Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Nico Pitre | 1631 | 98.85% | 1 | 16.67% |
Jarkko Nikula | 15 | 0.91% | 3 | 50.00% |
Billy Tsai | 2 | 0.12% | 1 | 16.67% |
Colin Ian King | 2 | 0.12% | 1 | 16.67% |
Total | 1650 | 6 |
// SPDX-License-Identifier: BSD-3-Clause /* * Copyright (c) 2020, MIPI Alliance, Inc. * * Author: Nicolas Pitre <npitre@baylibre.com> * * I3C HCI v1.0/v1.1 Command Descriptor Handling */ #include <linux/bitfield.h> #include <linux/i3c/master.h> #include "hci.h" #include "cmd.h" #include "dat.h" #include "dct.h" /* * Address Assignment Command */ #define CMD_0_ATTR_A FIELD_PREP(CMD_0_ATTR, 0x2) #define CMD_A0_TOC W0_BIT_(31) #define CMD_A0_ROC W0_BIT_(30) #define CMD_A0_DEV_COUNT(v) FIELD_PREP(W0_MASK(29, 26), v) #define CMD_A0_DEV_INDEX(v) FIELD_PREP(W0_MASK(20, 16), v) #define CMD_A0_CMD(v) FIELD_PREP(W0_MASK(14, 7), v) #define CMD_A0_TID(v) FIELD_PREP(W0_MASK( 6, 3), v) /* * Immediate Data Transfer Command */ #define CMD_0_ATTR_I FIELD_PREP(CMD_0_ATTR, 0x1) #define CMD_I1_DATA_BYTE_4(v) FIELD_PREP(W1_MASK(63, 56), v) #define CMD_I1_DATA_BYTE_3(v) FIELD_PREP(W1_MASK(55, 48), v) #define CMD_I1_DATA_BYTE_2(v) FIELD_PREP(W1_MASK(47, 40), v) #define CMD_I1_DATA_BYTE_1(v) FIELD_PREP(W1_MASK(39, 32), v) #define CMD_I1_DEF_BYTE(v) FIELD_PREP(W1_MASK(39, 32), v) #define CMD_I0_TOC W0_BIT_(31) #define CMD_I0_ROC W0_BIT_(30) #define CMD_I0_RNW W0_BIT_(29) #define CMD_I0_MODE(v) FIELD_PREP(W0_MASK(28, 26), v) #define CMD_I0_DTT(v) FIELD_PREP(W0_MASK(25, 23), v) #define CMD_I0_DEV_INDEX(v) FIELD_PREP(W0_MASK(20, 16), v) #define CMD_I0_CP W0_BIT_(15) #define CMD_I0_CMD(v) FIELD_PREP(W0_MASK(14, 7), v) #define CMD_I0_TID(v) FIELD_PREP(W0_MASK( 6, 3), v) /* * Regular Data Transfer Command */ #define CMD_0_ATTR_R FIELD_PREP(CMD_0_ATTR, 0x0) #define CMD_R1_DATA_LENGTH(v) FIELD_PREP(W1_MASK(63, 48), v) #define CMD_R1_DEF_BYTE(v) FIELD_PREP(W1_MASK(39, 32), v) #define CMD_R0_TOC W0_BIT_(31) #define CMD_R0_ROC W0_BIT_(30) #define CMD_R0_RNW W0_BIT_(29) #define CMD_R0_MODE(v) FIELD_PREP(W0_MASK(28, 26), v) #define CMD_R0_DBP W0_BIT_(25) #define CMD_R0_DEV_INDEX(v) FIELD_PREP(W0_MASK(20, 16), v) #define CMD_R0_CP W0_BIT_(15) #define CMD_R0_CMD(v) FIELD_PREP(W0_MASK(14, 7), v) #define CMD_R0_TID(v) FIELD_PREP(W0_MASK( 6, 3), v) /* * Combo Transfer (Write + Write/Read) Command */ #define CMD_0_ATTR_C FIELD_PREP(CMD_0_ATTR, 0x3) #define CMD_C1_DATA_LENGTH(v) FIELD_PREP(W1_MASK(63, 48), v) #define CMD_C1_OFFSET(v) FIELD_PREP(W1_MASK(47, 32), v) #define CMD_C0_TOC W0_BIT_(31) #define CMD_C0_ROC W0_BIT_(30) #define CMD_C0_RNW W0_BIT_(29) #define CMD_C0_MODE(v) FIELD_PREP(W0_MASK(28, 26), v) #define CMD_C0_16_BIT_SUBOFFSET W0_BIT_(25) #define CMD_C0_FIRST_PHASE_MODE W0_BIT_(24) #define CMD_C0_DATA_LENGTH_POSITION(v) FIELD_PREP(W0_MASK(23, 22), v) #define CMD_C0_DEV_INDEX(v) FIELD_PREP(W0_MASK(20, 16), v) #define CMD_C0_CP W0_BIT_(15) #define CMD_C0_CMD(v) FIELD_PREP(W0_MASK(14, 7), v) #define CMD_C0_TID(v) FIELD_PREP(W0_MASK( 6, 3), v) /* * Internal Control Command */ #define CMD_0_ATTR_M FIELD_PREP(CMD_0_ATTR, 0x7) #define CMD_M1_VENDOR_SPECIFIC W1_MASK(63, 32) #define CMD_M0_MIPI_RESERVED W0_MASK(31, 12) #define CMD_M0_MIPI_CMD W0_MASK(11, 8) #define CMD_M0_VENDOR_INFO_PRESENT W0_BIT_( 7) #define CMD_M0_TID(v) FIELD_PREP(W0_MASK( 6, 3), v) /* Data Transfer Speed and Mode */ enum hci_cmd_mode { MODE_I3C_SDR0 = 0x0, MODE_I3C_SDR1 = 0x1, MODE_I3C_SDR2 = 0x2, MODE_I3C_SDR3 = 0x3, MODE_I3C_SDR4 = 0x4, MODE_I3C_HDR_TSx = 0x5, MODE_I3C_HDR_DDR = 0x6, MODE_I3C_HDR_BT = 0x7, MODE_I3C_Fm_FmP = 0x8, MODE_I2C_Fm = 0x0, MODE_I2C_FmP = 0x1, MODE_I2C_UD1 = 0x2, MODE_I2C_UD2 = 0x3, MODE_I2C_UD3 = 0x4, }; static enum hci_cmd_mode get_i3c_mode(struct i3c_hci *hci) { struct i3c_bus *bus = i3c_master_get_bus(&hci->master); if (bus->scl_rate.i3c >= 12500000) return MODE_I3C_SDR0; if (bus->scl_rate.i3c > 8000000) return MODE_I3C_SDR1; if (bus->scl_rate.i3c > 6000000) return MODE_I3C_SDR2; if (bus->scl_rate.i3c > 4000000) return MODE_I3C_SDR3; if (bus->scl_rate.i3c > 2000000) return MODE_I3C_SDR4; return MODE_I3C_Fm_FmP; } static enum hci_cmd_mode get_i2c_mode(struct i3c_hci *hci) { struct i3c_bus *bus = i3c_master_get_bus(&hci->master); if (bus->scl_rate.i2c >= 1000000) return MODE_I2C_FmP; return MODE_I2C_Fm; } static void fill_data_bytes(struct hci_xfer *xfer, u8 *data, unsigned int data_len) { xfer->cmd_desc[1] = 0; switch (data_len) { case 4: xfer->cmd_desc[1] |= CMD_I1_DATA_BYTE_4(data[3]); fallthrough; case 3: xfer->cmd_desc[1] |= CMD_I1_DATA_BYTE_3(data[2]); fallthrough; case 2: xfer->cmd_desc[1] |= CMD_I1_DATA_BYTE_2(data[1]); fallthrough; case 1: xfer->cmd_desc[1] |= CMD_I1_DATA_BYTE_1(data[0]); fallthrough; case 0: break; } /* we consumed all the data with the cmd descriptor */ xfer->data = NULL; } static int hci_cmd_v1_prep_ccc(struct i3c_hci *hci, struct hci_xfer *xfer, u8 ccc_addr, u8 ccc_cmd, bool raw) { unsigned int dat_idx = 0; enum hci_cmd_mode mode = get_i3c_mode(hci); u8 *data = xfer->data; unsigned int data_len = xfer->data_len; bool rnw = xfer->rnw; int ret; /* this should never happen */ if (WARN_ON(raw)) return -EINVAL; if (ccc_addr != I3C_BROADCAST_ADDR) { ret = mipi_i3c_hci_dat_v1.get_index(hci, ccc_addr); if (ret < 0) return ret; dat_idx = ret; } xfer->cmd_tid = hci_get_tid(); if (!rnw && data_len <= 4) { /* we use an Immediate Data Transfer Command */ xfer->cmd_desc[0] = CMD_0_ATTR_I | CMD_I0_TID(xfer->cmd_tid) | CMD_I0_CMD(ccc_cmd) | CMD_I0_CP | CMD_I0_DEV_INDEX(dat_idx) | CMD_I0_DTT(data_len) | CMD_I0_MODE(mode); fill_data_bytes(xfer, data, data_len); } else { /* we use a Regular Data Transfer Command */ xfer->cmd_desc[0] = CMD_0_ATTR_R | CMD_R0_TID(xfer->cmd_tid) | CMD_R0_CMD(ccc_cmd) | CMD_R0_CP | CMD_R0_DEV_INDEX(dat_idx) | CMD_R0_MODE(mode) | (rnw ? CMD_R0_RNW : 0); xfer->cmd_desc[1] = CMD_R1_DATA_LENGTH(data_len); } return 0; } static void hci_cmd_v1_prep_i3c_xfer(struct i3c_hci *hci, struct i3c_dev_desc *dev, struct hci_xfer *xfer) { struct i3c_hci_dev_data *dev_data = i3c_dev_get_master_data(dev); unsigned int dat_idx = dev_data->dat_idx; enum hci_cmd_mode mode = get_i3c_mode(hci); u8 *data = xfer->data; unsigned int data_len = xfer->data_len; bool rnw = xfer->rnw; xfer->cmd_tid = hci_get_tid(); if (!rnw && data_len <= 4) { /* we use an Immediate Data Transfer Command */ xfer->cmd_desc[0] = CMD_0_ATTR_I | CMD_I0_TID(xfer->cmd_tid) | CMD_I0_DEV_INDEX(dat_idx) | CMD_I0_DTT(data_len) | CMD_I0_MODE(mode); fill_data_bytes(xfer, data, data_len); } else { /* we use a Regular Data Transfer Command */ xfer->cmd_desc[0] = CMD_0_ATTR_R | CMD_R0_TID(xfer->cmd_tid) | CMD_R0_DEV_INDEX(dat_idx) | CMD_R0_MODE(mode) | (rnw ? CMD_R0_RNW : 0); xfer->cmd_desc[1] = CMD_R1_DATA_LENGTH(data_len); } } static void hci_cmd_v1_prep_i2c_xfer(struct i3c_hci *hci, struct i2c_dev_desc *dev, struct hci_xfer *xfer) { struct i3c_hci_dev_data *dev_data = i2c_dev_get_master_data(dev); unsigned int dat_idx = dev_data->dat_idx; enum hci_cmd_mode mode = get_i2c_mode(hci); u8 *data = xfer->data; unsigned int data_len = xfer->data_len; bool rnw = xfer->rnw; xfer->cmd_tid = hci_get_tid(); if (!rnw && data_len <= 4) { /* we use an Immediate Data Transfer Command */ xfer->cmd_desc[0] = CMD_0_ATTR_I | CMD_I0_TID(xfer->cmd_tid) | CMD_I0_DEV_INDEX(dat_idx) | CMD_I0_DTT(data_len) | CMD_I0_MODE(mode); fill_data_bytes(xfer, data, data_len); } else { /* we use a Regular Data Transfer Command */ xfer->cmd_desc[0] = CMD_0_ATTR_R | CMD_R0_TID(xfer->cmd_tid) | CMD_R0_DEV_INDEX(dat_idx) | CMD_R0_MODE(mode) | (rnw ? CMD_R0_RNW : 0); xfer->cmd_desc[1] = CMD_R1_DATA_LENGTH(data_len); } } static int hci_cmd_v1_daa(struct i3c_hci *hci) { struct hci_xfer *xfer; int ret, dat_idx = -1; u8 next_addr = 0; u64 pid; unsigned int dcr, bcr; DECLARE_COMPLETION_ONSTACK(done); xfer = hci_alloc_xfer(1); if (!xfer) return -ENOMEM; /* * Simple for now: we allocate a temporary DAT entry, do a single * DAA, register the device which will allocate its own DAT entry * via the core callback, then free the temporary DAT entry. * Loop until there is no more devices to assign an address to. * Yes, there is room for improvements. */ for (;;) { ret = mipi_i3c_hci_dat_v1.alloc_entry(hci); if (ret < 0) break; dat_idx = ret; ret = i3c_master_get_free_addr(&hci->master, next_addr); if (ret < 0) break; next_addr = ret; DBG("next_addr = 0x%02x, DAA using DAT %d", next_addr, dat_idx); mipi_i3c_hci_dat_v1.set_dynamic_addr(hci, dat_idx, next_addr); mipi_i3c_hci_dct_index_reset(hci); xfer->cmd_tid = hci_get_tid(); xfer->cmd_desc[0] = CMD_0_ATTR_A | CMD_A0_TID(xfer->cmd_tid) | CMD_A0_CMD(I3C_CCC_ENTDAA) | CMD_A0_DEV_INDEX(dat_idx) | CMD_A0_DEV_COUNT(1) | CMD_A0_ROC | CMD_A0_TOC; xfer->cmd_desc[1] = 0; xfer->completion = &done; hci->io->queue_xfer(hci, xfer, 1); if (!wait_for_completion_timeout(&done, HZ) && hci->io->dequeue_xfer(hci, xfer, 1)) { ret = -ETIME; break; } if ((RESP_STATUS(xfer->response) == RESP_ERR_ADDR_HEADER || RESP_STATUS(xfer->response) == RESP_ERR_NACK) && RESP_DATA_LENGTH(xfer->response) == 1) { ret = 0; /* no more devices to be assigned */ break; } if (RESP_STATUS(xfer->response) != RESP_SUCCESS) { ret = -EIO; break; } i3c_hci_dct_get_val(hci, 0, &pid, &dcr, &bcr); DBG("assigned address %#x to device PID=0x%llx DCR=%#x BCR=%#x", next_addr, pid, dcr, bcr); mipi_i3c_hci_dat_v1.free_entry(hci, dat_idx); dat_idx = -1; /* * TODO: Extend the subsystem layer to allow for registering * new device and provide BCR/DCR/PID at the same time. */ ret = i3c_master_add_i3c_dev_locked(&hci->master, next_addr); if (ret) break; } if (dat_idx >= 0) mipi_i3c_hci_dat_v1.free_entry(hci, dat_idx); hci_free_xfer(xfer, 1); return ret; } const struct hci_cmd_ops mipi_i3c_hci_cmd_v1 = { .prep_ccc = hci_cmd_v1_prep_ccc, .prep_i3c_xfer = hci_cmd_v1_prep_i3c_xfer, .prep_i2c_xfer = hci_cmd_v1_prep_i2c_xfer, .perform_daa = hci_cmd_v1_daa, };
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1