 0) return 0644; return 0444; default: return 0; } } static int lm90_chip_read(struct device *dev, u32 attr, int channel, long *val) { struct lm90_data *data = dev_get_drvdata(dev); int err; mutex_lock(&data->update_lock); err = lm90_update_device(dev); mutex_unlock(&data->update_lock); if (err) return err; switch (attr) { case hwmon_chip_update_interval: *val = data->update_interval; break; case hwmon_chip_alarms: *val = data->alarms; break; case hwmon_chip_temp_samples: if (data->faultqueue_mask) { *val = (data->config & data->faultqueue_mask) ? data->faultqueue_depth : 1; } else { switch (data->conalert & 0x0e) { case 0x0: default: *val = 1; break; case 0x2: *val = 2; break; case 0x6: *val = 3; break; case 0xe: *val = 4; break; } } break; default: return -EOPNOTSUPP; } return 0; } static int lm90_chip_write(struct device *dev, u32 attr, int channel, long val) { struct lm90_data *data = dev_get_drvdata(dev); struct i2c_client *client = data->client; int err; mutex_lock(&data->update_lock); err = lm90_update_device(dev); if (err) goto error; switch (attr) { case hwmon_chip_update_interval: err = lm90_set_convrate(client, data, clamp_val(val, 0, 100000)); break; case hwmon_chip_temp_samples: err = lm90_set_faultqueue(client, data, clamp_val(val, 1, 4)); break; default: err = -EOPNOTSUPP; break; } error: mutex_unlock(&data->update_lock); return err; } static umode_t lm90_chip_is_visible(const void *data, u32 attr, int channel) { switch (attr) { case hwmon_chip_update_interval: case hwmon_chip_temp_samples: return 0644; case hwmon_chip_alarms: return 0444; default: return 0; } } static int lm90_read(struct device *dev, enum hwmon_sensor_types type, u32 attr, int channel, long *val) { switch (type) { case hwmon_chip: return lm90_chip_read(dev, attr, channel, val); case hwmon_temp: return lm90_temp_read(dev, attr, channel, val); default: return -EOPNOTSUPP; } } static int lm90_read_string(struct device *dev, enum hwmon_sensor_types type, u32 attr, int channel, const char **str) { struct lm90_data *data = dev_get_drvdata(dev); *str = data->channel_label[channel]; return 0; } static int lm90_write(struct device *dev, enum hwmon_sensor_types type, u32 attr, int channel, long val) { switch (type) { case hwmon_chip: return lm90_chip_write(dev, attr, channel, val); case hwmon_temp: return lm90_temp_write(dev, attr, channel, val); default: return -EOPNOTSUPP; } } static umode_t lm90_is_visible(const void *data, enum hwmon_sensor_types type, u32 attr, int channel) { switch (type) { case hwmon_chip: return lm90_chip_is_visible(data, attr, channel); case hwmon_temp: return lm90_temp_is_visible(data, attr, channel); default: return 0; } } static const char *lm90_detect_lm84(struct i2c_client *client) { static const u8 regs[] = { LM90_REG_STATUS, LM90_REG_LOCAL_TEMP, LM90_REG_LOCAL_HIGH, LM90_REG_REMOTE_TEMPH, LM90_REG_REMOTE_HIGHH }; int status = i2c_smbus_read_byte_data(client, LM90_REG_STATUS); int reg1, reg2, reg3, reg4; bool nonzero = false; u8 ff = 0xff; int i; if (status < 0 || (status & 0xab)) return NULL; /* * For LM84, undefined registers return the most recent value. * Repeat several times, each time checking against a different * (presumably) existing register. */ for (i = 0; i < ARRAY_SIZE(regs); i++) { reg1 = i2c_smbus_read_byte_data(client, regs[i]); reg2 = i2c_smbus_read_byte_data(client, LM90_REG_REMOTE_TEMPL); reg3 = i2c_smbus_read_byte_data(client, LM90_REG_LOCAL_LOW); reg4 = i2c_smbus_read_byte_data(client, LM90_REG_REMOTE_LOWH); if (reg1 < 0) return NULL; /* If any register has a different value, this is not an LM84 */ if (reg2 != reg1 || reg3 != reg1 || reg4 != reg1) return NULL; nonzero |= reg1 || reg2 || reg3 || reg4; ff &= reg1; } /* * If all registers always returned 0 or 0xff, all bets are off, * and we can not make any predictions about the chip type. */ return nonzero && ff != 0xff ? "lm84" : NULL; } static const char *lm90_detect_max1617(struct i2c_client *client, int config1) { int status = i2c_smbus_read_byte_data(client, LM90_REG_STATUS); int llo, rlo, lhi, rhi; if (status < 0 || (status & 0x03)) return NULL; if (config1 & 0x3f) return NULL; /* * Fail if unsupported registers return anything but 0xff. * The calling code already checked man_id and chip_id. * A byte read operation repeats the most recent read operation * and should also return 0xff. */ if (i2c_smbus_read_byte_data(client, LM90_REG_REMOTE_TEMPL) != 0xff || i2c_smbus_read_byte_data(client, MAX6657_REG_LOCAL_TEMPL) != 0xff || i2c_smbus_read_byte_data(client, LM90_REG_REMOTE_LOWL) != 0xff || i2c_smbus_read_byte(client) != 0xff) return NULL; llo = i2c_smbus_read_byte_data(client, LM90_REG_LOCAL_LOW); rlo = i2c_smbus_read_byte_data(client, LM90_REG_REMOTE_LOWH); lhi = i2c_smbus_read_byte_data(client, LM90_REG_LOCAL_HIGH); rhi = i2c_smbus_read_byte_data(client, LM90_REG_REMOTE_HIGHH); if (llo < 0 || rlo < 0) return NULL; /* * A byte read operation repeats the most recent read and should * return the same value. */ if (i2c_smbus_read_byte(client) != rhi) return NULL; /* * The following two checks are marginal since the checked values * are strictly speaking valid. */ /* fail for negative high limits; this also catches read errors */ if ((s8)lhi < 0 || (s8)rhi < 0) return NULL; /* fail if low limits are larger than or equal to high limits */ if ((s8)llo >= lhi || (s8)rlo >= rhi) return NULL; if (i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_WORD_DATA)) { /* * Word read operations return 0xff in second byte */ if (i2c_smbus_read_word_data(client, LM90_REG_REMOTE_TEMPL) != 0xffff) return NULL; if (i2c_smbus_read_word_data(client, LM90_REG_CONFIG1) != (config1 | 0xff00)) return NULL; if (i2c_smbus_read_word_data(client, LM90_REG_LOCAL_HIGH) != (lhi | 0xff00)) return NULL; } return "max1617"; } static const char *lm90_detect_national(struct i2c_client *client, int chip_id, int config1, int convrate) { int config2 = i2c_smbus_read_byte_data(client, LM90_REG_CONFIG2); int address = client->addr; const char *name = NULL; if (config2 < 0) return NULL; if ((config1 & 0x2a) || (config2 & 0xf8) || convrate > 0x09) return NULL; if (address != 0x4c && address != 0x4d) return NULL; switch (chip_id & 0xf0) { case 0x10: /* LM86 */ if (address == 0x4c) name = "lm86"; break; case 0x20: /* LM90 */ if (address == 0x4c) name = "lm90"; break; case 0x30: /* LM89/LM99 */ name = "lm99"; /* detect LM89 as LM99 */ break; default: break; } return name; } static const char *lm90_detect_on(struct i2c_client *client, int chip_id, int config1, int convrate) { int address = client->addr; const char *name = NULL; switch (chip_id) { case 0xca: /* NCT218 */ if ((address == 0x4c || address == 0x4d) && !(config1 & 0x1b) && convrate <= 0x0a) name = "nct218"; break; default: break; } return name; } static const char *lm90_detect_analog(struct i2c_client *client, bool common_address, int chip_id, int config1, int convrate) { int status = i2c_smbus_read_byte_data(client, LM90_REG_STATUS); int config2 = i2c_smbus_read_byte_data(client, ADT7481_REG_CONFIG2); int man_id2 = i2c_smbus_read_byte_data(client, ADT7481_REG_MAN_ID); int chip_id2 = i2c_smbus_read_byte_data(client, ADT7481_REG_CHIP_ID); int address = client->addr; const char *name = NULL; if (status < 0 || config2 < 0 || man_id2 < 0 || chip_id2 < 0) return NULL; /* * The following chips should be detected by this function. Known * register values are listed. Registers 0x3d .. 0x3e are undocumented * for most of the chips, yet appear to return a well defined value. * Register 0xff is undocumented for some of the chips. Register 0x3f * is undocumented for all chips, but also returns a well defined value. * Values are as reported from real chips unless mentioned otherwise. * The code below checks values for registers 0x3d, 0x3e, and 0xff, * but not for register 0x3f. * * Chip Register * 3d 3e 3f fe ff Notes * ---------------------------------------------------------- * adm1020 00 00 00 41 39 * adm1021 00 00 00 41 03 * adm1021a 00 00 00 41 3c * adm1023 00 00 00 41 3c same as adm1021a * adm1032 00 00 00 41 42 * * adt7421 21 41 04 41 04 * adt7461 00 00 00 41 51 * adt7461a 61 41 05 41 57 * adt7481 81 41 02 41 62 * adt7482 - - - 41 65 datasheet * 82 41 05 41 75 real chip * adt7483 83 41 04 41 94 * * nct72 61 41 07 41 55 * nct210 00 00 00 41 3f * nct214 61 41 08 41 5a * nct1008 - - - 41 57 datasheet rev. 3 * 61 41 06 41 54 real chip * * nvt210 - - - 41 - datasheet * nvt211 - - - 41 - datasheet */ switch (chip_id) { case 0x00 ... 0x03: /* ADM1021 */ case 0x05 ... 0x0f: if (man_id2 == 0x00 && chip_id2 == 0x00 && common_address && !(status & 0x03) && !(config1 & 0x3f) && !(convrate & 0xf8)) name = "adm1021"; break; case 0x04: /* ADT7421 (undocumented) */ if (man_id2 == 0x41 && chip_id2 == 0x21 && (address == 0x4c || address == 0x4d) && (config1 & 0x0b) == 0x08 && convrate <= 0x0a) name = "adt7421"; break; case 0x30 ... 0x38: /* ADM1021A, ADM1023 */ case 0x3a ... 0x3e: /* * ADM1021A and compatible chips will be mis-detected as * ADM1023. Chips labeled 'ADM1021A' and 'ADM1023' were both * found to have a Chip ID of 0x3c. * ADM1021A does not officially support low byte registers * (0x12 .. 0x14), but a chip labeled ADM1021A does support it. * Official support for the temperature offset high byte * register (0x11) was added to revision F of the ADM1021A * datasheet. * It is currently unknown if there is a means to distinguish * ADM1021A from ADM1023, and/or if revisions of ADM1021A exist * which differ in functionality from ADM1023. */ if (man_id2 == 0x00 && chip_id2 == 0x00 && common_address && !(status & 0x03) && !(config1 & 0x3f) && !(convrate & 0xf8)) name = "adm1023"; break; case 0x39: /* ADM1020 (undocumented) */ if (man_id2 == 0x00 && chip_id2 == 0x00 && (address == 0x4c || address == 0x4d || address == 0x4e) && !(status & 0x03) && !(config1 & 0x3f) && !(convrate & 0xf8)) name = "adm1020"; break; case 0x3f: /* NCT210 */ if (man_id2 == 0x00 && chip_id2 == 0x00 && common_address && !(status & 0x03) && !(config1 & 0x3f) && !(convrate & 0xf8)) name = "nct210"; break; case 0x40 ... 0x4f: /* ADM1032 */ if (man_id2 == 0x00 && chip_id2 == 0x00 && (address == 0x4c || address == 0x4d) && !(config1 & 0x3f) && convrate <= 0x0a) name = "adm1032"; break; case 0x51: /* ADT7461 */ if (man_id2 == 0x00 && chip_id2 == 0x00 && (address == 0x4c || address == 0x4d) && !(config1 & 0x1b) && convrate <= 0x0a) name = "adt7461"; break; case 0x54: /* NCT1008 */ if (man_id2 == 0x41 && chip_id2 == 0x61 && (address == 0x4c || address == 0x4d) && !(config1 & 0x1b) && convrate <= 0x0a) name = "nct1008"; break; case 0x55: /* NCT72 */ if (man_id2 == 0x41 && chip_id2 == 0x61 && (address == 0x4c || address == 0x4d) && !(config1 & 0x1b) && convrate <= 0x0a) name = "nct72"; break; case 0x57: /* ADT7461A, NCT1008 (datasheet rev. 3) */ if (man_id2 == 0x41 && chip_id2 == 0x61 && (address == 0x4c || address == 0x4d) && !(config1 & 0x1b) && convrate <= 0x0a) name = "adt7461a"; break; case 0x5a: /* NCT214 */ if (man_id2 == 0x41 && chip_id2 == 0x61 && common_address && !(config1 & 0x1b) && convrate <= 0x0a) name = "nct214"; break; case 0x62: /* ADT7481, undocumented */ if (man_id2 == 0x41 && chip_id2 == 0x81 && (address == 0x4b || address == 0x4c) && !(config1 & 0x10) && !(config2 & 0x7f) && (convrate & 0x0f) <= 0x0b) { name = "adt7481"; } break; case 0x65: /* ADT7482, datasheet */ case 0x75: /* ADT7482, real chip */ if (man_id2 == 0x41 && chip_id2 == 0x82 && address == 0x4c && !(config1 & 0x10) && !(config2 & 0x7f) && convrate <= 0x0a) name = "adt7482"; break; case 0x94: /* ADT7483 */ if (man_id2 == 0x41 && chip_id2 == 0x83 && common_address && ((address >= 0x18 && address <= 0x1a) || (address >= 0x29 && address <= 0x2b) || (address >= 0x4c && address <= 0x4e)) && !(config1 & 0x10) && !(config2 & 0x7f) && convrate <= 0x0a) name = "adt7483a"; break; default: break; } return name; } static const char *lm90_detect_maxim(struct i2c_client *client, bool common_address, int chip_id, int config1, int convrate) { int man_id, emerg, emerg2, status2; int address = client->addr; const char *name = NULL; switch (chip_id) { case 0x01: if (!common_address) break; /* * We read MAX6659_REG_REMOTE_EMERG twice, and re-read * LM90_REG_MAN_ID in between. If MAX6659_REG_REMOTE_EMERG * exists, both readings will reflect the same value. Otherwise, * the readings will be different. */ emerg = i2c_smbus_read_byte_data(client, MAX6659_REG_REMOTE_EMERG); man_id = i2c_smbus_read_byte_data(client, LM90_REG_MAN_ID); emerg2 = i2c_smbus_read_byte_data(client, MAX6659_REG_REMOTE_EMERG); status2 = i2c_smbus_read_byte_data(client, MAX6696_REG_STATUS2); if (emerg < 0 || man_id < 0 || emerg2 < 0 || status2 < 0) return NULL; /* * Even though MAX6695 and MAX6696 do not have a chip ID * register, reading it returns 0x01. Bit 4 of the config1 * register is unused and should return zero when read. Bit 0 of * the status2 register is unused and should return zero when * read. * * MAX6695 and MAX6696 have an additional set of temperature * limit registers. We can detect those chips by checking if * one of those registers exists. */ if (!(config1 & 0x10) && !(status2 & 0x01) && emerg == emerg2 && convrate <= 0x07) name = "max6696"; /* * The chip_id register of the MAX6680 and MAX6681 holds the * revision of the chip. The lowest bit of the config1 register * is unused and should return zero when read, so should the * second to last bit of config1 (software reset). Register * address 0x12 (LM90_REG_REMOTE_OFFSL) exists for this chip and * should differ from emerg2, and emerg2 should match man_id * since it does not exist. */ else if (!(config1 & 0x03) && convrate <= 0x07 && emerg2 == man_id && emerg2 != status2) name = "max6680"; /* * MAX1617A does not have any extended registers (register * address 0x10 or higher) except for manufacturer and * device ID registers. Unlike other chips of this series, * unsupported registers were observed to return a fixed value * of 0x01. * Note: Multiple chips with different markings labeled as * "MAX1617" (no "A") were observed to report manufacturer ID * 0x4d and device ID 0x01. It is unknown if other variants of * MAX1617/MAX617A with different behavior exist. The detection * code below works for those chips. */ else if (!(config1 & 0x03f) && convrate <= 0x07 && emerg == 0x01 && emerg2 == 0x01 && status2 == 0x01) name = "max1617"; break; case 0x08: /* * The chip_id of the MAX6654 holds the revision of the chip. * The lowest 3 bits of the config1 register are unused and * should return zero when read. */ if (common_address && !(config1 & 0x07) && convrate <= 0x07) name = "max6654"; break; case 0x09: /* * The chip_id of the MAX6690 holds the revision of the chip. * The lowest 3 bits of the config1 register are unused and * should return zero when read. * Note that MAX6654 and MAX6690 are practically the same chips. * The only diference is the rated accuracy. Rev. 1 of the * MAX6690 datasheet lists a chip ID of 0x08, and a chip labeled * MAX6654 was observed to have a chip ID of 0x09. */ if (common_address && !(config1 & 0x07) && convrate <= 0x07) name = "max6690"; break; case 0x4d: /* * MAX6642, MAX6657, MAX6658 and MAX6659 do NOT have a chip_id * register. Reading from that address will return the last * read value, which in our case is those of the man_id * register, or 0x4d. * MAX6642 does not have a conversion rate register, nor low * limit registers. Reading from those registers returns the * last read value. * * For MAX6657, MAX6658 and MAX6659, the config1 register lacks * a low nibble, so the value will be those of the previous * read, so in our case again those of the man_id register. * MAX6659 has a third set of upper temperature limit registers. * Those registers also return values on MAX6657 and MAX6658, * thus the only way to detect MAX6659 is by its address. * For this reason it will be mis-detected as MAX6657 if its * address is 0x4c. */ if (address >= 0x48 && address <= 0x4f && config1 == convrate && !(config1 & 0x0f)) { int regval; /* * We know that this is not a MAX6657/58/59 because its * configuration register has the wrong value and it does * not appear to have a conversion rate register. */ /* re-read manufacturer ID to have a good baseline */ if (i2c_smbus_read_byte_data(client, LM90_REG_MAN_ID) != 0x4d) break; /* check various non-existing registers */ if (i2c_smbus_read_byte_data(client, LM90_REG_CONVRATE) != 0x4d || i2c_smbus_read_byte_data(client, LM90_REG_LOCAL_LOW) != 0x4d || i2c_smbus_read_byte_data(client, LM90_REG_REMOTE_LOWH) != 0x4d) break; /* check for unused status register bits */ regval = i2c_smbus_read_byte_data(client, LM90_REG_STATUS); if (regval < 0 || (regval & 0x2b)) break; /* re-check unsupported registers */ if (i2c_smbus_read_byte_data(client, LM90_REG_CONVRATE) != regval || i2c_smbus_read_byte_data(client, LM90_REG_LOCAL_LOW) != regval || i2c_smbus_read_byte_data(client, LM90_REG_REMOTE_LOWH) != regval) break; name = "max6642"; } else if ((address == 0x4c || address == 0x4d || address == 0x4e) && (config1 & 0x1f) == 0x0d && convrate <= 0x09) { if (address == 0x4c) name = "max6657"; else name = "max6659"; } break; case 0x59: /* * The chip_id register of the MAX6646/6647/6649 holds the * revision of the chip. The lowest 6 bits of the config1 * register are unused and should return zero when read. * The I2C address of MAX6648/6692 is fixed at 0x4c. * MAX6646 is at address 0x4d, MAX6647 is at address 0x4e, * and MAX6649 is at address 0x4c. A slight difference between * the two sets of chips is that the remote temperature register * reports different values if the DXP pin is open or shorted. * We can use that information to help distinguish between the * chips. MAX6648 will be mis-detected as MAX6649 if the remote * diode is connected, but there isn't really anything we can * do about that. */ if (!(config1 & 0x3f) && convrate <= 0x07) { int temp; switch (address) { case 0x4c: /* * MAX6649 reports an external temperature * value of 0xff if DXP is open or shorted. * MAX6648 reports 0x80 in that case. */ temp = i2c_smbus_read_byte_data(client, LM90_REG_REMOTE_TEMPH); if (temp == 0x80) name = "max6648"; else name = "max6649"; break; case 0x4d: name = "max6646"; break; case 0x4e: name = "max6647"; break; default: break; } } break; default: break; } return name; } static const char *lm90_detect_nuvoton(struct i2c_client *client, int chip_id, int config1, int convrate) { int config2 = i2c_smbus_read_byte_data(client, LM90_REG_CONFIG2); int address = client->addr; const char *name = NULL; if (config2 < 0) return NULL; if (address == 0x4c && !(config1 & 0x2a) && !(config2 & 0xf8)) { if (chip_id == 0x01 && convrate <= 0x09) { /* W83L771W/G */ name = "w83l771"; } else if ((chip_id & 0xfe) == 0x10 && convrate <= 0x08) { /* W83L771AWG/ASG */ name = "w83l771"; } } return name; } static const char *lm90_detect_nxp(struct i2c_client *client, bool common_address, int chip_id, int config1, int convrate) { int address = client->addr; const char *name = NULL; int config2; switch (chip_id) { case 0x00: config2 = i2c_smbus_read_byte_data(client, LM90_REG_CONFIG2); if (config2 < 0) return NULL; if (address >= 0x48 && address <= 0x4f && !(config1 & 0x2a) && !(config2 & 0xfe) && convrate <= 0x09) name = "sa56004"; break; case 0x80: if (common_address && !(config1 & 0x3f) && convrate <= 0x07) name = "ne1618"; break; default: break; } return name; } static const char *lm90_detect_gmt(struct i2c_client *client, int chip_id, int config1, int convrate) { int address = client->addr; /* * According to the datasheet, G781 is supposed to be at I2C Address * 0x4c and have a chip ID of 0x01. G781-1 is supposed to be at I2C * address 0x4d and have a chip ID of 0x03. However, when support * for G781 was added, chips at 0x4c and 0x4d were found to have a * chip ID of 0x01. A G781-1 at I2C address 0x4d was now found with * chip ID 0x03. * To avoid detection failures, accept chip ID 0x01 and 0x03 at both * addresses. * G784 reports manufacturer ID 0x47 and chip ID 0x01. A public * datasheet is not available. Extensive testing suggests that * the chip appears to be fully compatible with G781. * Available register dumps show that G751 also reports manufacturer * ID 0x47 and chip ID 0x01 even though that chip does not officially * support those registers. This makes chip detection somewhat * vulnerable. To improve detection quality, read the offset low byte * and alert fault queue registers and verify that only expected bits * are set. */ if ((chip_id == 0x01 || chip_id == 0x03) && (address == 0x4c || address == 0x4d) && !(config1 & 0x3f) && convrate <= 0x08) { int reg; reg = i2c_smbus_read_byte_data(client, LM90_REG_REMOTE_OFFSL); if (reg < 0 || reg & 0x1f) return NULL; reg = i2c_smbus_read_byte_data(client, TMP451_REG_CONALERT); if (reg < 0 || reg & 0xf1) return NULL; return "g781"; } return NULL; } static const char *lm90_detect_ti49(struct i2c_client *client, bool common_address, int chip_id, int config1, int convrate) { if (common_address && chip_id == 0x00 && !(config1 & 0x3f) && !(convrate & 0xf8)) { /* THMC10: Unsupported registers return 0xff */ if (i2c_smbus_read_byte_data(client, LM90_REG_REMOTE_TEMPL) == 0xff && i2c_smbus_read_byte_data(client, LM90_REG_REMOTE_CRIT) == 0xff) return "thmc10"; } return NULL; } static const char *lm90_detect_ti(struct i2c_client *client, int chip_id, int config1, int convrate) { int address = client->addr; const char *name = NULL; if (chip_id == 0x00 && !(config1 & 0x1b) && convrate <= 0x09) { int local_ext, conalert, chen, dfc; local_ext = i2c_smbus_read_byte_data(client, TMP451_REG_LOCAL_TEMPL); conalert = i2c_smbus_read_byte_data(client, TMP451_REG_CONALERT); chen = i2c_smbus_read_byte_data(client, TMP461_REG_CHEN); dfc = i2c_smbus_read_byte_data(client, TMP461_REG_DFC); if (!(local_ext & 0x0f) && (conalert & 0xf1) == 0x01 && (chen & 0xfc) == 0x00 && (dfc & 0xfc) == 0x00) { if (address == 0x4c && !(chen & 0x03)) name = "tmp451"; else if (address >= 0x48 && address <= 0x4f) name = "tmp461"; } } return name; } /* Return 0 if detection is successful, -ENODEV otherwise */ static int lm90_detect(struct i2c_client *client, struct i2c_board_info *info) { struct i2c_adapter *adapter = client->adapter; int man_id, chip_id, config1, convrate, lhigh; const char *name = NULL; int address = client->addr; bool common_address = (address >= 0x18 && address <= 0x1a) || (address >= 0x29 && address <= 0x2b) || (address >= 0x4c && address <= 0x4e); if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) return -ENODEV; /* * Get well defined register value for chips with neither man_id nor * chip_id registers. */ lhigh = i2c_smbus_read_byte_data(client, LM90_REG_LOCAL_HIGH); /* detection and identification */ man_id = i2c_smbus_read_byte_data(client, LM90_REG_MAN_ID); chip_id = i2c_smbus_read_byte_data(client, LM90_REG_CHIP_ID); config1 = i2c_smbus_read_byte_data(client, LM90_REG_CONFIG1); convrate = i2c_smbus_read_byte_data(client, LM90_REG_CONVRATE); if (man_id < 0 || chip_id < 0 || config1 < 0 || convrate < 0 || lhigh < 0) return -ENODEV; /* Bail out immediately if all register report the same value */ if (lhigh == man_id && lhigh == chip_id && lhigh == config1 && lhigh == convrate) return -ENODEV; /* * If reading man_id and chip_id both return the same value as lhigh, * the chip may not support those registers and return the most recent read * value. Check again with a different register and handle accordingly. */ if (man_id == lhigh && chip_id == lhigh) { convrate = i2c_smbus_read_byte_data(client, LM90_REG_CONVRATE); man_id = i2c_smbus_read_byte_data(client, LM90_REG_MAN_ID); chip_id = i2c_smbus_read_byte_data(client, LM90_REG_CHIP_ID); if (convrate < 0 || man_id < 0 || chip_id < 0) return -ENODEV; if (man_id == convrate && chip_id == convrate) man_id = -1; } switch (man_id) { case -1: /* Chip does not support man_id / chip_id */ if (common_address && !convrate && !(config1 & 0x7f)) name = lm90_detect_lm84(client); break; case 0x01: /* National Semiconductor */ name = lm90_detect_national(client, chip_id, config1, convrate); break; case 0x1a: /* ON */ name = lm90_detect_on(client, chip_id, config1, convrate); break; case 0x23: /* Genesys Logic */ if (common_address && !(config1 & 0x3f) && !(convrate & 0xf8)) name = "gl523sm"; break; case 0x41: /* Analog Devices */ name = lm90_detect_analog(client, common_address, chip_id, config1, convrate); break; case 0x47: /* GMT */ name = lm90_detect_gmt(client, chip_id, config1, convrate); break; case 0x49: /* TI */ name = lm90_detect_ti49(client, common_address, chip_id, config1, convrate); break; case 0x4d: /* Maxim Integrated */ name = lm90_detect_maxim(client, common_address, chip_id, config1, convrate); break; case 0x54: /* ON MC1066, Microchip TC1068, TCM1617 (originally TelCom) */ if (common_address && !(config1 & 0x3f) && !(convrate & 0xf8)) name = "mc1066"; break; case 0x55: /* TI */ name = lm90_detect_ti(client, chip_id, config1, convrate); break; case 0x5c: /* Winbond/Nuvoton */ name = lm90_detect_nuvoton(client, chip_id, config1, convrate); break; case 0xa1: /* NXP Semiconductor/Philips */ name = lm90_detect_nxp(client, common_address, chip_id, config1, convrate); break; case 0xff: /* MAX1617, G767, NE1617 */ if (common_address && chip_id == 0xff && convrate < 8) name = lm90_detect_max1617(client, config1); break; default: break; } if (!name) { /* identification failed */ dev_dbg(&adapter->dev, "Unsupported chip at 0x%02x (man_id=0x%02X, chip_id=0x%02X)\n", client->addr, man_id, chip_id); return -ENODEV; } strscpy(info->type, name, I2C_NAME_SIZE); return 0; } static void lm90_restore_conf(void *_data) { struct lm90_data *data = _data; struct i2c_client *client = data->client; cancel_delayed_work_sync(&data->alert_work); cancel_work_sync(&data->report_work); /* Restore initial configuration */ if (data->flags & LM90_HAVE_CONVRATE) lm90_write_convrate(data, data->convrate_orig); lm90_write_reg(client, LM90_REG_CONFIG1, data->config_orig); } static int lm90_init_client(struct i2c_client *client, struct lm90_data *data) { struct device_node *np = client->dev.of_node; int config, convrate; if (data->flags & LM90_HAVE_CONVRATE) { convrate = lm90_read_reg(client, LM90_REG_CONVRATE); if (convrate < 0) return convrate; data->convrate_orig = convrate; lm90_set_convrate(client, data, 500); /* 500ms; 2Hz conversion rate */ } else { data->update_interval = 500; } /* * Start the conversions. */ config = lm90_read_reg(client, LM90_REG_CONFIG1); if (config < 0) return config; data->config_orig = config; data->config = config; /* Check Temperature Range Select */ if (data->flags & LM90_HAVE_EXTENDED_TEMP) { if (of_property_read_bool(np, "ti,extended-range-enable")) config |= 0x04; if (!(config & 0x04)) data->flags &= ~LM90_HAVE_EXTENDED_TEMP; } /* * Put MAX6680/MAX8881 into extended resolution (bit 0x10, * 0.125 degree resolution) and range (0x08, extend range * to -64 degree) mode for the remote temperature sensor. * Note that expeciments with an actual chip do not show a difference * if bit 3 is set or not. */ if (data->kind == max6680) config |= 0x18; /* * Put MAX6654 into extended range (0x20, extend minimum range from * 0 degrees to -64 degrees). Note that extended resolution is not * possible on the MAX6654 unless conversion rate is set to 1 Hz or * slower, which is intentionally not done by default. */ if (data->kind == max6654) config |= 0x20; /* * Select external channel 0 for devices with three sensors */ if (data->flags & LM90_HAVE_TEMP3) config &= ~0x08; /* * Interrupt is enabled by default on reset, but it may be disabled * by bootloader, unmask it. */ if (client->irq) config &= ~0x80; config &= 0xBF; /* run */ lm90_update_confreg(data, config); return devm_add_action_or_reset(&client->dev, lm90_restore_conf, data); } static bool lm90_is_tripped(struct i2c_client *client) { struct lm90_data *data = i2c_get_clientdata(client); int ret; ret = lm90_update_alarms(data, true); if (ret < 0) return false; return !!data->current_alarms; } static irqreturn_t lm90_irq_thread(int irq, void *dev_id) { struct i2c_client *client = dev_id; if (lm90_is_tripped(client)) return IRQ_HANDLED; else return IRQ_NONE; } static int lm90_probe_channel_from_dt(struct i2c_client *client, struct device_node *child, struct lm90_data *data) { u32 id; s32 val; int err; struct device *dev = &client->dev; err = of_property_read_u32(child, "reg", &id); if (err) { dev_err(dev, "missing reg property of %pOFn\n", child); return err; } if (id >= MAX_CHANNELS) { dev_err(dev, "invalid reg property value %d in %pOFn\n", id, child); return -EINVAL; } err = of_property_read_string(child, "label", &data->channel_label[id]); if (err == -ENODATA || err == -EILSEQ) { dev_err(dev, "invalid label property in %pOFn\n", child); return err; } if (data->channel_label[id]) data->channel_config[id] |= HWMON_T_LABEL; err = of_property_read_s32(child, "temperature-offset-millicelsius", &val); if (!err) { if (id == 0) { dev_err(dev, "temperature-offset-millicelsius can't be set for internal channel\n"); return -EINVAL; } err = lm90_set_temp_offset(data, lm90_temp_offset_index[id], id, val); if (err) { dev_err(dev, "can't set temperature offset %d for channel %d (%d)\n", val, id, err); return err; } } return 0; } static int lm90_parse_dt_channel_info(struct i2c_client *client, struct lm90_data *data) { int err; struct device_node *child; struct device *dev = &client->dev; const struct device_node *np = dev->of_node; for_each_child_of_node(np, child) { if (strcmp(child->name, "channel")) continue; err = lm90_probe_channel_from_dt(client, child, data); if (err) { of_node_put(child); return err; } } return 0; } static const struct hwmon_ops lm90_ops = { .is_visible = lm90_is_visible, .read = lm90_read, .read_string = lm90_read_string, .write = lm90_write, }; static int lm90_probe(struct i2c_client *client) { struct device *dev = &client->dev; struct i2c_adapter *adapter = client->adapter; struct hwmon_channel_info *info; struct device *hwmon_dev; struct lm90_data *data; int err; err = devm_regulator_get_enable(dev, "vcc"); if (err) return dev_err_probe(dev, err, "Failed to enable regulator\n"); data = devm_kzalloc(dev, sizeof(struct lm90_data), GFP_KERNEL); if (!data) return -ENOMEM; data->client = client; i2c_set_clientdata(client, data); mutex_init(&data->update_lock); INIT_DELAYED_WORK(&data->alert_work, lm90_alert_work); INIT_WORK(&data->report_work, lm90_report_alarms); /* Set the device type */ data->kind = (uintptr_t)i2c_get_match_data(client); /* * Different devices have different alarm bits triggering the * ALERT# output */ data->alert_alarms = lm90_params[data->kind].alert_alarms; data->resolution = lm90_params[data->kind].resolution ? : 11; /* Set chip capabilities */ data->flags = lm90_params[data->kind].flags; if ((data->flags & (LM90_HAVE_PEC | LM90_HAVE_PARTIAL_PEC)) && !i2c_check_functionality(adapter, I2C_FUNC_SMBUS_PEC)) data->flags &= ~(LM90_HAVE_PEC | LM90_HAVE_PARTIAL_PEC); if ((data->flags & LM90_HAVE_PARTIAL_PEC) && !i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE)) data->flags &= ~LM90_HAVE_PARTIAL_PEC; data->chip.ops = &lm90_ops; data->chip.info = data->info; data->info[0] = &data->chip_info; info = &data->chip_info; info->type = hwmon_chip; info->config = data->chip_config; data->chip_config[0] = HWMON_C_REGISTER_TZ; if (data->flags & LM90_HAVE_ALARMS) data->chip_config[0] |= HWMON_C_ALARMS; if (data->flags & LM90_HAVE_CONVRATE) data->chip_config[0] |= HWMON_C_UPDATE_INTERVAL; if (data->flags & LM90_HAVE_FAULTQUEUE) data->chip_config[0] |= HWMON_C_TEMP_SAMPLES; if (data->flags & (LM90_HAVE_PEC | LM90_HAVE_PARTIAL_PEC)) data->chip_config[0] |= HWMON_C_PEC; data->info[1] = &data->temp_info; info = &data->temp_info; info->type = hwmon_temp; info->config = data->channel_config; data->channel_config[0] = HWMON_T_INPUT | HWMON_T_MAX | HWMON_T_MAX_ALARM; data->channel_config[1] = HWMON_T_INPUT | HWMON_T_MAX | HWMON_T_MAX_ALARM | HWMON_T_FAULT; if (data->flags & LM90_HAVE_LOW) { data->channel_config[0] |= HWMON_T_MIN | HWMON_T_MIN_ALARM; data->channel_config[1] |= HWMON_T_MIN | HWMON_T_MIN_ALARM; } if (data->flags & LM90_HAVE_CRIT) { data->channel_config[0] |= HWMON_T_CRIT | HWMON_T_CRIT_ALARM | HWMON_T_CRIT_HYST; data->channel_config[1] |= HWMON_T_CRIT | HWMON_T_CRIT_ALARM | HWMON_T_CRIT_HYST; } if (data->flags & LM90_HAVE_OFFSET) data->channel_config[1] |= HWMON_T_OFFSET; if (data->flags & LM90_HAVE_EMERGENCY) { data->channel_config[0] |= HWMON_T_EMERGENCY | HWMON_T_EMERGENCY_HYST; data->channel_config[1] |= HWMON_T_EMERGENCY | HWMON_T_EMERGENCY_HYST; } if (data->flags & LM90_HAVE_EMERGENCY_ALARM) { data->channel_config[0] |= HWMON_T_EMERGENCY_ALARM; data->channel_config[1] |= HWMON_T_EMERGENCY_ALARM; } if (data->flags & LM90_HAVE_TEMP3) { data->channel_config[2] = HWMON_T_INPUT | HWMON_T_MIN | HWMON_T_MAX | HWMON_T_CRIT | HWMON_T_CRIT_HYST | HWMON_T_MIN_ALARM | HWMON_T_MAX_ALARM | HWMON_T_CRIT_ALARM | HWMON_T_FAULT; if (data->flags & LM90_HAVE_EMERGENCY) { data->channel_config[2] |= HWMON_T_EMERGENCY | HWMON_T_EMERGENCY_HYST; } if (data->flags & LM90_HAVE_EMERGENCY_ALARM) data->channel_config[2] |= HWMON_T_EMERGENCY_ALARM; if (data->flags & LM90_HAVE_OFFSET) data->channel_config[2] |= HWMON_T_OFFSET; } data->faultqueue_mask = lm90_params[data->kind].faultqueue_mask; data->faultqueue_depth = lm90_params[data->kind].faultqueue_depth; data->reg_local_ext = lm90_params[data->kind].reg_local_ext; if (data->flags & LM90_HAVE_REMOTE_EXT) data->reg_remote_ext = LM90_REG_REMOTE_TEMPL; data->reg_status2 = lm90_params[data->kind].reg_status2; /* Set maximum conversion rate */ data->max_convrate = lm90_params[data->kind].max_convrate; /* Parse device-tree channel information */ if (client->dev.of_node) { err = lm90_parse_dt_channel_info(client, data); if (err) return err; } /* Initialize the LM90 chip */ err = lm90_init_client(client, data); if (err < 0) { dev_err(dev, "Failed to initialize device\n"); return err; } hwmon_dev = devm_hwmon_device_register_with_info(dev, client->name, data, &data->chip, NULL); if (IS_ERR(hwmon_dev)) return PTR_ERR(hwmon_dev); data->hwmon_dev = hwmon_dev; if (client->irq) { dev_dbg(dev, "IRQ: %d\n", client->irq); err = devm_request_threaded_irq(dev, client->irq, NULL, lm90_irq_thread, IRQF_ONESHOT, "lm90", client); if (err < 0) { dev_err(dev, "cannot request IRQ %d\n", client->irq); return err; } } return 0; } static void lm90_alert(struct i2c_client *client, enum i2c_alert_protocol type, unsigned int flag) { if (type != I2C_PROTOCOL_SMBUS_ALERT) return; if (lm90_is_tripped(client)) { /* * Disable ALERT# output, because these chips don't implement * SMBus alert correctly; they should only hold the alert line * low briefly. */ struct lm90_data *data = i2c_get_clientdata(client); if ((data->flags & LM90_HAVE_BROKEN_ALERT) && (data->current_alarms & data->alert_alarms)) { if (!(data->config & 0x80)) { dev_dbg(&client->dev, "Disabling ALERT#\n"); lm90_update_confreg(data, data->config | 0x80); } schedule_delayed_work(&data->alert_work, max_t(int, HZ, msecs_to_jiffies(data->update_interval))); } } else { dev_dbg(&client->dev, "Everything OK\n"); } } static int lm90_suspend(struct device *dev) { struct lm90_data *data = dev_get_drvdata(dev); struct i2c_client *client = data->client; if (client->irq) disable_irq(client->irq); return 0; } static int lm90_resume(struct device *dev) { struct lm90_data *data = dev_get_drvdata(dev); struct i2c_client *client = data->client; if (client->irq) enable_irq(client->irq); return 0; } static DEFINE_SIMPLE_DEV_PM_OPS(lm90_pm_ops, lm90_suspend, lm90_resume); static struct i2c_driver lm90_driver = { .class = I2C_CLASS_HWMON, .driver = { .name = "lm90", .of_match_table = of_match_ptr(lm90_of_match), .pm = pm_sleep_ptr(&lm90_pm_ops), }, .probe = lm90_probe, .alert = lm90_alert, .id_table = lm90_id, .detect = lm90_detect, .address_list = normal_i2c, }; module_i2c_driver(lm90_driver); MODULE_AUTHOR("Jean Delvare <jdelvare@suse.de>"); MODULE_DESCRIPTION("LM90/ADM1032 driver"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1