Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Guenter Roeck | 1281 | 41.96% | 7 | 29.17% |
Christopher Bostic | 1221 | 39.99% | 2 | 8.33% |
Lars-Peter Clausen | 266 | 8.71% | 1 | 4.17% |
Javier Martinez Canillas | 162 | 5.31% | 1 | 4.17% |
Jim Wright | 77 | 2.52% | 1 | 4.17% |
Jean Delvare | 15 | 0.49% | 1 | 4.17% |
Matt Weber | 8 | 0.26% | 1 | 4.17% |
Stephen Kitt | 7 | 0.23% | 1 | 4.17% |
Edward A. James | 5 | 0.16% | 1 | 4.17% |
Thomas Gleixner | 2 | 0.07% | 1 | 4.17% |
Lakshmi Yadlapati | 2 | 0.07% | 1 | 4.17% |
Kees Cook | 2 | 0.07% | 1 | 4.17% |
Uwe Kleine-König | 1 | 0.03% | 1 | 4.17% |
Krzysztof Kozlowski | 1 | 0.03% | 1 | 4.17% |
Rob Herring | 1 | 0.03% | 1 | 4.17% |
Axel Lin | 1 | 0.03% | 1 | 4.17% |
Wolfram Sang | 1 | 0.03% | 1 | 4.17% |
Total | 3053 | 24 |
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705
// SPDX-License-Identifier: GPL-2.0-or-later /* * Hardware monitoring driver for UCD90xxx Sequencer and System Health * Controller series * * Copyright (C) 2011 Ericsson AB. */ #include <linux/debugfs.h> #include <linux/delay.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/of.h> #include <linux/init.h> #include <linux/err.h> #include <linux/slab.h> #include <linux/i2c.h> #include <linux/pmbus.h> #include <linux/gpio/driver.h> #include <linux/timekeeping.h> #include "pmbus.h" enum chips { ucd9000, ucd90120, ucd90124, ucd90160, ucd90320, ucd9090, ucd90910 }; #define UCD9000_MONITOR_CONFIG 0xd5 #define UCD9000_NUM_PAGES 0xd6 #define UCD9000_FAN_CONFIG_INDEX 0xe7 #define UCD9000_FAN_CONFIG 0xe8 #define UCD9000_MFR_STATUS 0xf3 #define UCD9000_GPIO_SELECT 0xfa #define UCD9000_GPIO_CONFIG 0xfb #define UCD9000_DEVICE_ID 0xfd /* GPIO CONFIG bits */ #define UCD9000_GPIO_CONFIG_ENABLE BIT(0) #define UCD9000_GPIO_CONFIG_OUT_ENABLE BIT(1) #define UCD9000_GPIO_CONFIG_OUT_VALUE BIT(2) #define UCD9000_GPIO_CONFIG_STATUS BIT(3) #define UCD9000_GPIO_INPUT 0 #define UCD9000_GPIO_OUTPUT 1 #define UCD9000_MON_TYPE(x) (((x) >> 5) & 0x07) #define UCD9000_MON_PAGE(x) ((x) & 0x1f) #define UCD9000_MON_VOLTAGE 1 #define UCD9000_MON_TEMPERATURE 2 #define UCD9000_MON_CURRENT 3 #define UCD9000_MON_VOLTAGE_HW 4 #define UCD9000_NUM_FAN 4 #define UCD9000_GPIO_NAME_LEN 16 #define UCD9090_NUM_GPIOS 23 #define UCD901XX_NUM_GPIOS 26 #define UCD90320_NUM_GPIOS 84 #define UCD90910_NUM_GPIOS 26 #define UCD9000_DEBUGFS_NAME_LEN 24 #define UCD9000_GPI_COUNT 8 #define UCD90320_GPI_COUNT 32 struct ucd9000_data { u8 fan_data[UCD9000_NUM_FAN][I2C_SMBUS_BLOCK_MAX]; struct pmbus_driver_info info; #ifdef CONFIG_GPIOLIB struct gpio_chip gpio; #endif struct dentry *debugfs; ktime_t write_time; }; #define to_ucd9000_data(_info) container_of(_info, struct ucd9000_data, info) struct ucd9000_debugfs_entry { struct i2c_client *client; u8 index; }; /* * It has been observed that the UCD90320 randomly fails register access when * doing another access right on the back of a register write. To mitigate this * make sure that there is a minimum delay between a write access and the * following access. The 500 is based on experimental data. At a delay of * 350us the issue seems to go away. Add a bit of extra margin to allow for * system to system differences. */ #define UCD90320_WAIT_DELAY_US 500 static inline void ucd90320_wait(const struct ucd9000_data *data) { s64 delta = ktime_us_delta(ktime_get(), data->write_time); if (delta < UCD90320_WAIT_DELAY_US) udelay(UCD90320_WAIT_DELAY_US - delta); } static int ucd90320_read_word_data(struct i2c_client *client, int page, int phase, int reg) { const struct pmbus_driver_info *info = pmbus_get_driver_info(client); struct ucd9000_data *data = to_ucd9000_data(info); if (reg >= PMBUS_VIRT_BASE) return -ENXIO; ucd90320_wait(data); return pmbus_read_word_data(client, page, phase, reg); } static int ucd90320_read_byte_data(struct i2c_client *client, int page, int reg) { const struct pmbus_driver_info *info = pmbus_get_driver_info(client); struct ucd9000_data *data = to_ucd9000_data(info); ucd90320_wait(data); return pmbus_read_byte_data(client, page, reg); } static int ucd90320_write_word_data(struct i2c_client *client, int page, int reg, u16 word) { const struct pmbus_driver_info *info = pmbus_get_driver_info(client); struct ucd9000_data *data = to_ucd9000_data(info); int ret; ucd90320_wait(data); ret = pmbus_write_word_data(client, page, reg, word); data->write_time = ktime_get(); return ret; } static int ucd90320_write_byte(struct i2c_client *client, int page, u8 value) { const struct pmbus_driver_info *info = pmbus_get_driver_info(client); struct ucd9000_data *data = to_ucd9000_data(info); int ret; ucd90320_wait(data); ret = pmbus_write_byte(client, page, value); data->write_time = ktime_get(); return ret; } static int ucd9000_get_fan_config(struct i2c_client *client, int fan) { int fan_config = 0; struct ucd9000_data *data = to_ucd9000_data(pmbus_get_driver_info(client)); if (data->fan_data[fan][3] & 1) fan_config |= PB_FAN_2_INSTALLED; /* Use lower bit position */ /* Pulses/revolution */ fan_config |= (data->fan_data[fan][3] & 0x06) >> 1; return fan_config; } static int ucd9000_read_byte_data(struct i2c_client *client, int page, int reg) { int ret = 0; int fan_config; switch (reg) { case PMBUS_FAN_CONFIG_12: if (page > 0) return -ENXIO; ret = ucd9000_get_fan_config(client, 0); if (ret < 0) return ret; fan_config = ret << 4; ret = ucd9000_get_fan_config(client, 1); if (ret < 0) return ret; fan_config |= ret; ret = fan_config; break; case PMBUS_FAN_CONFIG_34: if (page > 0) return -ENXIO; ret = ucd9000_get_fan_config(client, 2); if (ret < 0) return ret; fan_config = ret << 4; ret = ucd9000_get_fan_config(client, 3); if (ret < 0) return ret; fan_config |= ret; ret = fan_config; break; default: ret = -ENODATA; break; } return ret; } static const struct i2c_device_id ucd9000_id[] = { {"ucd9000", ucd9000}, {"ucd90120", ucd90120}, {"ucd90124", ucd90124}, {"ucd90160", ucd90160}, {"ucd90320", ucd90320}, {"ucd9090", ucd9090}, {"ucd90910", ucd90910}, {} }; MODULE_DEVICE_TABLE(i2c, ucd9000_id); static const struct of_device_id __maybe_unused ucd9000_of_match[] = { { .compatible = "ti,ucd9000", .data = (void *)ucd9000 }, { .compatible = "ti,ucd90120", .data = (void *)ucd90120 }, { .compatible = "ti,ucd90124", .data = (void *)ucd90124 }, { .compatible = "ti,ucd90160", .data = (void *)ucd90160 }, { .compatible = "ti,ucd90320", .data = (void *)ucd90320 }, { .compatible = "ti,ucd9090", .data = (void *)ucd9090 }, { .compatible = "ti,ucd90910", .data = (void *)ucd90910 }, { }, }; MODULE_DEVICE_TABLE(of, ucd9000_of_match); #ifdef CONFIG_GPIOLIB static int ucd9000_gpio_read_config(struct i2c_client *client, unsigned int offset) { int ret; /* No page set required */ ret = i2c_smbus_write_byte_data(client, UCD9000_GPIO_SELECT, offset); if (ret < 0) return ret; return i2c_smbus_read_byte_data(client, UCD9000_GPIO_CONFIG); } static int ucd9000_gpio_get(struct gpio_chip *gc, unsigned int offset) { struct i2c_client *client = gpiochip_get_data(gc); int ret; ret = ucd9000_gpio_read_config(client, offset); if (ret < 0) return ret; return !!(ret & UCD9000_GPIO_CONFIG_STATUS); } static void ucd9000_gpio_set(struct gpio_chip *gc, unsigned int offset, int value) { struct i2c_client *client = gpiochip_get_data(gc); int ret; ret = ucd9000_gpio_read_config(client, offset); if (ret < 0) { dev_dbg(&client->dev, "failed to read GPIO %d config: %d\n", offset, ret); return; } if (value) { if (ret & UCD9000_GPIO_CONFIG_STATUS) return; ret |= UCD9000_GPIO_CONFIG_STATUS; } else { if (!(ret & UCD9000_GPIO_CONFIG_STATUS)) return; ret &= ~UCD9000_GPIO_CONFIG_STATUS; } ret |= UCD9000_GPIO_CONFIG_ENABLE; /* Page set not required */ ret = i2c_smbus_write_byte_data(client, UCD9000_GPIO_CONFIG, ret); if (ret < 0) { dev_dbg(&client->dev, "Failed to write GPIO %d config: %d\n", offset, ret); return; } ret &= ~UCD9000_GPIO_CONFIG_ENABLE; ret = i2c_smbus_write_byte_data(client, UCD9000_GPIO_CONFIG, ret); if (ret < 0) dev_dbg(&client->dev, "Failed to write GPIO %d config: %d\n", offset, ret); } static int ucd9000_gpio_get_direction(struct gpio_chip *gc, unsigned int offset) { struct i2c_client *client = gpiochip_get_data(gc); int ret; ret = ucd9000_gpio_read_config(client, offset); if (ret < 0) return ret; return !(ret & UCD9000_GPIO_CONFIG_OUT_ENABLE); } static int ucd9000_gpio_set_direction(struct gpio_chip *gc, unsigned int offset, bool direction_out, int requested_out) { struct i2c_client *client = gpiochip_get_data(gc); int ret, config, out_val; ret = ucd9000_gpio_read_config(client, offset); if (ret < 0) return ret; if (direction_out) { out_val = requested_out ? UCD9000_GPIO_CONFIG_OUT_VALUE : 0; if (ret & UCD9000_GPIO_CONFIG_OUT_ENABLE) { if ((ret & UCD9000_GPIO_CONFIG_OUT_VALUE) == out_val) return 0; } else { ret |= UCD9000_GPIO_CONFIG_OUT_ENABLE; } if (out_val) ret |= UCD9000_GPIO_CONFIG_OUT_VALUE; else ret &= ~UCD9000_GPIO_CONFIG_OUT_VALUE; } else { if (!(ret & UCD9000_GPIO_CONFIG_OUT_ENABLE)) return 0; ret &= ~UCD9000_GPIO_CONFIG_OUT_ENABLE; } ret |= UCD9000_GPIO_CONFIG_ENABLE; config = ret; /* Page set not required */ ret = i2c_smbus_write_byte_data(client, UCD9000_GPIO_CONFIG, config); if (ret < 0) return ret; config &= ~UCD9000_GPIO_CONFIG_ENABLE; return i2c_smbus_write_byte_data(client, UCD9000_GPIO_CONFIG, config); } static int ucd9000_gpio_direction_input(struct gpio_chip *gc, unsigned int offset) { return ucd9000_gpio_set_direction(gc, offset, UCD9000_GPIO_INPUT, 0); } static int ucd9000_gpio_direction_output(struct gpio_chip *gc, unsigned int offset, int val) { return ucd9000_gpio_set_direction(gc, offset, UCD9000_GPIO_OUTPUT, val); } static void ucd9000_probe_gpio(struct i2c_client *client, const struct i2c_device_id *mid, struct ucd9000_data *data) { int rc; switch (mid->driver_data) { case ucd9090: data->gpio.ngpio = UCD9090_NUM_GPIOS; break; case ucd90120: case ucd90124: case ucd90160: data->gpio.ngpio = UCD901XX_NUM_GPIOS; break; case ucd90320: data->gpio.ngpio = UCD90320_NUM_GPIOS; break; case ucd90910: data->gpio.ngpio = UCD90910_NUM_GPIOS; break; default: return; /* GPIO support is optional. */ } /* * Pinmux support has not been added to the new gpio_chip. * This support should be added when possible given the mux * behavior of these IO devices. */ data->gpio.label = client->name; data->gpio.get_direction = ucd9000_gpio_get_direction; data->gpio.direction_input = ucd9000_gpio_direction_input; data->gpio.direction_output = ucd9000_gpio_direction_output; data->gpio.get = ucd9000_gpio_get; data->gpio.set = ucd9000_gpio_set; data->gpio.can_sleep = true; data->gpio.base = -1; data->gpio.parent = &client->dev; rc = devm_gpiochip_add_data(&client->dev, &data->gpio, client); if (rc) dev_warn(&client->dev, "Could not add gpiochip: %d\n", rc); } #else static void ucd9000_probe_gpio(struct i2c_client *client, const struct i2c_device_id *mid, struct ucd9000_data *data) { } #endif /* CONFIG_GPIOLIB */ #ifdef CONFIG_DEBUG_FS static int ucd9000_get_mfr_status(struct i2c_client *client, u8 *buffer) { int ret = pmbus_set_page(client, 0, 0xff); if (ret < 0) return ret; return i2c_smbus_read_block_data(client, UCD9000_MFR_STATUS, buffer); } static int ucd9000_debugfs_show_mfr_status_bit(void *data, u64 *val) { struct ucd9000_debugfs_entry *entry = data; struct i2c_client *client = entry->client; u8 buffer[I2C_SMBUS_BLOCK_MAX]; int ret, i; ret = ucd9000_get_mfr_status(client, buffer); if (ret < 0) return ret; /* * GPI fault bits are in sets of 8, two bytes from end of response. */ i = ret - 3 - entry->index / 8; if (i >= 0) *val = !!(buffer[i] & BIT(entry->index % 8)); return 0; } DEFINE_DEBUGFS_ATTRIBUTE(ucd9000_debugfs_mfr_status_bit, ucd9000_debugfs_show_mfr_status_bit, NULL, "%1lld\n"); static ssize_t ucd9000_debugfs_read_mfr_status(struct file *file, char __user *buf, size_t count, loff_t *ppos) { struct i2c_client *client = file->private_data; u8 buffer[I2C_SMBUS_BLOCK_MAX]; char str[(I2C_SMBUS_BLOCK_MAX * 2) + 2]; char *res; int rc; rc = ucd9000_get_mfr_status(client, buffer); if (rc < 0) return rc; res = bin2hex(str, buffer, min(rc, I2C_SMBUS_BLOCK_MAX)); *res++ = '\n'; *res = 0; return simple_read_from_buffer(buf, count, ppos, str, res - str); } static const struct file_operations ucd9000_debugfs_show_mfr_status_fops = { .llseek = noop_llseek, .read = ucd9000_debugfs_read_mfr_status, .open = simple_open, }; static int ucd9000_init_debugfs(struct i2c_client *client, const struct i2c_device_id *mid, struct ucd9000_data *data) { struct dentry *debugfs; struct ucd9000_debugfs_entry *entries; int i, gpi_count; char name[UCD9000_DEBUGFS_NAME_LEN]; debugfs = pmbus_get_debugfs_dir(client); if (!debugfs) return -ENOENT; data->debugfs = debugfs_create_dir(client->name, debugfs); /* * Of the chips this driver supports, only the UCD9090, UCD90160, * UCD90320, and UCD90910 report GPI faults in their MFR_STATUS * register, so only create the GPI fault debugfs attributes for those * chips. */ if (mid->driver_data == ucd9090 || mid->driver_data == ucd90160 || mid->driver_data == ucd90320 || mid->driver_data == ucd90910) { gpi_count = mid->driver_data == ucd90320 ? UCD90320_GPI_COUNT : UCD9000_GPI_COUNT; entries = devm_kcalloc(&client->dev, gpi_count, sizeof(*entries), GFP_KERNEL); if (!entries) return -ENOMEM; for (i = 0; i < gpi_count; i++) { entries[i].client = client; entries[i].index = i; scnprintf(name, UCD9000_DEBUGFS_NAME_LEN, "gpi%d_alarm", i + 1); debugfs_create_file(name, 0444, data->debugfs, &entries[i], &ucd9000_debugfs_mfr_status_bit); } } scnprintf(name, UCD9000_DEBUGFS_NAME_LEN, "mfr_status"); debugfs_create_file(name, 0444, data->debugfs, client, &ucd9000_debugfs_show_mfr_status_fops); return 0; } #else static int ucd9000_init_debugfs(struct i2c_client *client, const struct i2c_device_id *mid, struct ucd9000_data *data) { return 0; } #endif /* CONFIG_DEBUG_FS */ static int ucd9000_probe(struct i2c_client *client) { u8 block_buffer[I2C_SMBUS_BLOCK_MAX + 1]; struct ucd9000_data *data; struct pmbus_driver_info *info; const struct i2c_device_id *mid; enum chips chip; int i, ret; if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_BYTE_DATA | I2C_FUNC_SMBUS_BLOCK_DATA)) return -ENODEV; ret = i2c_smbus_read_block_data(client, UCD9000_DEVICE_ID, block_buffer); if (ret < 0) { dev_err(&client->dev, "Failed to read device ID\n"); return ret; } block_buffer[ret] = '\0'; dev_info(&client->dev, "Device ID %s\n", block_buffer); for (mid = ucd9000_id; mid->name[0]; mid++) { if (!strncasecmp(mid->name, block_buffer, strlen(mid->name))) break; } if (!mid->name[0]) { dev_err(&client->dev, "Unsupported device\n"); return -ENODEV; } if (client->dev.of_node) chip = (uintptr_t)of_device_get_match_data(&client->dev); else chip = mid->driver_data; if (chip != ucd9000 && strcmp(client->name, mid->name) != 0) dev_notice(&client->dev, "Device mismatch: Configured %s, detected %s\n", client->name, mid->name); data = devm_kzalloc(&client->dev, sizeof(struct ucd9000_data), GFP_KERNEL); if (!data) return -ENOMEM; info = &data->info; ret = i2c_smbus_read_byte_data(client, UCD9000_NUM_PAGES); if (ret < 0) { dev_err(&client->dev, "Failed to read number of active pages\n"); return ret; } info->pages = ret; if (!info->pages) { dev_err(&client->dev, "No pages configured\n"); return -ENODEV; } /* The internal temperature sensor is always active */ info->func[0] = PMBUS_HAVE_TEMP; /* Everything else is configurable */ ret = i2c_smbus_read_block_data(client, UCD9000_MONITOR_CONFIG, block_buffer); if (ret <= 0) { dev_err(&client->dev, "Failed to read configuration data\n"); return -ENODEV; } for (i = 0; i < ret; i++) { int page = UCD9000_MON_PAGE(block_buffer[i]); if (page >= info->pages) continue; switch (UCD9000_MON_TYPE(block_buffer[i])) { case UCD9000_MON_VOLTAGE: case UCD9000_MON_VOLTAGE_HW: info->func[page] |= PMBUS_HAVE_VOUT | PMBUS_HAVE_STATUS_VOUT; break; case UCD9000_MON_TEMPERATURE: info->func[page] |= PMBUS_HAVE_TEMP2 | PMBUS_HAVE_STATUS_TEMP; break; case UCD9000_MON_CURRENT: info->func[page] |= PMBUS_HAVE_IOUT | PMBUS_HAVE_STATUS_IOUT; break; default: break; } } /* Fan configuration */ if (mid->driver_data == ucd90124) { for (i = 0; i < UCD9000_NUM_FAN; i++) { i2c_smbus_write_byte_data(client, UCD9000_FAN_CONFIG_INDEX, i); ret = i2c_smbus_read_block_data(client, UCD9000_FAN_CONFIG, data->fan_data[i]); if (ret < 0) return ret; } i2c_smbus_write_byte_data(client, UCD9000_FAN_CONFIG_INDEX, 0); info->read_byte_data = ucd9000_read_byte_data; info->func[0] |= PMBUS_HAVE_FAN12 | PMBUS_HAVE_STATUS_FAN12 | PMBUS_HAVE_FAN34 | PMBUS_HAVE_STATUS_FAN34; } else if (mid->driver_data == ucd90320) { info->read_byte_data = ucd90320_read_byte_data; info->read_word_data = ucd90320_read_word_data; info->write_byte = ucd90320_write_byte; info->write_word_data = ucd90320_write_word_data; } ucd9000_probe_gpio(client, mid, data); ret = pmbus_do_probe(client, info); if (ret) return ret; ret = ucd9000_init_debugfs(client, mid, data); if (ret) dev_warn(&client->dev, "Failed to register debugfs: %d\n", ret); return 0; } /* This is the driver that will be inserted */ static struct i2c_driver ucd9000_driver = { .driver = { .name = "ucd9000", .of_match_table = of_match_ptr(ucd9000_of_match), }, .probe = ucd9000_probe, .id_table = ucd9000_id, }; module_i2c_driver(ucd9000_driver); MODULE_AUTHOR("Guenter Roeck"); MODULE_DESCRIPTION("PMBus driver for TI UCD90xxx"); MODULE_LICENSE("GPL"); MODULE_IMPORT_NS(PMBUS);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1