Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Nuno Sá | 7678 | 100.00% | 1 | 100.00% |
Total | 7678 | 1 |
// SPDX-License-Identifier: GPL-2.0 /* * Analog Devices LTC4282 I2C High Current Hot Swap Controller over I2C * * Copyright 2023 Analog Devices Inc. */ #include <linux/bitfield.h> #include <linux/cleanup.h> #include <linux/clk.h> #include <linux/clk-provider.h> #include <linux/debugfs.h> #include <linux/delay.h> #include <linux/device.h> #include <linux/hwmon.h> #include <linux/hwmon-sysfs.h> #include <linux/i2c.h> #include <linux/math.h> #include <linux/minmax.h> #include <linux/module.h> #include <linux/mod_devicetable.h> #include <linux/mutex.h> #include <linux/regmap.h> #include <linux/property.h> #include <linux/string.h> #include <linux/units.h> #include <linux/util_macros.h> #define LTC4282_CTRL_LSB 0x00 #define LTC4282_CTRL_OV_RETRY_MASK BIT(0) #define LTC4282_CTRL_UV_RETRY_MASK BIT(1) #define LTC4282_CTRL_OC_RETRY_MASK BIT(2) #define LTC4282_CTRL_ON_ACTIVE_LOW_MASK BIT(5) #define LTC4282_CTRL_ON_DELAY_MASK BIT(6) #define LTC4282_CTRL_MSB 0x01 #define LTC4282_CTRL_VIN_MODE_MASK GENMASK(1, 0) #define LTC4282_CTRL_OV_MODE_MASK GENMASK(3, 2) #define LTC4282_CTRL_UV_MODE_MASK GENMASK(5, 4) #define LTC4282_FAULT_LOG 0x04 #define LTC4282_OV_FAULT_MASK BIT(0) #define LTC4282_UV_FAULT_MASK BIT(1) #define LTC4282_VDD_FAULT_MASK \ (LTC4282_OV_FAULT_MASK | LTC4282_UV_FAULT_MASK) #define LTC4282_OC_FAULT_MASK BIT(2) #define LTC4282_POWER_BAD_FAULT_MASK BIT(3) #define LTC4282_FET_SHORT_FAULT_MASK BIT(5) #define LTC4282_FET_BAD_FAULT_MASK BIT(6) #define LTC4282_FET_FAILURE_FAULT_MASK \ (LTC4282_FET_SHORT_FAULT_MASK | LTC4282_FET_BAD_FAULT_MASK) #define LTC4282_ADC_ALERT_LOG 0x05 #define LTC4282_GPIO_ALARM_L_MASK BIT(0) #define LTC4282_GPIO_ALARM_H_MASK BIT(1) #define LTC4282_VSOURCE_ALARM_L_MASK BIT(2) #define LTC4282_VSOURCE_ALARM_H_MASK BIT(3) #define LTC4282_VSENSE_ALARM_L_MASK BIT(4) #define LTC4282_VSENSE_ALARM_H_MASK BIT(5) #define LTC4282_POWER_ALARM_L_MASK BIT(6) #define LTC4282_POWER_ALARM_H_MASK BIT(7) #define LTC4282_FET_BAD_FAULT_TIMEOUT 0x06 #define LTC4282_FET_BAD_MAX_TIMEOUT 255 #define LTC4282_GPIO_CONFIG 0x07 #define LTC4282_GPIO_2_FET_STRESS_MASK BIT(1) #define LTC4282_GPIO_1_CONFIG_MASK GENMASK(5, 4) #define LTC4282_VGPIO_MIN 0x08 #define LTC4282_VGPIO_MAX 0x09 #define LTC4282_VSOURCE_MIN 0x0a #define LTC4282_VSOURCE_MAX 0x0b #define LTC4282_VSENSE_MIN 0x0c #define LTC4282_VSENSE_MAX 0x0d #define LTC4282_POWER_MIN 0x0e #define LTC4282_POWER_MAX 0x0f #define LTC4282_CLK_DIV 0x10 #define LTC4282_CLK_DIV_MASK GENMASK(4, 0) #define LTC4282_CLKOUT_MASK GENMASK(6, 5) #define LTC4282_ILIM_ADJUST 0x11 #define LTC4282_GPIO_MODE_MASK BIT(1) #define LTC4282_VDD_MONITOR_MASK BIT(2) #define LTC4282_FOLDBACK_MODE_MASK GENMASK(4, 3) #define LTC4282_ILIM_ADJUST_MASK GENMASK(7, 5) #define LTC4282_ENERGY 0x12 #define LTC4282_TIME_COUNTER 0x18 #define LTC4282_ALERT_CTRL 0x1c #define LTC4282_ALERT_OUT_MASK BIT(6) #define LTC4282_ADC_CTRL 0x1d #define LTC4282_FAULT_LOG_EN_MASK BIT(2) #define LTC4282_METER_HALT_MASK BIT(5) #define LTC4282_METER_RESET_MASK BIT(6) #define LTC4282_RESET_MASK BIT(7) #define LTC4282_STATUS_LSB 0x1e #define LTC4282_OV_STATUS_MASK BIT(0) #define LTC4282_UV_STATUS_MASK BIT(1) #define LTC4282_VDD_STATUS_MASK \ (LTC4282_OV_STATUS_MASK | LTC4282_UV_STATUS_MASK) #define LTC4282_OC_STATUS_MASK BIT(2) #define LTC4282_POWER_GOOD_MASK BIT(3) #define LTC4282_FET_FAILURE_MASK GENMASK(6, 5) #define LTC4282_STATUS_MSB 0x1f #define LTC4282_RESERVED_1 0x32 #define LTC4282_RESERVED_2 0x33 #define LTC4282_VGPIO 0x34 #define LTC4282_VGPIO_LOWEST 0x36 #define LTC4282_VGPIO_HIGHEST 0x38 #define LTC4282_VSOURCE 0x3a #define LTC4282_VSOURCE_LOWEST 0x3c #define LTC4282_VSOURCE_HIGHEST 0x3e #define LTC4282_VSENSE 0x40 #define LTC4282_VSENSE_LOWEST 0x42 #define LTC4282_VSENSE_HIGHEST 0x44 #define LTC4282_POWER 0x46 #define LTC4282_POWER_LOWEST 0x48 #define LTC4282_POWER_HIGHEST 0x4a #define LTC4282_RESERVED_3 0x50 #define LTC4282_CLKIN_MIN (250 * KILO) #define LTC4282_CLKIN_MAX (15500 * KILO) #define LTC4282_CLKIN_RANGE (LTC4282_CLKIN_MAX - LTC4282_CLKIN_MIN + 1) #define LTC4282_CLKOUT_SYSTEM (250 * KILO) #define LTC4282_CLKOUT_CNV 15 enum { LTC4282_CHAN_VSOURCE, LTC4282_CHAN_VDD, LTC4282_CHAN_VGPIO, }; struct ltc4282_cache { u32 in_max_raw; u32 in_min_raw; long in_highest; long in_lowest; bool en; }; struct ltc4282_state { struct regmap *map; /* Protect against multiple accesses to the device registers */ struct mutex lock; struct clk_hw clk_hw; /* * Used to cache values for VDD/VSOURCE depending which will be used * when hwmon is not enabled for that channel. Needed because they share * the same registers. */ struct ltc4282_cache in0_1_cache[LTC4282_CHAN_VGPIO]; u32 vsense_max; long power_max; u32 rsense; u16 vdd; u16 vfs_out; bool energy_en; }; enum { LTC4282_CLKOUT_NONE, LTC4282_CLKOUT_INT, LTC4282_CLKOUT_TICK, }; static int ltc4282_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { struct ltc4282_state *st = container_of(hw, struct ltc4282_state, clk_hw); u32 val = LTC4282_CLKOUT_INT; if (rate == LTC4282_CLKOUT_CNV) val = LTC4282_CLKOUT_TICK; return regmap_update_bits(st->map, LTC4282_CLK_DIV, LTC4282_CLKOUT_MASK, FIELD_PREP(LTC4282_CLKOUT_MASK, val)); } /* * Note the 15HZ conversion rate assumes 12bit ADC which is what we are * supporting for now. */ static const unsigned int ltc4282_out_rates[] = { LTC4282_CLKOUT_CNV, LTC4282_CLKOUT_SYSTEM }; static long ltc4282_round_rate(struct clk_hw *hw, unsigned long rate, unsigned long *parent_rate) { int idx = find_closest(rate, ltc4282_out_rates, ARRAY_SIZE(ltc4282_out_rates)); return ltc4282_out_rates[idx]; } static unsigned long ltc4282_recalc_rate(struct clk_hw *hw, unsigned long parent) { struct ltc4282_state *st = container_of(hw, struct ltc4282_state, clk_hw); u32 clkdiv; int ret; ret = regmap_read(st->map, LTC4282_CLK_DIV, &clkdiv); if (ret) return 0; clkdiv = FIELD_GET(LTC4282_CLKOUT_MASK, clkdiv); if (!clkdiv) return 0; if (clkdiv == LTC4282_CLKOUT_INT) return LTC4282_CLKOUT_SYSTEM; return LTC4282_CLKOUT_CNV; } static void ltc4282_disable(struct clk_hw *clk_hw) { struct ltc4282_state *st = container_of(clk_hw, struct ltc4282_state, clk_hw); regmap_clear_bits(st->map, LTC4282_CLK_DIV, LTC4282_CLKOUT_MASK); } static int ltc4282_read_voltage_word(const struct ltc4282_state *st, u32 reg, u32 fs, long *val) { __be16 in; int ret; ret = regmap_bulk_read(st->map, reg, &in, sizeof(in)); if (ret) return ret; /* * This is also used to calculate current in which case fs comes in * 10 * uV. Hence the ULL usage. */ *val = DIV_ROUND_CLOSEST_ULL(be16_to_cpu(in) * (u64)fs, U16_MAX); return 0; } static int ltc4282_read_voltage_byte_cached(const struct ltc4282_state *st, u32 reg, u32 fs, long *val, u32 *cached_raw) { int ret; u32 in; if (cached_raw) { in = *cached_raw; } else { ret = regmap_read(st->map, reg, &in); if (ret) return ret; } *val = DIV_ROUND_CLOSEST(in * fs, U8_MAX); return 0; } static int ltc4282_read_voltage_byte(const struct ltc4282_state *st, u32 reg, u32 fs, long *val) { return ltc4282_read_voltage_byte_cached(st, reg, fs, val, NULL); } static int __ltc4282_read_alarm(struct ltc4282_state *st, u32 reg, u32 mask, long *val) { u32 alarm; int ret; ret = regmap_read(st->map, reg, &alarm); if (ret) return ret; *val = !!(alarm & mask); /* if not status/fault logs, clear the alarm after reading it */ if (reg != LTC4282_STATUS_LSB && reg != LTC4282_FAULT_LOG) return regmap_clear_bits(st->map, reg, mask); return 0; } static int ltc4282_read_alarm(struct ltc4282_state *st, u32 reg, u32 mask, long *val) { guard(mutex)(&st->lock); return __ltc4282_read_alarm(st, reg, mask, val); } static int ltc4282_vdd_source_read_in(struct ltc4282_state *st, u32 channel, long *val) { guard(mutex)(&st->lock); if (!st->in0_1_cache[channel].en) return -ENODATA; return ltc4282_read_voltage_word(st, LTC4282_VSOURCE, st->vfs_out, val); } static int ltc4282_vdd_source_read_hist(struct ltc4282_state *st, u32 reg, u32 channel, long *cached, long *val) { int ret; guard(mutex)(&st->lock); if (!st->in0_1_cache[channel].en) { *val = *cached; return 0; } ret = ltc4282_read_voltage_word(st, reg, st->vfs_out, val); if (ret) return ret; *cached = *val; return 0; } static int ltc4282_vdd_source_read_lim(struct ltc4282_state *st, u32 reg, u32 channel, u32 *cached, long *val) { guard(mutex)(&st->lock); if (!st->in0_1_cache[channel].en) return ltc4282_read_voltage_byte_cached(st, reg, st->vfs_out, val, cached); return ltc4282_read_voltage_byte(st, reg, st->vfs_out, val); } static int ltc4282_vdd_source_read_alm(struct ltc4282_state *st, u32 mask, u32 channel, long *val) { guard(mutex)(&st->lock); if (!st->in0_1_cache[channel].en) { /* * Do this otherwise alarms can get confused because we clear * them after reading them. So, if someone mistakenly reads * VSOURCE right before VDD (or the other way around), we might * get no alarm just because it was cleared when reading VSOURCE * and had no time for a new conversion and thus having the * alarm again. */ *val = 0; return 0; } return __ltc4282_read_alarm(st, LTC4282_ADC_ALERT_LOG, mask, val); } static int ltc4282_read_in(struct ltc4282_state *st, u32 attr, long *val, u32 channel) { switch (attr) { case hwmon_in_input: if (channel == LTC4282_CHAN_VGPIO) return ltc4282_read_voltage_word(st, LTC4282_VGPIO, 1280, val); return ltc4282_vdd_source_read_in(st, channel, val); case hwmon_in_highest: if (channel == LTC4282_CHAN_VGPIO) return ltc4282_read_voltage_word(st, LTC4282_VGPIO_HIGHEST, 1280, val); return ltc4282_vdd_source_read_hist(st, LTC4282_VSOURCE_HIGHEST, channel, &st->in0_1_cache[channel].in_highest, val); case hwmon_in_lowest: if (channel == LTC4282_CHAN_VGPIO) return ltc4282_read_voltage_word(st, LTC4282_VGPIO_LOWEST, 1280, val); return ltc4282_vdd_source_read_hist(st, LTC4282_VSOURCE_LOWEST, channel, &st->in0_1_cache[channel].in_lowest, val); case hwmon_in_max_alarm: if (channel == LTC4282_CHAN_VGPIO) return ltc4282_read_alarm(st, LTC4282_ADC_ALERT_LOG, LTC4282_GPIO_ALARM_H_MASK, val); return ltc4282_vdd_source_read_alm(st, LTC4282_VSOURCE_ALARM_H_MASK, channel, val); case hwmon_in_min_alarm: if (channel == LTC4282_CHAN_VGPIO) ltc4282_read_alarm(st, LTC4282_ADC_ALERT_LOG, LTC4282_GPIO_ALARM_L_MASK, val); return ltc4282_vdd_source_read_alm(st, LTC4282_VSOURCE_ALARM_L_MASK, channel, val); case hwmon_in_crit_alarm: return ltc4282_read_alarm(st, LTC4282_STATUS_LSB, LTC4282_OV_STATUS_MASK, val); case hwmon_in_lcrit_alarm: return ltc4282_read_alarm(st, LTC4282_STATUS_LSB, LTC4282_UV_STATUS_MASK, val); case hwmon_in_max: if (channel == LTC4282_CHAN_VGPIO) return ltc4282_read_voltage_byte(st, LTC4282_VGPIO_MAX, 1280, val); return ltc4282_vdd_source_read_lim(st, LTC4282_VSOURCE_MAX, channel, &st->in0_1_cache[channel].in_max_raw, val); case hwmon_in_min: if (channel == LTC4282_CHAN_VGPIO) return ltc4282_read_voltage_byte(st, LTC4282_VGPIO_MIN, 1280, val); return ltc4282_vdd_source_read_lim(st, LTC4282_VSOURCE_MIN, channel, &st->in0_1_cache[channel].in_min_raw, val); case hwmon_in_enable: scoped_guard(mutex, &st->lock) { *val = st->in0_1_cache[channel].en; } return 0; case hwmon_in_fault: /* * We report failure if we detect either a fer_bad or a * fet_short in the status register. */ return ltc4282_read_alarm(st, LTC4282_STATUS_LSB, LTC4282_FET_FAILURE_MASK, val); default: return -EOPNOTSUPP; } } static int ltc4282_read_current_word(const struct ltc4282_state *st, u32 reg, long *val) { long in; int ret; /* * We pass in full scale in 10 * micro (note that 40 is already * millivolt) so we have better approximations to calculate current. */ ret = ltc4282_read_voltage_word(st, reg, DECA * 40 * MILLI, &in); if (ret) return ret; *val = DIV_ROUND_CLOSEST(in * MILLI, st->rsense); return 0; } static int ltc4282_read_current_byte(const struct ltc4282_state *st, u32 reg, long *val) { long in; int ret; ret = ltc4282_read_voltage_byte(st, reg, DECA * 40 * MILLI, &in); if (ret) return ret; *val = DIV_ROUND_CLOSEST(in * MILLI, st->rsense); return 0; } static int ltc4282_read_curr(struct ltc4282_state *st, const u32 attr, long *val) { switch (attr) { case hwmon_curr_input: return ltc4282_read_current_word(st, LTC4282_VSENSE, val); case hwmon_curr_highest: return ltc4282_read_current_word(st, LTC4282_VSENSE_HIGHEST, val); case hwmon_curr_lowest: return ltc4282_read_current_word(st, LTC4282_VSENSE_LOWEST, val); case hwmon_curr_max: return ltc4282_read_current_byte(st, LTC4282_VSENSE_MAX, val); case hwmon_curr_min: return ltc4282_read_current_byte(st, LTC4282_VSENSE_MIN, val); case hwmon_curr_max_alarm: return ltc4282_read_alarm(st, LTC4282_ADC_ALERT_LOG, LTC4282_VSENSE_ALARM_H_MASK, val); case hwmon_curr_min_alarm: return ltc4282_read_alarm(st, LTC4282_ADC_ALERT_LOG, LTC4282_VSENSE_ALARM_L_MASK, val); case hwmon_curr_crit_alarm: return ltc4282_read_alarm(st, LTC4282_STATUS_LSB, LTC4282_OC_STATUS_MASK, val); default: return -EOPNOTSUPP; } } static int ltc4282_read_power_word(const struct ltc4282_state *st, u32 reg, long *val) { u64 temp = DECA * 40ULL * st->vfs_out * BIT(16), temp_2; __be16 raw; u16 power; int ret; ret = regmap_bulk_read(st->map, reg, &raw, sizeof(raw)); if (ret) return ret; power = be16_to_cpu(raw); /* * Power is given by: * P = CODE(16b) * 0.040 * Vfs(out) * 2^16 / ((2^16 - 1)^2 * Rsense) */ if (check_mul_overflow(power * temp, MICRO, &temp_2)) { temp = DIV_ROUND_CLOSEST_ULL(power * temp, U16_MAX); *val = DIV64_U64_ROUND_CLOSEST(temp * MICRO, U16_MAX * (u64)st->rsense); return 0; } *val = DIV64_U64_ROUND_CLOSEST(temp_2, st->rsense * int_pow(U16_MAX, 2)); return 0; } static int ltc4282_read_power_byte(const struct ltc4282_state *st, u32 reg, long *val) { u32 power; u64 temp; int ret; ret = regmap_read(st->map, reg, &power); if (ret) return ret; temp = power * 40 * DECA * st->vfs_out * BIT_ULL(8); *val = DIV64_U64_ROUND_CLOSEST(temp * MICRO, int_pow(U8_MAX, 2) * st->rsense); return 0; } static int ltc4282_read_energy(const struct ltc4282_state *st, u64 *val) { u64 temp, energy; __be64 raw; int ret; ret = regmap_bulk_read(st->map, LTC4282_ENERGY, &raw, 6); if (ret) return ret; energy = be64_to_cpu(raw) >> 16; /* * The formula for energy is given by: * E = CODE(48b) * 0.040 * Vfs(out) * Tconv * 256 / * ((2^16 - 1)^2 * Rsense) * * Since we only support 12bit ADC, Tconv = 0.065535s. Passing Vfs(out) * and 0.040 to mV and Tconv to us, we can simplify the formula to: * E = CODE(48b) * 40 * Vfs(out) * 256 / (U16_MAX * Rsense) * * As Rsense can have tenths of micro-ohm resolution, we need to * multiply by DECA to get microujoule. */ if (check_mul_overflow(DECA * st->vfs_out * 40 * BIT(8), energy, &temp)) { temp = DIV_ROUND_CLOSEST(DECA * st->vfs_out * 40 * BIT(8), U16_MAX); *val = DIV_ROUND_CLOSEST_ULL(temp * energy, st->rsense); return 0; } *val = DIV64_U64_ROUND_CLOSEST(temp, U16_MAX * (u64)st->rsense); return 0; } static int ltc4282_read_power(struct ltc4282_state *st, const u32 attr, long *val) { switch (attr) { case hwmon_power_input: return ltc4282_read_power_word(st, LTC4282_POWER, val); case hwmon_power_input_highest: return ltc4282_read_power_word(st, LTC4282_POWER_HIGHEST, val); case hwmon_power_input_lowest: return ltc4282_read_power_word(st, LTC4282_POWER_LOWEST, val); case hwmon_power_max_alarm: return ltc4282_read_alarm(st, LTC4282_ADC_ALERT_LOG, LTC4282_POWER_ALARM_H_MASK, val); case hwmon_power_min_alarm: return ltc4282_read_alarm(st, LTC4282_ADC_ALERT_LOG, LTC4282_POWER_ALARM_L_MASK, val); case hwmon_power_max: return ltc4282_read_power_byte(st, LTC4282_POWER_MAX, val); case hwmon_power_min: return ltc4282_read_power_byte(st, LTC4282_POWER_MIN, val); default: return -EOPNOTSUPP; } } static int ltc4282_read(struct device *dev, enum hwmon_sensor_types type, u32 attr, int channel, long *val) { struct ltc4282_state *st = dev_get_drvdata(dev); switch (type) { case hwmon_in: return ltc4282_read_in(st, attr, val, channel); case hwmon_curr: return ltc4282_read_curr(st, attr, val); case hwmon_power: return ltc4282_read_power(st, attr, val); case hwmon_energy: scoped_guard(mutex, &st->lock) { *val = st->energy_en; } return 0; default: return -EOPNOTSUPP; } } static int ltc4282_write_power_byte(const struct ltc4282_state *st, u32 reg, long val) { u32 power; u64 temp; if (val > st->power_max) val = st->power_max; temp = val * int_pow(U8_MAX, 2) * st->rsense; power = DIV64_U64_ROUND_CLOSEST(temp, MICRO * DECA * 256ULL * st->vfs_out * 40); return regmap_write(st->map, reg, power); } static int ltc4282_write_power_word(const struct ltc4282_state *st, u32 reg, long val) { u64 temp = int_pow(U16_MAX, 2) * st->rsense, temp_2; __be16 __raw; u16 code; if (check_mul_overflow(temp, val, &temp_2)) { temp = DIV_ROUND_CLOSEST_ULL(temp, DECA * MICRO); code = DIV64_U64_ROUND_CLOSEST(temp * val, 40ULL * BIT(16) * st->vfs_out); } else { temp = DECA * MICRO * 40ULL * BIT(16) * st->vfs_out; code = DIV64_U64_ROUND_CLOSEST(temp_2, temp); } __raw = cpu_to_be16(code); return regmap_bulk_write(st->map, reg, &__raw, sizeof(__raw)); } static int __ltc4282_in_write_history(const struct ltc4282_state *st, u32 reg, long lowest, long highest, u32 fs) { __be16 __raw; u16 tmp; int ret; tmp = DIV_ROUND_CLOSEST(U16_MAX * lowest, fs); __raw = cpu_to_be16(tmp); ret = regmap_bulk_write(st->map, reg, &__raw, 2); if (ret) return ret; tmp = DIV_ROUND_CLOSEST(U16_MAX * highest, fs); __raw = cpu_to_be16(tmp); return regmap_bulk_write(st->map, reg + 2, &__raw, 2); } static int ltc4282_in_write_history(struct ltc4282_state *st, u32 reg, long lowest, long highest, u32 fs) { guard(mutex)(&st->lock); return __ltc4282_in_write_history(st, reg, lowest, highest, fs); } static int ltc4282_power_reset_hist(struct ltc4282_state *st) { int ret; guard(mutex)(&st->lock); ret = ltc4282_write_power_word(st, LTC4282_POWER_LOWEST, st->power_max); if (ret) return ret; ret = ltc4282_write_power_word(st, LTC4282_POWER_HIGHEST, 0); if (ret) return ret; /* now, let's also clear possible power_bad fault logs */ return regmap_clear_bits(st->map, LTC4282_FAULT_LOG, LTC4282_POWER_BAD_FAULT_MASK); } static int ltc4282_write_power(struct ltc4282_state *st, u32 attr, long val) { switch (attr) { case hwmon_power_max: return ltc4282_write_power_byte(st, LTC4282_POWER_MAX, val); case hwmon_power_min: return ltc4282_write_power_byte(st, LTC4282_POWER_MIN, val); case hwmon_power_reset_history: return ltc4282_power_reset_hist(st); default: return -EOPNOTSUPP; } } static int ltc4282_write_voltage_byte_cached(const struct ltc4282_state *st, u32 reg, u32 fs, long val, u32 *cache_raw) { u32 in; val = clamp_val(val, 0, fs); in = DIV_ROUND_CLOSEST(val * U8_MAX, fs); if (cache_raw) { *cache_raw = in; return 0; } return regmap_write(st->map, reg, in); } static int ltc4282_write_voltage_byte(const struct ltc4282_state *st, u32 reg, u32 fs, long val) { return ltc4282_write_voltage_byte_cached(st, reg, fs, val, NULL); } static int ltc4282_cache_history(struct ltc4282_state *st, u32 channel) { long val; int ret; ret = ltc4282_read_voltage_word(st, LTC4282_VSOURCE_LOWEST, st->vfs_out, &val); if (ret) return ret; st->in0_1_cache[channel].in_lowest = val; ret = ltc4282_read_voltage_word(st, LTC4282_VSOURCE_HIGHEST, st->vfs_out, &val); if (ret) return ret; st->in0_1_cache[channel].in_highest = val; ret = regmap_read(st->map, LTC4282_VSOURCE_MIN, &st->in0_1_cache[channel].in_min_raw); if (ret) return ret; return regmap_read(st->map, LTC4282_VSOURCE_MAX, &st->in0_1_cache[channel].in_max_raw); } static int ltc4282_cache_sync(struct ltc4282_state *st, u32 channel) { int ret; ret = __ltc4282_in_write_history(st, LTC4282_VSOURCE_LOWEST, st->in0_1_cache[channel].in_lowest, st->in0_1_cache[channel].in_highest, st->vfs_out); if (ret) return ret; ret = regmap_write(st->map, LTC4282_VSOURCE_MIN, st->in0_1_cache[channel].in_min_raw); if (ret) return ret; return regmap_write(st->map, LTC4282_VSOURCE_MAX, st->in0_1_cache[channel].in_max_raw); } static int ltc4282_vdd_source_write_lim(struct ltc4282_state *st, u32 reg, int channel, u32 *cache, long val) { int ret; guard(mutex)(&st->lock); if (st->in0_1_cache[channel].en) ret = ltc4282_write_voltage_byte(st, reg, st->vfs_out, val); else ret = ltc4282_write_voltage_byte_cached(st, reg, st->vfs_out, val, cache); return ret; } static int ltc4282_vdd_source_reset_hist(struct ltc4282_state *st, int channel) { long lowest = st->vfs_out; int ret; if (channel == LTC4282_CHAN_VDD) lowest = st->vdd; guard(mutex)(&st->lock); if (st->in0_1_cache[channel].en) { ret = __ltc4282_in_write_history(st, LTC4282_VSOURCE_LOWEST, lowest, 0, st->vfs_out); if (ret) return ret; } st->in0_1_cache[channel].in_lowest = lowest; st->in0_1_cache[channel].in_highest = 0; /* * We are also clearing possible fault logs in reset_history. Clearing * the logs might be important when the auto retry bits are not enabled * as the chip only enables the output again after having these logs * cleared. As some of these logs are related to limits, it makes sense * to clear them in here. For VDD, we need to clear under/over voltage * events. For VSOURCE, fet_short and fet_bad... */ if (channel == LTC4282_CHAN_VSOURCE) return regmap_clear_bits(st->map, LTC4282_FAULT_LOG, LTC4282_FET_FAILURE_FAULT_MASK); return regmap_clear_bits(st->map, LTC4282_FAULT_LOG, LTC4282_VDD_FAULT_MASK); } /* * We need to mux between VSOURCE and VDD which means they are mutually * exclusive. Moreover, we can't really disable both VDD and VSOURCE as the ADC * is continuously running (we cannot independently halt it without also * stopping VGPIO). Hence, the logic is that disabling or enabling VDD will * automatically have the reverse effect on VSOURCE and vice-versa. */ static int ltc4282_vdd_source_enable(struct ltc4282_state *st, int channel, long val) { int ret, other_chan = ~channel & 0x1; u8 __val = val; guard(mutex)(&st->lock); if (st->in0_1_cache[channel].en == !!val) return 0; /* clearing the bit makes the ADC to monitor VDD */ if (channel == LTC4282_CHAN_VDD) __val = !__val; ret = regmap_update_bits(st->map, LTC4282_ILIM_ADJUST, LTC4282_VDD_MONITOR_MASK, FIELD_PREP(LTC4282_VDD_MONITOR_MASK, !!__val)); if (ret) return ret; st->in0_1_cache[channel].en = !!val; st->in0_1_cache[other_chan].en = !val; if (st->in0_1_cache[channel].en) { /* * Then, we are disabling @other_chan. Let's save it's current * history. */ ret = ltc4282_cache_history(st, other_chan); if (ret) return ret; return ltc4282_cache_sync(st, channel); } /* * Then, we are enabling @other_chan. We need to do the opposite from * above. */ ret = ltc4282_cache_history(st, channel); if (ret) return ret; return ltc4282_cache_sync(st, other_chan); } static int ltc4282_write_in(struct ltc4282_state *st, u32 attr, long val, int channel) { switch (attr) { case hwmon_in_max: if (channel == LTC4282_CHAN_VGPIO) return ltc4282_write_voltage_byte(st, LTC4282_VGPIO_MAX, 1280, val); return ltc4282_vdd_source_write_lim(st, LTC4282_VSOURCE_MAX, channel, &st->in0_1_cache[channel].in_max_raw, val); case hwmon_in_min: if (channel == LTC4282_CHAN_VGPIO) return ltc4282_write_voltage_byte(st, LTC4282_VGPIO_MIN, 1280, val); return ltc4282_vdd_source_write_lim(st, LTC4282_VSOURCE_MIN, channel, &st->in0_1_cache[channel].in_min_raw, val); case hwmon_in_reset_history: if (channel == LTC4282_CHAN_VGPIO) return ltc4282_in_write_history(st, LTC4282_VGPIO_LOWEST, 1280, 0, 1280); return ltc4282_vdd_source_reset_hist(st, channel); case hwmon_in_enable: return ltc4282_vdd_source_enable(st, channel, val); default: return -EOPNOTSUPP; } } static int ltc4282_curr_reset_hist(struct ltc4282_state *st) { int ret; guard(mutex)(&st->lock); ret = __ltc4282_in_write_history(st, LTC4282_VSENSE_LOWEST, st->vsense_max, 0, 40 * MILLI); if (ret) return ret; /* now, let's also clear possible overcurrent fault logs */ return regmap_clear_bits(st->map, LTC4282_FAULT_LOG, LTC4282_OC_FAULT_MASK); } static int ltc4282_write_curr(struct ltc4282_state *st, u32 attr, long val) { /* need to pass it in millivolt */ u32 in = DIV_ROUND_CLOSEST_ULL((u64)val * st->rsense, DECA * MICRO); switch (attr) { case hwmon_curr_max: return ltc4282_write_voltage_byte(st, LTC4282_VSENSE_MAX, 40, in); case hwmon_curr_min: return ltc4282_write_voltage_byte(st, LTC4282_VSENSE_MIN, 40, in); case hwmon_curr_reset_history: return ltc4282_curr_reset_hist(st); default: return -EOPNOTSUPP; } } static int ltc4282_energy_enable_set(struct ltc4282_state *st, long val) { int ret; guard(mutex)(&st->lock); /* setting the bit halts the meter */ ret = regmap_update_bits(st->map, LTC4282_ADC_CTRL, LTC4282_METER_HALT_MASK, FIELD_PREP(LTC4282_METER_HALT_MASK, !val)); if (ret) return ret; st->energy_en = !!val; return 0; } static int ltc4282_write(struct device *dev, enum hwmon_sensor_types type, u32 attr, int channel, long val) { struct ltc4282_state *st = dev_get_drvdata(dev); switch (type) { case hwmon_power: return ltc4282_write_power(st, attr, val); case hwmon_in: return ltc4282_write_in(st, attr, val, channel); case hwmon_curr: return ltc4282_write_curr(st, attr, val); case hwmon_energy: return ltc4282_energy_enable_set(st, val); default: return -EOPNOTSUPP; } } static umode_t ltc4282_in_is_visible(const struct ltc4282_state *st, u32 attr) { switch (attr) { case hwmon_in_input: case hwmon_in_highest: case hwmon_in_lowest: case hwmon_in_max_alarm: case hwmon_in_min_alarm: case hwmon_in_label: case hwmon_in_lcrit_alarm: case hwmon_in_crit_alarm: case hwmon_in_fault: return 0444; case hwmon_in_max: case hwmon_in_min: case hwmon_in_enable: case hwmon_in_reset_history: return 0644; default: return 0; } } static umode_t ltc4282_curr_is_visible(u32 attr) { switch (attr) { case hwmon_curr_input: case hwmon_curr_highest: case hwmon_curr_lowest: case hwmon_curr_max_alarm: case hwmon_curr_min_alarm: case hwmon_curr_crit_alarm: case hwmon_curr_label: return 0444; case hwmon_curr_max: case hwmon_curr_min: case hwmon_curr_reset_history: return 0644; default: return 0; } } static umode_t ltc4282_power_is_visible(u32 attr) { switch (attr) { case hwmon_power_input: case hwmon_power_input_highest: case hwmon_power_input_lowest: case hwmon_power_label: case hwmon_power_max_alarm: case hwmon_power_min_alarm: return 0444; case hwmon_power_max: case hwmon_power_min: case hwmon_power_reset_history: return 0644; default: return 0; } } static umode_t ltc4282_is_visible(const void *data, enum hwmon_sensor_types type, u32 attr, int channel) { switch (type) { case hwmon_in: return ltc4282_in_is_visible(data, attr); case hwmon_curr: return ltc4282_curr_is_visible(attr); case hwmon_power: return ltc4282_power_is_visible(attr); case hwmon_energy: /* hwmon_energy_enable */ return 0644; default: return 0; } } static const char * const ltc4282_in_strs[] = { "VSOURCE", "VDD", "VGPIO" }; static int ltc4282_read_labels(struct device *dev, enum hwmon_sensor_types type, u32 attr, int channel, const char **str) { switch (type) { case hwmon_in: *str = ltc4282_in_strs[channel]; return 0; case hwmon_curr: *str = "ISENSE"; return 0; case hwmon_power: *str = "Power"; return 0; default: return -EOPNOTSUPP; } } static ssize_t ltc4282_energy_show(struct device *dev, struct device_attribute *da, char *buf) { struct ltc4282_state *st = dev_get_drvdata(dev); u64 energy; int ret; guard(mutex)(&st->lock); if (!st->energy_en) return -ENODATA; ret = ltc4282_read_energy(st, &energy); if (ret < 0) return ret; return sysfs_emit(buf, "%llu\n", energy); } static const struct clk_ops ltc4282_ops = { .recalc_rate = ltc4282_recalc_rate, .round_rate = ltc4282_round_rate, .set_rate = ltc4282_set_rate, .disable = ltc4282_disable, }; static int ltc428_clk_provider_setup(struct ltc4282_state *st, struct device *dev) { struct clk_init_data init; int ret; if (!IS_ENABLED(CONFIG_COMMON_CLK)) return 0; init.name = devm_kasprintf(dev, GFP_KERNEL, "%s-clk", fwnode_get_name(dev_fwnode(dev))); if (!init.name) return -ENOMEM; init.ops = <c4282_ops; init.flags = CLK_GET_RATE_NOCACHE; st->clk_hw.init = &init; ret = devm_clk_hw_register(dev, &st->clk_hw); if (ret) return ret; return devm_of_clk_add_hw_provider(dev, of_clk_hw_simple_get, &st->clk_hw); } static int ltc428_clks_setup(struct ltc4282_state *st, struct device *dev) { unsigned long rate; struct clk *clkin; u32 val; int ret; ret = ltc428_clk_provider_setup(st, dev); if (ret) return ret; clkin = devm_clk_get_optional_enabled(dev, NULL); if (IS_ERR(clkin)) return dev_err_probe(dev, PTR_ERR(clkin), "Failed to get clkin"); if (!clkin) return 0; rate = clk_get_rate(clkin); if (!in_range(rate, LTC4282_CLKIN_MIN, LTC4282_CLKIN_RANGE)) return dev_err_probe(dev, -EINVAL, "Invalid clkin range(%lu) [%lu %lu]\n", rate, LTC4282_CLKIN_MIN, LTC4282_CLKIN_MAX); /* * Clocks faster than 250KHZ should be reduced to 250KHZ. The clock * frequency is divided by twice the value in the register. */ val = rate / (2 * LTC4282_CLKIN_MIN); return regmap_update_bits(st->map, LTC4282_CLK_DIV, LTC4282_CLK_DIV_MASK, FIELD_PREP(LTC4282_CLK_DIV_MASK, val)); } static const int ltc4282_curr_lim_uv[] = { 12500, 15625, 18750, 21875, 25000, 28125, 31250, 34375 }; static int ltc4282_get_defaults(struct ltc4282_state *st, u32 *vin_mode) { u32 reg_val, ilm_adjust; int ret; ret = regmap_read(st->map, LTC4282_ADC_CTRL, ®_val); if (ret) return ret; st->energy_en = !FIELD_GET(LTC4282_METER_HALT_MASK, reg_val); ret = regmap_read(st->map, LTC4282_CTRL_MSB, ®_val); if (ret) return ret; *vin_mode = FIELD_GET(LTC4282_CTRL_VIN_MODE_MASK, reg_val); ret = regmap_read(st->map, LTC4282_ILIM_ADJUST, ®_val); if (ret) return ret; ilm_adjust = FIELD_GET(LTC4282_ILIM_ADJUST_MASK, reg_val); st->vsense_max = ltc4282_curr_lim_uv[ilm_adjust]; st->in0_1_cache[LTC4282_CHAN_VSOURCE].en = FIELD_GET(LTC4282_VDD_MONITOR_MASK, ilm_adjust); if (!st->in0_1_cache[LTC4282_CHAN_VSOURCE].en) { st->in0_1_cache[LTC4282_CHAN_VDD].en = true; return regmap_read(st->map, LTC4282_VSOURCE_MAX, &st->in0_1_cache[LTC4282_CHAN_VSOURCE].in_max_raw); } return regmap_read(st->map, LTC4282_VSOURCE_MAX, &st->in0_1_cache[LTC4282_CHAN_VDD].in_max_raw); } /* * Set max limits for ISENSE and Power as that depends on the max voltage on * rsense that is defined in ILIM_ADJUST. This is specially important for power * because for some rsense and vfsout values, if we allow the default raw 255 * value, that would overflow long in 32bit archs when reading back the max * power limit. * * Also set meaningful historic values for VDD and VSOURCE * (0 would not mean much). */ static int ltc4282_set_max_limits(struct ltc4282_state *st) { int ret; ret = ltc4282_write_voltage_byte(st, LTC4282_VSENSE_MAX, 40 * MILLI, st->vsense_max); if (ret) return ret; /* Power is given by ISENSE * Vout. */ st->power_max = DIV_ROUND_CLOSEST(st->vsense_max * DECA * MILLI, st->rsense) * st->vfs_out; ret = ltc4282_write_power_byte(st, LTC4282_POWER_MAX, st->power_max); if (ret) return ret; if (st->in0_1_cache[LTC4282_CHAN_VDD].en) { st->in0_1_cache[LTC4282_CHAN_VSOURCE].in_lowest = st->vfs_out; return __ltc4282_in_write_history(st, LTC4282_VSOURCE_LOWEST, st->vdd, 0, st->vfs_out); } st->in0_1_cache[LTC4282_CHAN_VDD].in_lowest = st->vdd; return __ltc4282_in_write_history(st, LTC4282_VSOURCE_LOWEST, st->vfs_out, 0, st->vfs_out); } static const char * const ltc4282_gpio1_modes[] = { "power_bad", "power_good" }; static const char * const ltc4282_gpio2_modes[] = { "adc_input", "stress_fet" }; static int ltc4282_gpio_setup(struct ltc4282_state *st, struct device *dev) { const char *func = NULL; int ret; ret = device_property_read_string(dev, "adi,gpio1-mode", &func); if (!ret) { ret = match_string(ltc4282_gpio1_modes, ARRAY_SIZE(ltc4282_gpio1_modes), func); if (ret < 0) return dev_err_probe(dev, ret, "Invalid func(%s) for gpio1\n", func); ret = regmap_update_bits(st->map, LTC4282_GPIO_CONFIG, LTC4282_GPIO_1_CONFIG_MASK, FIELD_PREP(LTC4282_GPIO_1_CONFIG_MASK, ret)); if (ret) return ret; } ret = device_property_read_string(dev, "adi,gpio2-mode", &func); if (!ret) { ret = match_string(ltc4282_gpio2_modes, ARRAY_SIZE(ltc4282_gpio2_modes), func); if (ret < 0) return dev_err_probe(dev, ret, "Invalid func(%s) for gpio2\n", func); if (!ret) { /* setting the bit to 1 so the ADC to monitors GPIO2 */ ret = regmap_set_bits(st->map, LTC4282_ILIM_ADJUST, LTC4282_GPIO_MODE_MASK); } else { ret = regmap_update_bits(st->map, LTC4282_GPIO_CONFIG, LTC4282_GPIO_2_FET_STRESS_MASK, FIELD_PREP(LTC4282_GPIO_2_FET_STRESS_MASK, 1)); } if (ret) return ret; } if (!device_property_read_bool(dev, "adi,gpio3-monitor-enable")) return 0; if (func && !strcmp(func, "adc_input")) return dev_err_probe(dev, -EINVAL, "Cannot have both gpio2 and gpio3 muxed into the ADC"); return regmap_clear_bits(st->map, LTC4282_ILIM_ADJUST, LTC4282_GPIO_MODE_MASK); } static const char * const ltc4282_dividers[] = { "external", "vdd_5_percent", "vdd_10_percent", "vdd_15_percent" }; /* This maps the Vout full scale for the given Vin mode */ static const u16 ltc4282_vfs_milli[] = { 5540, 8320, 16640, 33280 }; static const u16 ltc4282_vdd_milli[] = { 3300, 5000, 12000, 24000 }; enum { LTC4282_VIN_3_3V, LTC4282_VIN_5V, LTC4282_VIN_12V, LTC4282_VIN_24V, }; static int ltc4282_setup(struct ltc4282_state *st, struct device *dev) { const char *divider; u32 val, vin_mode; int ret; /* The part has an eeprom so let's get the needed defaults from it */ ret = ltc4282_get_defaults(st, &vin_mode); if (ret) return ret; ret = device_property_read_u32(dev, "adi,rsense-nano-ohms", &st->rsense); if (ret) return dev_err_probe(dev, ret, "Failed to read adi,rsense-nano-ohms\n"); if (st->rsense < CENTI) return dev_err_probe(dev, -EINVAL, "adi,rsense-nano-ohms too small (< %lu)\n", CENTI); /* * The resolution for rsense is tenths of micro (eg: 62.5 uOhm) which * means we need nano in the bindings. However, to make things easier to * handle (with respect to overflows) we divide it by 100 as we don't * really need the last two digits. */ st->rsense /= CENTI; val = vin_mode; ret = device_property_read_u32(dev, "adi,vin-mode-microvolt", &val); if (!ret) { switch (val) { case 3300000: val = LTC4282_VIN_3_3V; break; case 5000000: val = LTC4282_VIN_5V; break; case 12000000: val = LTC4282_VIN_12V; break; case 24000000: val = LTC4282_VIN_24V; break; default: return dev_err_probe(dev, -EINVAL, "Invalid val(%u) for vin-mode-microvolt\n", val); } ret = regmap_update_bits(st->map, LTC4282_CTRL_MSB, LTC4282_CTRL_VIN_MODE_MASK, FIELD_PREP(LTC4282_CTRL_VIN_MODE_MASK, val)); if (ret) return ret; /* Foldback mode should also be set to the input voltage */ ret = regmap_update_bits(st->map, LTC4282_ILIM_ADJUST, LTC4282_FOLDBACK_MODE_MASK, FIELD_PREP(LTC4282_FOLDBACK_MODE_MASK, val)); if (ret) return ret; } st->vfs_out = ltc4282_vfs_milli[val]; st->vdd = ltc4282_vdd_milli[val]; ret = device_property_read_u32(dev, "adi,current-limit-sense-microvolt", &st->vsense_max); if (!ret) { int reg_val; switch (val) { case 12500: reg_val = 0; break; case 15625: reg_val = 1; break; case 18750: reg_val = 2; break; case 21875: reg_val = 3; break; case 25000: reg_val = 4; break; case 28125: reg_val = 5; break; case 31250: reg_val = 6; break; case 34375: reg_val = 7; break; default: return dev_err_probe(dev, -EINVAL, "Invalid val(%u) for adi,current-limit-microvolt\n", st->vsense_max); } ret = regmap_update_bits(st->map, LTC4282_ILIM_ADJUST, LTC4282_ILIM_ADJUST_MASK, FIELD_PREP(LTC4282_ILIM_ADJUST_MASK, reg_val)); if (ret) return ret; } ret = ltc4282_set_max_limits(st); if (ret) return ret; ret = device_property_read_string(dev, "adi,overvoltage-dividers", ÷r); if (!ret) { int div = match_string(ltc4282_dividers, ARRAY_SIZE(ltc4282_dividers), divider); if (div < 0) return dev_err_probe(dev, -EINVAL, "Invalid val(%s) for adi,overvoltage-divider\n", divider); ret = regmap_update_bits(st->map, LTC4282_CTRL_MSB, LTC4282_CTRL_OV_MODE_MASK, FIELD_PREP(LTC4282_CTRL_OV_MODE_MASK, div)); } ret = device_property_read_string(dev, "adi,undervoltage-dividers", ÷r); if (!ret) { int div = match_string(ltc4282_dividers, ARRAY_SIZE(ltc4282_dividers), divider); if (div < 0) return dev_err_probe(dev, -EINVAL, "Invalid val(%s) for adi,undervoltage-divider\n", divider); ret = regmap_update_bits(st->map, LTC4282_CTRL_MSB, LTC4282_CTRL_UV_MODE_MASK, FIELD_PREP(LTC4282_CTRL_UV_MODE_MASK, div)); } if (device_property_read_bool(dev, "adi,overcurrent-retry")) { ret = regmap_set_bits(st->map, LTC4282_CTRL_LSB, LTC4282_CTRL_OC_RETRY_MASK); if (ret) return ret; } if (device_property_read_bool(dev, "adi,overvoltage-retry-disable")) { ret = regmap_clear_bits(st->map, LTC4282_CTRL_LSB, LTC4282_CTRL_OV_RETRY_MASK); if (ret) return ret; } if (device_property_read_bool(dev, "adi,undervoltage-retry-disable")) { ret = regmap_clear_bits(st->map, LTC4282_CTRL_LSB, LTC4282_CTRL_UV_RETRY_MASK); if (ret) return ret; } if (device_property_read_bool(dev, "adi,fault-log-enable")) { ret = regmap_set_bits(st->map, LTC4282_ADC_CTRL, LTC4282_FAULT_LOG_EN_MASK); if (ret) return ret; } if (device_property_read_bool(dev, "adi,fault-log-enable")) { ret = regmap_set_bits(st->map, LTC4282_ADC_CTRL, LTC4282_FAULT_LOG_EN_MASK); if (ret) return ret; } ret = device_property_read_u32(dev, "adi,fet-bad-timeout-ms", &val); if (!ret) { if (val > LTC4282_FET_BAD_MAX_TIMEOUT) return dev_err_probe(dev, -EINVAL, "Invalid value(%u) for adi,fet-bad-timeout-ms", val); ret = regmap_write(st->map, LTC4282_FET_BAD_FAULT_TIMEOUT, val); if (ret) return ret; } return ltc4282_gpio_setup(st, dev); } static bool ltc4282_readable_reg(struct device *dev, unsigned int reg) { if (reg == LTC4282_RESERVED_1 || reg == LTC4282_RESERVED_2) return false; return true; } static bool ltc4282_writable_reg(struct device *dev, unsigned int reg) { if (reg == LTC4282_STATUS_LSB || reg == LTC4282_STATUS_MSB) return false; if (reg == LTC4282_RESERVED_1 || reg == LTC4282_RESERVED_2) return false; return true; } static const struct regmap_config ltc4282_regmap_config = { .reg_bits = 8, .val_bits = 8, .max_register = LTC4282_RESERVED_3, .readable_reg = ltc4282_readable_reg, .writeable_reg = ltc4282_writable_reg, }; static const struct hwmon_channel_info * const ltc4282_info[] = { HWMON_CHANNEL_INFO(in, HWMON_I_INPUT | HWMON_I_LOWEST | HWMON_I_HIGHEST | HWMON_I_MAX | HWMON_I_MIN | HWMON_I_MIN_ALARM | HWMON_I_MAX_ALARM | HWMON_I_ENABLE | HWMON_I_RESET_HISTORY | HWMON_I_FAULT | HWMON_I_LABEL, HWMON_I_INPUT | HWMON_I_LOWEST | HWMON_I_HIGHEST | HWMON_I_MAX | HWMON_I_MIN | HWMON_I_MIN_ALARM | HWMON_I_MAX_ALARM | HWMON_I_LCRIT_ALARM | HWMON_I_CRIT_ALARM | HWMON_I_ENABLE | HWMON_I_RESET_HISTORY | HWMON_I_LABEL, HWMON_I_INPUT | HWMON_I_LOWEST | HWMON_I_HIGHEST | HWMON_I_MAX | HWMON_I_MIN | HWMON_I_MIN_ALARM | HWMON_I_RESET_HISTORY | HWMON_I_MAX_ALARM | HWMON_I_LABEL), HWMON_CHANNEL_INFO(curr, HWMON_C_INPUT | HWMON_C_LOWEST | HWMON_C_HIGHEST | HWMON_C_MAX | HWMON_C_MIN | HWMON_C_MIN_ALARM | HWMON_C_MAX_ALARM | HWMON_C_CRIT_ALARM | HWMON_C_RESET_HISTORY | HWMON_C_LABEL), HWMON_CHANNEL_INFO(power, HWMON_P_INPUT | HWMON_P_INPUT_LOWEST | HWMON_P_INPUT_HIGHEST | HWMON_P_MAX | HWMON_P_MIN | HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM | HWMON_P_RESET_HISTORY | HWMON_P_LABEL), HWMON_CHANNEL_INFO(energy, HWMON_E_ENABLE), NULL }; static const struct hwmon_ops ltc4282_hwmon_ops = { .read = ltc4282_read, .write = ltc4282_write, .is_visible = ltc4282_is_visible, .read_string = ltc4282_read_labels, }; static const struct hwmon_chip_info ltc2947_chip_info = { .ops = <c4282_hwmon_ops, .info = ltc4282_info, }; /* energy attributes are 6bytes wide so we need u64 */ static SENSOR_DEVICE_ATTR_RO(energy1_input, ltc4282_energy, 0); static struct attribute *ltc4282_attrs[] = { &sensor_dev_attr_energy1_input.dev_attr.attr, NULL }; ATTRIBUTE_GROUPS(ltc4282); static int ltc4282_show_fault_log(void *arg, u64 *val, u32 mask) { struct ltc4282_state *st = arg; long alarm; int ret; ret = ltc4282_read_alarm(st, LTC4282_FAULT_LOG, mask, &alarm); if (ret) return ret; *val = alarm; return 0; } static int ltc4282_show_curr1_crit_fault_log(void *arg, u64 *val) { return ltc4282_show_fault_log(arg, val, LTC4282_OC_FAULT_MASK); } DEFINE_DEBUGFS_ATTRIBUTE(ltc4282_curr1_crit_fault_log, ltc4282_show_curr1_crit_fault_log, NULL, "%llu\n"); static int ltc4282_show_in1_lcrit_fault_log(void *arg, u64 *val) { return ltc4282_show_fault_log(arg, val, LTC4282_UV_FAULT_MASK); } DEFINE_DEBUGFS_ATTRIBUTE(ltc4282_in1_lcrit_fault_log, ltc4282_show_in1_lcrit_fault_log, NULL, "%llu\n"); static int ltc4282_show_in1_crit_fault_log(void *arg, u64 *val) { return ltc4282_show_fault_log(arg, val, LTC4282_OV_FAULT_MASK); } DEFINE_DEBUGFS_ATTRIBUTE(ltc4282_in1_crit_fault_log, ltc4282_show_in1_crit_fault_log, NULL, "%llu\n"); static int ltc4282_show_fet_bad_fault_log(void *arg, u64 *val) { return ltc4282_show_fault_log(arg, val, LTC4282_FET_BAD_FAULT_MASK); } DEFINE_DEBUGFS_ATTRIBUTE(ltc4282_fet_bad_fault_log, ltc4282_show_fet_bad_fault_log, NULL, "%llu\n"); static int ltc4282_show_fet_short_fault_log(void *arg, u64 *val) { return ltc4282_show_fault_log(arg, val, LTC4282_FET_SHORT_FAULT_MASK); } DEFINE_DEBUGFS_ATTRIBUTE(ltc4282_fet_short_fault_log, ltc4282_show_fet_short_fault_log, NULL, "%llu\n"); static int ltc4282_show_power1_bad_fault_log(void *arg, u64 *val) { return ltc4282_show_fault_log(arg, val, LTC4282_POWER_BAD_FAULT_MASK); } DEFINE_DEBUGFS_ATTRIBUTE(ltc4282_power1_bad_fault_log, ltc4282_show_power1_bad_fault_log, NULL, "%llu\n"); static void ltc4282_debugfs_remove(void *dir) { debugfs_remove_recursive(dir); } static void ltc4282_debugfs_init(struct ltc4282_state *st, struct i2c_client *i2c, const struct device *hwmon) { const char *debugfs_name; struct dentry *dentry; int ret; if (!IS_ENABLED(CONFIG_DEBUG_FS)) return; debugfs_name = devm_kasprintf(&i2c->dev, GFP_KERNEL, "ltc4282-%s", dev_name(hwmon)); if (!debugfs_name) return; dentry = debugfs_create_dir(debugfs_name, NULL); if (IS_ERR(dentry)) return; ret = devm_add_action_or_reset(&i2c->dev, ltc4282_debugfs_remove, dentry); if (ret) return; debugfs_create_file_unsafe("power1_bad_fault_log", 0400, dentry, st, <c4282_power1_bad_fault_log); debugfs_create_file_unsafe("in0_fet_short_fault_log", 0400, dentry, st, <c4282_fet_short_fault_log); debugfs_create_file_unsafe("in0_fet_bad_fault_log", 0400, dentry, st, <c4282_fet_bad_fault_log); debugfs_create_file_unsafe("in1_crit_fault_log", 0400, dentry, st, <c4282_in1_crit_fault_log); debugfs_create_file_unsafe("in1_lcrit_fault_log", 0400, dentry, st, <c4282_in1_lcrit_fault_log); debugfs_create_file_unsafe("curr1_crit_fault_log", 0400, dentry, st, <c4282_curr1_crit_fault_log); } static int ltc4282_probe(struct i2c_client *i2c) { struct device *dev = &i2c->dev, *hwmon; struct ltc4282_state *st; int ret; st = devm_kzalloc(dev, sizeof(*st), GFP_KERNEL); if (!st) return dev_err_probe(dev, -ENOMEM, "Failed to allocate memory\n"); st->map = devm_regmap_init_i2c(i2c, <c4282_regmap_config); if (IS_ERR(st->map)) return dev_err_probe(dev, PTR_ERR(st->map), "failed regmap init\n"); /* Soft reset */ ret = regmap_set_bits(st->map, LTC4282_ADC_CTRL, LTC4282_RESET_MASK); if (ret) return ret; /* Yes, it's big but it is as specified in the datasheet */ msleep(3200); ret = ltc428_clks_setup(st, dev); if (ret) return ret; ret = ltc4282_setup(st, dev); if (ret) return ret; mutex_init(&st->lock); hwmon = devm_hwmon_device_register_with_info(dev, "ltc4282", st, <c2947_chip_info, ltc4282_groups); if (IS_ERR(hwmon)) return PTR_ERR(hwmon); ltc4282_debugfs_init(st, i2c, hwmon); return 0; } static const struct of_device_id ltc4282_of_match[] = { { .compatible = "adi,ltc4282" }, {} }; MODULE_DEVICE_TABLE(of, ltc4282_of_match); static struct i2c_driver ltc4282_driver = { .driver = { .name = "ltc4282", .of_match_table = ltc4282_of_match, }, .probe = ltc4282_probe, }; module_i2c_driver(ltc4282_driver); MODULE_AUTHOR("Nuno Sa <nuno.sa@analog.com>"); MODULE_DESCRIPTION("LTC4282 I2C High Current Hot Swap Controller"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1