Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Alexander Stein | 662 | 22.50% | 5 | 11.63% |
Lukasz Majewski | 571 | 19.41% | 3 | 6.98% |
Kamil Debski | 556 | 18.90% | 2 | 4.65% |
Paul Barker | 428 | 14.55% | 5 | 11.63% |
Stefan Wahren | 361 | 12.27% | 2 | 4.65% |
Andy Shevchenko | 101 | 3.43% | 3 | 6.98% |
Uwe Kleine-König | 50 | 1.70% | 2 | 4.65% |
Guenter Roeck | 49 | 1.67% | 4 | 9.30% |
Bartlomiej Zolnierkiewicz | 38 | 1.29% | 1 | 2.33% |
Linus Torvalds | 24 | 0.82% | 1 | 2.33% |
Matthias Schiffer | 16 | 0.54% | 1 | 2.33% |
Robin Murphy | 15 | 0.51% | 1 | 2.33% |
Akinobu Mita | 13 | 0.44% | 1 | 2.33% |
Boris Brezillon | 10 | 0.34% | 1 | 2.33% |
Thierry Reding | 9 | 0.31% | 2 | 4.65% |
Lorenz Brun | 9 | 0.31% | 1 | 2.33% |
Luis de Bethencourt | 7 | 0.24% | 1 | 2.33% |
Anson Huang | 6 | 0.20% | 1 | 2.33% |
Kees Cook | 5 | 0.17% | 1 | 2.33% |
Sean Young | 4 | 0.14% | 1 | 2.33% |
Jonathan Cameron | 4 | 0.14% | 1 | 2.33% |
Thomas Gleixner | 2 | 0.07% | 1 | 2.33% |
Anand Moon | 1 | 0.03% | 1 | 2.33% |
Fabian Frederick | 1 | 0.03% | 1 | 2.33% |
Total | 2942 | 43 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * pwm-fan.c - Hwmon driver for fans connected to PWM lines. * * Copyright (c) 2014 Samsung Electronics Co., Ltd. * * Author: Kamil Debski <k.debski@samsung.com> */ #include <linux/hwmon.h> #include <linux/interrupt.h> #include <linux/mod_devicetable.h> #include <linux/module.h> #include <linux/mutex.h> #include <linux/platform_device.h> #include <linux/property.h> #include <linux/pwm.h> #include <linux/regulator/consumer.h> #include <linux/sysfs.h> #include <linux/thermal.h> #include <linux/timer.h> #define MAX_PWM 255 struct pwm_fan_tach { int irq; atomic_t pulses; unsigned int rpm; }; enum pwm_fan_enable_mode { pwm_off_reg_off, pwm_disable_reg_enable, pwm_enable_reg_enable, pwm_disable_reg_disable, }; struct pwm_fan_ctx { struct device *dev; struct mutex lock; struct pwm_device *pwm; struct pwm_state pwm_state; struct regulator *reg_en; enum pwm_fan_enable_mode enable_mode; bool regulator_enabled; bool enabled; int tach_count; struct pwm_fan_tach *tachs; u32 *pulses_per_revolution; ktime_t sample_start; struct timer_list rpm_timer; unsigned int pwm_value; unsigned int pwm_fan_state; unsigned int pwm_fan_max_state; unsigned int *pwm_fan_cooling_levels; struct thermal_cooling_device *cdev; struct hwmon_chip_info info; struct hwmon_channel_info fan_channel; }; /* This handler assumes self resetting edge triggered interrupt. */ static irqreturn_t pulse_handler(int irq, void *dev_id) { struct pwm_fan_tach *tach = dev_id; atomic_inc(&tach->pulses); return IRQ_HANDLED; } static void sample_timer(struct timer_list *t) { struct pwm_fan_ctx *ctx = from_timer(ctx, t, rpm_timer); unsigned int delta = ktime_ms_delta(ktime_get(), ctx->sample_start); int i; if (delta) { for (i = 0; i < ctx->tach_count; i++) { struct pwm_fan_tach *tach = &ctx->tachs[i]; int pulses; pulses = atomic_read(&tach->pulses); atomic_sub(pulses, &tach->pulses); tach->rpm = (unsigned int)(pulses * 1000 * 60) / (ctx->pulses_per_revolution[i] * delta); } ctx->sample_start = ktime_get(); } mod_timer(&ctx->rpm_timer, jiffies + HZ); } static void pwm_fan_enable_mode_2_state(int enable_mode, struct pwm_state *state, bool *enable_regulator) { switch (enable_mode) { case pwm_disable_reg_enable: /* disable pwm, keep regulator enabled */ state->enabled = false; *enable_regulator = true; break; case pwm_enable_reg_enable: /* keep pwm and regulator enabled */ state->enabled = true; *enable_regulator = true; break; case pwm_off_reg_off: case pwm_disable_reg_disable: /* disable pwm and regulator */ state->enabled = false; *enable_regulator = false; } } static int pwm_fan_switch_power(struct pwm_fan_ctx *ctx, bool on) { int ret = 0; if (!ctx->reg_en) return ret; if (!ctx->regulator_enabled && on) { ret = regulator_enable(ctx->reg_en); if (ret == 0) ctx->regulator_enabled = true; } else if (ctx->regulator_enabled && !on) { ret = regulator_disable(ctx->reg_en); if (ret == 0) ctx->regulator_enabled = false; } return ret; } static int pwm_fan_power_on(struct pwm_fan_ctx *ctx) { struct pwm_state *state = &ctx->pwm_state; int ret; if (ctx->enabled) return 0; ret = pwm_fan_switch_power(ctx, true); if (ret < 0) { dev_err(ctx->dev, "failed to enable power supply\n"); return ret; } state->enabled = true; ret = pwm_apply_might_sleep(ctx->pwm, state); if (ret) { dev_err(ctx->dev, "failed to enable PWM\n"); goto disable_regulator; } ctx->enabled = true; return 0; disable_regulator: pwm_fan_switch_power(ctx, false); return ret; } static int pwm_fan_power_off(struct pwm_fan_ctx *ctx) { struct pwm_state *state = &ctx->pwm_state; bool enable_regulator = false; int ret; if (!ctx->enabled) return 0; pwm_fan_enable_mode_2_state(ctx->enable_mode, state, &enable_regulator); state->enabled = false; state->duty_cycle = 0; ret = pwm_apply_might_sleep(ctx->pwm, state); if (ret) { dev_err(ctx->dev, "failed to disable PWM\n"); return ret; } pwm_fan_switch_power(ctx, enable_regulator); ctx->enabled = false; return 0; } static int __set_pwm(struct pwm_fan_ctx *ctx, unsigned long pwm) { struct pwm_state *state = &ctx->pwm_state; unsigned long period; int ret = 0; if (pwm > 0) { if (ctx->enable_mode == pwm_off_reg_off) /* pwm-fan hard disabled */ return 0; period = state->period; state->duty_cycle = DIV_ROUND_UP(pwm * (period - 1), MAX_PWM); ret = pwm_apply_might_sleep(ctx->pwm, state); if (ret) return ret; ret = pwm_fan_power_on(ctx); } else { ret = pwm_fan_power_off(ctx); } if (!ret) ctx->pwm_value = pwm; return ret; } static int set_pwm(struct pwm_fan_ctx *ctx, unsigned long pwm) { int ret; mutex_lock(&ctx->lock); ret = __set_pwm(ctx, pwm); mutex_unlock(&ctx->lock); return ret; } static void pwm_fan_update_state(struct pwm_fan_ctx *ctx, unsigned long pwm) { int i; for (i = 0; i < ctx->pwm_fan_max_state; ++i) if (pwm < ctx->pwm_fan_cooling_levels[i + 1]) break; ctx->pwm_fan_state = i; } static int pwm_fan_update_enable(struct pwm_fan_ctx *ctx, long val) { int ret = 0; int old_val; mutex_lock(&ctx->lock); if (ctx->enable_mode == val) goto out; old_val = ctx->enable_mode; ctx->enable_mode = val; if (val == 0) { /* Disable pwm-fan unconditionally */ if (ctx->enabled) ret = __set_pwm(ctx, 0); else ret = pwm_fan_switch_power(ctx, false); if (ret) ctx->enable_mode = old_val; pwm_fan_update_state(ctx, 0); } else { /* * Change PWM and/or regulator state if currently disabled * Nothing to do if currently enabled */ if (!ctx->enabled) { struct pwm_state *state = &ctx->pwm_state; bool enable_regulator = false; state->duty_cycle = 0; pwm_fan_enable_mode_2_state(val, state, &enable_regulator); pwm_apply_might_sleep(ctx->pwm, state); pwm_fan_switch_power(ctx, enable_regulator); pwm_fan_update_state(ctx, 0); } } out: mutex_unlock(&ctx->lock); return ret; } static int pwm_fan_write(struct device *dev, enum hwmon_sensor_types type, u32 attr, int channel, long val) { struct pwm_fan_ctx *ctx = dev_get_drvdata(dev); int ret; switch (attr) { case hwmon_pwm_input: if (val < 0 || val > MAX_PWM) return -EINVAL; ret = set_pwm(ctx, val); if (ret) return ret; pwm_fan_update_state(ctx, val); break; case hwmon_pwm_enable: if (val < 0 || val > 3) ret = -EINVAL; else ret = pwm_fan_update_enable(ctx, val); return ret; default: return -EOPNOTSUPP; } return 0; } static int pwm_fan_read(struct device *dev, enum hwmon_sensor_types type, u32 attr, int channel, long *val) { struct pwm_fan_ctx *ctx = dev_get_drvdata(dev); switch (type) { case hwmon_pwm: switch (attr) { case hwmon_pwm_input: *val = ctx->pwm_value; return 0; case hwmon_pwm_enable: *val = ctx->enable_mode; return 0; } return -EOPNOTSUPP; case hwmon_fan: *val = ctx->tachs[channel].rpm; return 0; default: return -ENOTSUPP; } } static umode_t pwm_fan_is_visible(const void *data, enum hwmon_sensor_types type, u32 attr, int channel) { switch (type) { case hwmon_pwm: return 0644; case hwmon_fan: return 0444; default: return 0; } } static const struct hwmon_ops pwm_fan_hwmon_ops = { .is_visible = pwm_fan_is_visible, .read = pwm_fan_read, .write = pwm_fan_write, }; /* thermal cooling device callbacks */ static int pwm_fan_get_max_state(struct thermal_cooling_device *cdev, unsigned long *state) { struct pwm_fan_ctx *ctx = cdev->devdata; if (!ctx) return -EINVAL; *state = ctx->pwm_fan_max_state; return 0; } static int pwm_fan_get_cur_state(struct thermal_cooling_device *cdev, unsigned long *state) { struct pwm_fan_ctx *ctx = cdev->devdata; if (!ctx) return -EINVAL; *state = ctx->pwm_fan_state; return 0; } static int pwm_fan_set_cur_state(struct thermal_cooling_device *cdev, unsigned long state) { struct pwm_fan_ctx *ctx = cdev->devdata; int ret; if (!ctx || (state > ctx->pwm_fan_max_state)) return -EINVAL; if (state == ctx->pwm_fan_state) return 0; ret = set_pwm(ctx, ctx->pwm_fan_cooling_levels[state]); if (ret) { dev_err(&cdev->device, "Cannot set pwm!\n"); return ret; } ctx->pwm_fan_state = state; return ret; } static const struct thermal_cooling_device_ops pwm_fan_cooling_ops = { .get_max_state = pwm_fan_get_max_state, .get_cur_state = pwm_fan_get_cur_state, .set_cur_state = pwm_fan_set_cur_state, }; static int pwm_fan_get_cooling_data(struct device *dev, struct pwm_fan_ctx *ctx) { int num, i, ret; if (!device_property_present(dev, "cooling-levels")) return 0; ret = device_property_count_u32(dev, "cooling-levels"); if (ret <= 0) { dev_err(dev, "Wrong data!\n"); return ret ? : -EINVAL; } num = ret; ctx->pwm_fan_cooling_levels = devm_kcalloc(dev, num, sizeof(u32), GFP_KERNEL); if (!ctx->pwm_fan_cooling_levels) return -ENOMEM; ret = device_property_read_u32_array(dev, "cooling-levels", ctx->pwm_fan_cooling_levels, num); if (ret) { dev_err(dev, "Property 'cooling-levels' cannot be read!\n"); return ret; } for (i = 0; i < num; i++) { if (ctx->pwm_fan_cooling_levels[i] > MAX_PWM) { dev_err(dev, "PWM fan state[%d]:%d > %d\n", i, ctx->pwm_fan_cooling_levels[i], MAX_PWM); return -EINVAL; } } ctx->pwm_fan_max_state = num - 1; return 0; } static void pwm_fan_cleanup(void *__ctx) { struct pwm_fan_ctx *ctx = __ctx; del_timer_sync(&ctx->rpm_timer); /* Switch off everything */ ctx->enable_mode = pwm_disable_reg_disable; pwm_fan_power_off(ctx); } static int pwm_fan_probe(struct platform_device *pdev) { struct thermal_cooling_device *cdev; struct device *dev = &pdev->dev; struct pwm_fan_ctx *ctx; struct device *hwmon; int ret; const struct hwmon_channel_info **channels; u32 *fan_channel_config; int channel_count = 1; /* We always have a PWM channel. */ int i; ctx = devm_kzalloc(dev, sizeof(*ctx), GFP_KERNEL); if (!ctx) return -ENOMEM; mutex_init(&ctx->lock); ctx->dev = &pdev->dev; ctx->pwm = devm_pwm_get(dev, NULL); if (IS_ERR(ctx->pwm)) return dev_err_probe(dev, PTR_ERR(ctx->pwm), "Could not get PWM\n"); platform_set_drvdata(pdev, ctx); ctx->reg_en = devm_regulator_get_optional(dev, "fan"); if (IS_ERR(ctx->reg_en)) { if (PTR_ERR(ctx->reg_en) != -ENODEV) return PTR_ERR(ctx->reg_en); ctx->reg_en = NULL; } pwm_init_state(ctx->pwm, &ctx->pwm_state); /* * PWM fans are controlled solely by the duty cycle of the PWM signal, * they do not care about the exact timing. Thus set usage_power to true * to allow less flexible hardware to work as a PWM source for fan * control. */ ctx->pwm_state.usage_power = true; /* * set_pwm assumes that MAX_PWM * (period - 1) fits into an unsigned * long. Check this here to prevent the fan running at a too low * frequency. */ if (ctx->pwm_state.period > ULONG_MAX / MAX_PWM + 1) { dev_err(dev, "Configured period too big\n"); return -EINVAL; } ctx->enable_mode = pwm_disable_reg_enable; /* * Set duty cycle to maximum allowed and enable PWM output as well as * the regulator. In case of error nothing is changed */ ret = set_pwm(ctx, MAX_PWM); if (ret) { dev_err(dev, "Failed to configure PWM: %d\n", ret); return ret; } timer_setup(&ctx->rpm_timer, sample_timer, 0); ret = devm_add_action_or_reset(dev, pwm_fan_cleanup, ctx); if (ret) return ret; ctx->tach_count = platform_irq_count(pdev); if (ctx->tach_count < 0) return dev_err_probe(dev, ctx->tach_count, "Could not get number of fan tachometer inputs\n"); dev_dbg(dev, "%d fan tachometer inputs\n", ctx->tach_count); if (ctx->tach_count) { channel_count++; /* We also have a FAN channel. */ ctx->tachs = devm_kcalloc(dev, ctx->tach_count, sizeof(struct pwm_fan_tach), GFP_KERNEL); if (!ctx->tachs) return -ENOMEM; ctx->fan_channel.type = hwmon_fan; fan_channel_config = devm_kcalloc(dev, ctx->tach_count + 1, sizeof(u32), GFP_KERNEL); if (!fan_channel_config) return -ENOMEM; ctx->fan_channel.config = fan_channel_config; ctx->pulses_per_revolution = devm_kmalloc_array(dev, ctx->tach_count, sizeof(*ctx->pulses_per_revolution), GFP_KERNEL); if (!ctx->pulses_per_revolution) return -ENOMEM; /* Setup default pulses per revolution */ for (i = 0; i < ctx->tach_count; i++) ctx->pulses_per_revolution[i] = 2; device_property_read_u32_array(dev, "pulses-per-revolution", ctx->pulses_per_revolution, ctx->tach_count); } channels = devm_kcalloc(dev, channel_count + 1, sizeof(struct hwmon_channel_info *), GFP_KERNEL); if (!channels) return -ENOMEM; channels[0] = HWMON_CHANNEL_INFO(pwm, HWMON_PWM_INPUT | HWMON_PWM_ENABLE); for (i = 0; i < ctx->tach_count; i++) { struct pwm_fan_tach *tach = &ctx->tachs[i]; tach->irq = platform_get_irq(pdev, i); if (tach->irq == -EPROBE_DEFER) return tach->irq; if (tach->irq > 0) { ret = devm_request_irq(dev, tach->irq, pulse_handler, 0, pdev->name, tach); if (ret) { dev_err(dev, "Failed to request interrupt: %d\n", ret); return ret; } } if (!ctx->pulses_per_revolution[i]) { dev_err(dev, "pulses-per-revolution can't be zero.\n"); return -EINVAL; } fan_channel_config[i] = HWMON_F_INPUT; dev_dbg(dev, "tach%d: irq=%d, pulses_per_revolution=%d\n", i, tach->irq, ctx->pulses_per_revolution[i]); } if (ctx->tach_count > 0) { ctx->sample_start = ktime_get(); mod_timer(&ctx->rpm_timer, jiffies + HZ); channels[1] = &ctx->fan_channel; } ctx->info.ops = &pwm_fan_hwmon_ops; ctx->info.info = channels; hwmon = devm_hwmon_device_register_with_info(dev, "pwmfan", ctx, &ctx->info, NULL); if (IS_ERR(hwmon)) { dev_err(dev, "Failed to register hwmon device\n"); return PTR_ERR(hwmon); } ret = pwm_fan_get_cooling_data(dev, ctx); if (ret) return ret; ctx->pwm_fan_state = ctx->pwm_fan_max_state; if (IS_ENABLED(CONFIG_THERMAL)) { cdev = devm_thermal_of_cooling_device_register(dev, dev->of_node, "pwm-fan", ctx, &pwm_fan_cooling_ops); if (IS_ERR(cdev)) { ret = PTR_ERR(cdev); dev_err(dev, "Failed to register pwm-fan as cooling device: %d\n", ret); return ret; } ctx->cdev = cdev; } return 0; } static void pwm_fan_shutdown(struct platform_device *pdev) { struct pwm_fan_ctx *ctx = platform_get_drvdata(pdev); pwm_fan_cleanup(ctx); } static int pwm_fan_suspend(struct device *dev) { struct pwm_fan_ctx *ctx = dev_get_drvdata(dev); return pwm_fan_power_off(ctx); } static int pwm_fan_resume(struct device *dev) { struct pwm_fan_ctx *ctx = dev_get_drvdata(dev); return set_pwm(ctx, ctx->pwm_value); } static DEFINE_SIMPLE_DEV_PM_OPS(pwm_fan_pm, pwm_fan_suspend, pwm_fan_resume); static const struct of_device_id of_pwm_fan_match[] = { { .compatible = "pwm-fan", }, {}, }; MODULE_DEVICE_TABLE(of, of_pwm_fan_match); static struct platform_driver pwm_fan_driver = { .probe = pwm_fan_probe, .shutdown = pwm_fan_shutdown, .driver = { .name = "pwm-fan", .pm = pm_sleep_ptr(&pwm_fan_pm), .of_match_table = of_pwm_fan_match, }, }; module_platform_driver(pwm_fan_driver); MODULE_AUTHOR("Kamil Debski <k.debski@samsung.com>"); MODULE_ALIAS("platform:pwm-fan"); MODULE_DESCRIPTION("PWM FAN driver"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1