Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Nico Pitre | 3610 | 95.88% | 1 | 7.14% |
Jarkko Nikula | 146 | 3.88% | 11 | 78.57% |
Kees Cook | 5 | 0.13% | 1 | 7.14% |
Len Baker | 4 | 0.11% | 1 | 7.14% |
Total | 3765 | 14 |
// SPDX-License-Identifier: BSD-3-Clause /* * Copyright (c) 2020, MIPI Alliance, Inc. * * Author: Nicolas Pitre <npitre@baylibre.com> * * Note: The I3C HCI v2.0 spec is still in flux. The IBI support is based on * v1.x of the spec and v2.0 will likely be split out. */ #include <linux/bitfield.h> #include <linux/device.h> #include <linux/dma-mapping.h> #include <linux/errno.h> #include <linux/i3c/master.h> #include <linux/io.h> #include "hci.h" #include "cmd.h" #include "ibi.h" /* * Software Parameter Values (somewhat arb itrary for now). * Some of them could be determined at run time eventually. */ #define XFER_RINGS 1 /* max: 8 */ #define XFER_RING_ENTRIES 16 /* max: 255 */ #define IBI_RINGS 1 /* max: 8 */ #define IBI_STATUS_RING_ENTRIES 32 /* max: 255 */ #define IBI_CHUNK_CACHELINES 1 /* max: 256 bytes equivalent */ #define IBI_CHUNK_POOL_SIZE 128 /* max: 1023 */ /* * Ring Header Preamble */ #define rhs_reg_read(r) readl(hci->RHS_regs + (RHS_##r)) #define rhs_reg_write(r, v) writel(v, hci->RHS_regs + (RHS_##r)) #define RHS_CONTROL 0x00 #define PREAMBLE_SIZE GENMASK(31, 24) /* Preamble Section Size */ #define HEADER_SIZE GENMASK(23, 16) /* Ring Header Size */ #define MAX_HEADER_COUNT_CAP GENMASK(7, 4) /* HC Max Header Count */ #define MAX_HEADER_COUNT GENMASK(3, 0) /* Driver Max Header Count */ #define RHS_RHn_OFFSET(n) (0x04 + (n)*4) /* * Ring Header (Per-Ring Bundle) */ #define rh_reg_read(r) readl(rh->regs + (RH_##r)) #define rh_reg_write(r, v) writel(v, rh->regs + (RH_##r)) #define RH_CR_SETUP 0x00 /* Command/Response Ring */ #define CR_XFER_STRUCT_SIZE GENMASK(31, 24) #define CR_RESP_STRUCT_SIZE GENMASK(23, 16) #define CR_RING_SIZE GENMASK(8, 0) #define RH_IBI_SETUP 0x04 #define IBI_STATUS_STRUCT_SIZE GENMASK(31, 24) #define IBI_STATUS_RING_SIZE GENMASK(23, 16) #define IBI_DATA_CHUNK_SIZE GENMASK(12, 10) #define IBI_DATA_CHUNK_COUNT GENMASK(9, 0) #define RH_CHUNK_CONTROL 0x08 #define RH_INTR_STATUS 0x10 #define RH_INTR_STATUS_ENABLE 0x14 #define RH_INTR_SIGNAL_ENABLE 0x18 #define RH_INTR_FORCE 0x1c #define INTR_IBI_READY BIT(12) #define INTR_TRANSFER_COMPLETION BIT(11) #define INTR_RING_OP BIT(10) #define INTR_TRANSFER_ERR BIT(9) #define INTR_WARN_INS_STOP_MODE BIT(7) #define INTR_IBI_RING_FULL BIT(6) #define INTR_TRANSFER_ABORT BIT(5) #define RH_RING_STATUS 0x20 #define RING_STATUS_LOCKED BIT(3) #define RING_STATUS_ABORTED BIT(2) #define RING_STATUS_RUNNING BIT(1) #define RING_STATUS_ENABLED BIT(0) #define RH_RING_CONTROL 0x24 #define RING_CTRL_ABORT BIT(2) #define RING_CTRL_RUN_STOP BIT(1) #define RING_CTRL_ENABLE BIT(0) #define RH_RING_OPERATION1 0x28 #define RING_OP1_IBI_DEQ_PTR GENMASK(23, 16) #define RING_OP1_CR_SW_DEQ_PTR GENMASK(15, 8) #define RING_OP1_CR_ENQ_PTR GENMASK(7, 0) #define RH_RING_OPERATION2 0x2c #define RING_OP2_IBI_ENQ_PTR GENMASK(23, 16) #define RING_OP2_CR_DEQ_PTR GENMASK(7, 0) #define RH_CMD_RING_BASE_LO 0x30 #define RH_CMD_RING_BASE_HI 0x34 #define RH_RESP_RING_BASE_LO 0x38 #define RH_RESP_RING_BASE_HI 0x3c #define RH_IBI_STATUS_RING_BASE_LO 0x40 #define RH_IBI_STATUS_RING_BASE_HI 0x44 #define RH_IBI_DATA_RING_BASE_LO 0x48 #define RH_IBI_DATA_RING_BASE_HI 0x4c #define RH_CMD_RING_SG 0x50 /* Ring Scatter Gather Support */ #define RH_RESP_RING_SG 0x54 #define RH_IBI_STATUS_RING_SG 0x58 #define RH_IBI_DATA_RING_SG 0x5c #define RING_SG_BLP BIT(31) /* Buffer Vs. List Pointer */ #define RING_SG_LIST_SIZE GENMASK(15, 0) /* * Data Buffer Descriptor (in memory) */ #define DATA_BUF_BLP BIT(31) /* Buffer Vs. List Pointer */ #define DATA_BUF_IOC BIT(30) /* Interrupt on Completion */ #define DATA_BUF_BLOCK_SIZE GENMASK(15, 0) struct hci_rh_data { void __iomem *regs; void *xfer, *resp, *ibi_status, *ibi_data; dma_addr_t xfer_dma, resp_dma, ibi_status_dma, ibi_data_dma; unsigned int xfer_entries, ibi_status_entries, ibi_chunks_total; unsigned int xfer_struct_sz, resp_struct_sz, ibi_status_sz, ibi_chunk_sz; unsigned int done_ptr, ibi_chunk_ptr; struct hci_xfer **src_xfers; spinlock_t lock; struct completion op_done; }; struct hci_rings_data { unsigned int total; struct hci_rh_data headers[] __counted_by(total); }; struct hci_dma_dev_ibi_data { struct i3c_generic_ibi_pool *pool; unsigned int max_len; }; static void hci_dma_cleanup(struct i3c_hci *hci) { struct hci_rings_data *rings = hci->io_data; struct hci_rh_data *rh; unsigned int i; if (!rings) return; for (i = 0; i < rings->total; i++) { rh = &rings->headers[i]; rh_reg_write(RING_CONTROL, 0); rh_reg_write(CR_SETUP, 0); rh_reg_write(IBI_SETUP, 0); rh_reg_write(INTR_SIGNAL_ENABLE, 0); if (rh->xfer) dma_free_coherent(&hci->master.dev, rh->xfer_struct_sz * rh->xfer_entries, rh->xfer, rh->xfer_dma); if (rh->resp) dma_free_coherent(&hci->master.dev, rh->resp_struct_sz * rh->xfer_entries, rh->resp, rh->resp_dma); kfree(rh->src_xfers); if (rh->ibi_status) dma_free_coherent(&hci->master.dev, rh->ibi_status_sz * rh->ibi_status_entries, rh->ibi_status, rh->ibi_status_dma); if (rh->ibi_data_dma) dma_unmap_single(&hci->master.dev, rh->ibi_data_dma, rh->ibi_chunk_sz * rh->ibi_chunks_total, DMA_FROM_DEVICE); kfree(rh->ibi_data); } rhs_reg_write(CONTROL, 0); kfree(rings); hci->io_data = NULL; } static int hci_dma_init(struct i3c_hci *hci) { struct hci_rings_data *rings; struct hci_rh_data *rh; u32 regval; unsigned int i, nr_rings, xfers_sz, resps_sz; unsigned int ibi_status_ring_sz, ibi_data_ring_sz; int ret; regval = rhs_reg_read(CONTROL); nr_rings = FIELD_GET(MAX_HEADER_COUNT_CAP, regval); dev_info(&hci->master.dev, "%d DMA rings available\n", nr_rings); if (unlikely(nr_rings > 8)) { dev_err(&hci->master.dev, "number of rings should be <= 8\n"); nr_rings = 8; } if (nr_rings > XFER_RINGS) nr_rings = XFER_RINGS; rings = kzalloc(struct_size(rings, headers, nr_rings), GFP_KERNEL); if (!rings) return -ENOMEM; hci->io_data = rings; rings->total = nr_rings; regval = FIELD_PREP(MAX_HEADER_COUNT, rings->total); rhs_reg_write(CONTROL, regval); for (i = 0; i < rings->total; i++) { u32 offset = rhs_reg_read(RHn_OFFSET(i)); dev_info(&hci->master.dev, "Ring %d at offset %#x\n", i, offset); ret = -EINVAL; if (!offset) goto err_out; rh = &rings->headers[i]; rh->regs = hci->base_regs + offset; spin_lock_init(&rh->lock); init_completion(&rh->op_done); rh->xfer_entries = XFER_RING_ENTRIES; regval = rh_reg_read(CR_SETUP); rh->xfer_struct_sz = FIELD_GET(CR_XFER_STRUCT_SIZE, regval); rh->resp_struct_sz = FIELD_GET(CR_RESP_STRUCT_SIZE, regval); DBG("xfer_struct_sz = %d, resp_struct_sz = %d", rh->xfer_struct_sz, rh->resp_struct_sz); xfers_sz = rh->xfer_struct_sz * rh->xfer_entries; resps_sz = rh->resp_struct_sz * rh->xfer_entries; rh->xfer = dma_alloc_coherent(&hci->master.dev, xfers_sz, &rh->xfer_dma, GFP_KERNEL); rh->resp = dma_alloc_coherent(&hci->master.dev, resps_sz, &rh->resp_dma, GFP_KERNEL); rh->src_xfers = kmalloc_array(rh->xfer_entries, sizeof(*rh->src_xfers), GFP_KERNEL); ret = -ENOMEM; if (!rh->xfer || !rh->resp || !rh->src_xfers) goto err_out; rh_reg_write(CMD_RING_BASE_LO, lower_32_bits(rh->xfer_dma)); rh_reg_write(CMD_RING_BASE_HI, upper_32_bits(rh->xfer_dma)); rh_reg_write(RESP_RING_BASE_LO, lower_32_bits(rh->resp_dma)); rh_reg_write(RESP_RING_BASE_HI, upper_32_bits(rh->resp_dma)); regval = FIELD_PREP(CR_RING_SIZE, rh->xfer_entries); rh_reg_write(CR_SETUP, regval); rh_reg_write(INTR_STATUS_ENABLE, 0xffffffff); rh_reg_write(INTR_SIGNAL_ENABLE, INTR_IBI_READY | INTR_TRANSFER_COMPLETION | INTR_RING_OP | INTR_TRANSFER_ERR | INTR_WARN_INS_STOP_MODE | INTR_IBI_RING_FULL | INTR_TRANSFER_ABORT); /* IBIs */ if (i >= IBI_RINGS) goto ring_ready; regval = rh_reg_read(IBI_SETUP); rh->ibi_status_sz = FIELD_GET(IBI_STATUS_STRUCT_SIZE, regval); rh->ibi_status_entries = IBI_STATUS_RING_ENTRIES; rh->ibi_chunks_total = IBI_CHUNK_POOL_SIZE; rh->ibi_chunk_sz = dma_get_cache_alignment(); rh->ibi_chunk_sz *= IBI_CHUNK_CACHELINES; /* * Round IBI data chunk size to number of bytes supported by * the HW. Chunk size can be 2^n number of DWORDs which is the * same as 2^(n+2) bytes, where n is 0..6. */ rh->ibi_chunk_sz = umax(4, rh->ibi_chunk_sz); rh->ibi_chunk_sz = roundup_pow_of_two(rh->ibi_chunk_sz); if (rh->ibi_chunk_sz > 256) { ret = -EINVAL; goto err_out; } ibi_status_ring_sz = rh->ibi_status_sz * rh->ibi_status_entries; ibi_data_ring_sz = rh->ibi_chunk_sz * rh->ibi_chunks_total; rh->ibi_status = dma_alloc_coherent(&hci->master.dev, ibi_status_ring_sz, &rh->ibi_status_dma, GFP_KERNEL); rh->ibi_data = kmalloc(ibi_data_ring_sz, GFP_KERNEL); ret = -ENOMEM; if (!rh->ibi_status || !rh->ibi_data) goto err_out; rh->ibi_data_dma = dma_map_single(&hci->master.dev, rh->ibi_data, ibi_data_ring_sz, DMA_FROM_DEVICE); if (dma_mapping_error(&hci->master.dev, rh->ibi_data_dma)) { rh->ibi_data_dma = 0; ret = -ENOMEM; goto err_out; } rh_reg_write(IBI_STATUS_RING_BASE_LO, lower_32_bits(rh->ibi_status_dma)); rh_reg_write(IBI_STATUS_RING_BASE_HI, upper_32_bits(rh->ibi_status_dma)); rh_reg_write(IBI_DATA_RING_BASE_LO, lower_32_bits(rh->ibi_data_dma)); rh_reg_write(IBI_DATA_RING_BASE_HI, upper_32_bits(rh->ibi_data_dma)); regval = FIELD_PREP(IBI_STATUS_RING_SIZE, rh->ibi_status_entries) | FIELD_PREP(IBI_DATA_CHUNK_SIZE, ilog2(rh->ibi_chunk_sz) - 2) | FIELD_PREP(IBI_DATA_CHUNK_COUNT, rh->ibi_chunks_total); rh_reg_write(IBI_SETUP, regval); regval = rh_reg_read(INTR_SIGNAL_ENABLE); regval |= INTR_IBI_READY; rh_reg_write(INTR_SIGNAL_ENABLE, regval); ring_ready: rh_reg_write(RING_CONTROL, RING_CTRL_ENABLE | RING_CTRL_RUN_STOP); } return 0; err_out: hci_dma_cleanup(hci); return ret; } static void hci_dma_unmap_xfer(struct i3c_hci *hci, struct hci_xfer *xfer_list, unsigned int n) { struct hci_xfer *xfer; unsigned int i; for (i = 0; i < n; i++) { xfer = xfer_list + i; if (!xfer->data) continue; dma_unmap_single(&hci->master.dev, xfer->data_dma, xfer->data_len, xfer->rnw ? DMA_FROM_DEVICE : DMA_TO_DEVICE); } } static int hci_dma_queue_xfer(struct i3c_hci *hci, struct hci_xfer *xfer_list, int n) { struct hci_rings_data *rings = hci->io_data; struct hci_rh_data *rh; unsigned int i, ring, enqueue_ptr; u32 op1_val, op2_val; void *buf; /* For now we only use ring 0 */ ring = 0; rh = &rings->headers[ring]; op1_val = rh_reg_read(RING_OPERATION1); enqueue_ptr = FIELD_GET(RING_OP1_CR_ENQ_PTR, op1_val); for (i = 0; i < n; i++) { struct hci_xfer *xfer = xfer_list + i; u32 *ring_data = rh->xfer + rh->xfer_struct_sz * enqueue_ptr; /* store cmd descriptor */ *ring_data++ = xfer->cmd_desc[0]; *ring_data++ = xfer->cmd_desc[1]; if (hci->cmd == &mipi_i3c_hci_cmd_v2) { *ring_data++ = xfer->cmd_desc[2]; *ring_data++ = xfer->cmd_desc[3]; } /* first word of Data Buffer Descriptor Structure */ if (!xfer->data) xfer->data_len = 0; *ring_data++ = FIELD_PREP(DATA_BUF_BLOCK_SIZE, xfer->data_len) | ((i == n - 1) ? DATA_BUF_IOC : 0); /* 2nd and 3rd words of Data Buffer Descriptor Structure */ if (xfer->data) { buf = xfer->bounce_buf ? xfer->bounce_buf : xfer->data; xfer->data_dma = dma_map_single(&hci->master.dev, buf, xfer->data_len, xfer->rnw ? DMA_FROM_DEVICE : DMA_TO_DEVICE); if (dma_mapping_error(&hci->master.dev, xfer->data_dma)) { hci_dma_unmap_xfer(hci, xfer_list, i); return -ENOMEM; } *ring_data++ = lower_32_bits(xfer->data_dma); *ring_data++ = upper_32_bits(xfer->data_dma); } else { *ring_data++ = 0; *ring_data++ = 0; } /* remember corresponding xfer struct */ rh->src_xfers[enqueue_ptr] = xfer; /* remember corresponding ring/entry for this xfer structure */ xfer->ring_number = ring; xfer->ring_entry = enqueue_ptr; enqueue_ptr = (enqueue_ptr + 1) % rh->xfer_entries; /* * We may update the hardware view of the enqueue pointer * only if we didn't reach its dequeue pointer. */ op2_val = rh_reg_read(RING_OPERATION2); if (enqueue_ptr == FIELD_GET(RING_OP2_CR_DEQ_PTR, op2_val)) { /* the ring is full */ hci_dma_unmap_xfer(hci, xfer_list, i + 1); return -EBUSY; } } /* take care to update the hardware enqueue pointer atomically */ spin_lock_irq(&rh->lock); op1_val = rh_reg_read(RING_OPERATION1); op1_val &= ~RING_OP1_CR_ENQ_PTR; op1_val |= FIELD_PREP(RING_OP1_CR_ENQ_PTR, enqueue_ptr); rh_reg_write(RING_OPERATION1, op1_val); spin_unlock_irq(&rh->lock); return 0; } static bool hci_dma_dequeue_xfer(struct i3c_hci *hci, struct hci_xfer *xfer_list, int n) { struct hci_rings_data *rings = hci->io_data; struct hci_rh_data *rh = &rings->headers[xfer_list[0].ring_number]; unsigned int i; bool did_unqueue = false; /* stop the ring */ rh_reg_write(RING_CONTROL, RING_CTRL_ABORT); if (wait_for_completion_timeout(&rh->op_done, HZ) == 0) { /* * We're deep in it if ever this condition is ever met. * Hardware might still be writing to memory, etc. */ dev_crit(&hci->master.dev, "unable to abort the ring\n"); WARN_ON(1); } for (i = 0; i < n; i++) { struct hci_xfer *xfer = xfer_list + i; int idx = xfer->ring_entry; /* * At the time the abort happened, the xfer might have * completed already. If not then replace corresponding * descriptor entries with a no-op. */ if (idx >= 0) { u32 *ring_data = rh->xfer + rh->xfer_struct_sz * idx; /* store no-op cmd descriptor */ *ring_data++ = FIELD_PREP(CMD_0_ATTR, 0x7); *ring_data++ = 0; if (hci->cmd == &mipi_i3c_hci_cmd_v2) { *ring_data++ = 0; *ring_data++ = 0; } /* disassociate this xfer struct */ rh->src_xfers[idx] = NULL; /* and unmap it */ hci_dma_unmap_xfer(hci, xfer, 1); did_unqueue = true; } } /* restart the ring */ rh_reg_write(RING_CONTROL, RING_CTRL_ENABLE); return did_unqueue; } static void hci_dma_xfer_done(struct i3c_hci *hci, struct hci_rh_data *rh) { u32 op1_val, op2_val, resp, *ring_resp; unsigned int tid, done_ptr = rh->done_ptr; struct hci_xfer *xfer; for (;;) { op2_val = rh_reg_read(RING_OPERATION2); if (done_ptr == FIELD_GET(RING_OP2_CR_DEQ_PTR, op2_val)) break; ring_resp = rh->resp + rh->resp_struct_sz * done_ptr; resp = *ring_resp; tid = RESP_TID(resp); DBG("resp = 0x%08x", resp); xfer = rh->src_xfers[done_ptr]; if (!xfer) { DBG("orphaned ring entry"); } else { hci_dma_unmap_xfer(hci, xfer, 1); xfer->ring_entry = -1; xfer->response = resp; if (tid != xfer->cmd_tid) { dev_err(&hci->master.dev, "response tid=%d when expecting %d\n", tid, xfer->cmd_tid); /* TODO: do something about it? */ } if (xfer->completion) complete(xfer->completion); } done_ptr = (done_ptr + 1) % rh->xfer_entries; rh->done_ptr = done_ptr; } /* take care to update the software dequeue pointer atomically */ spin_lock(&rh->lock); op1_val = rh_reg_read(RING_OPERATION1); op1_val &= ~RING_OP1_CR_SW_DEQ_PTR; op1_val |= FIELD_PREP(RING_OP1_CR_SW_DEQ_PTR, done_ptr); rh_reg_write(RING_OPERATION1, op1_val); spin_unlock(&rh->lock); } static int hci_dma_request_ibi(struct i3c_hci *hci, struct i3c_dev_desc *dev, const struct i3c_ibi_setup *req) { struct i3c_hci_dev_data *dev_data = i3c_dev_get_master_data(dev); struct i3c_generic_ibi_pool *pool; struct hci_dma_dev_ibi_data *dev_ibi; dev_ibi = kmalloc(sizeof(*dev_ibi), GFP_KERNEL); if (!dev_ibi) return -ENOMEM; pool = i3c_generic_ibi_alloc_pool(dev, req); if (IS_ERR(pool)) { kfree(dev_ibi); return PTR_ERR(pool); } dev_ibi->pool = pool; dev_ibi->max_len = req->max_payload_len; dev_data->ibi_data = dev_ibi; return 0; } static void hci_dma_free_ibi(struct i3c_hci *hci, struct i3c_dev_desc *dev) { struct i3c_hci_dev_data *dev_data = i3c_dev_get_master_data(dev); struct hci_dma_dev_ibi_data *dev_ibi = dev_data->ibi_data; dev_data->ibi_data = NULL; i3c_generic_ibi_free_pool(dev_ibi->pool); kfree(dev_ibi); } static void hci_dma_recycle_ibi_slot(struct i3c_hci *hci, struct i3c_dev_desc *dev, struct i3c_ibi_slot *slot) { struct i3c_hci_dev_data *dev_data = i3c_dev_get_master_data(dev); struct hci_dma_dev_ibi_data *dev_ibi = dev_data->ibi_data; i3c_generic_ibi_recycle_slot(dev_ibi->pool, slot); } static void hci_dma_process_ibi(struct i3c_hci *hci, struct hci_rh_data *rh) { struct i3c_dev_desc *dev; struct i3c_hci_dev_data *dev_data; struct hci_dma_dev_ibi_data *dev_ibi; struct i3c_ibi_slot *slot; u32 op1_val, op2_val, ibi_status_error; unsigned int ptr, enq_ptr, deq_ptr; unsigned int ibi_size, ibi_chunks, ibi_data_offset, first_part; int ibi_addr, last_ptr; void *ring_ibi_data; dma_addr_t ring_ibi_data_dma; op1_val = rh_reg_read(RING_OPERATION1); deq_ptr = FIELD_GET(RING_OP1_IBI_DEQ_PTR, op1_val); op2_val = rh_reg_read(RING_OPERATION2); enq_ptr = FIELD_GET(RING_OP2_IBI_ENQ_PTR, op2_val); ibi_status_error = 0; ibi_addr = -1; ibi_chunks = 0; ibi_size = 0; last_ptr = -1; /* let's find all we can about this IBI */ for (ptr = deq_ptr; ptr != enq_ptr; ptr = (ptr + 1) % rh->ibi_status_entries) { u32 ibi_status, *ring_ibi_status; unsigned int chunks; ring_ibi_status = rh->ibi_status + rh->ibi_status_sz * ptr; ibi_status = *ring_ibi_status; DBG("status = %#x", ibi_status); if (ibi_status_error) { /* we no longer care */ } else if (ibi_status & IBI_ERROR) { ibi_status_error = ibi_status; } else if (ibi_addr == -1) { ibi_addr = FIELD_GET(IBI_TARGET_ADDR, ibi_status); } else if (ibi_addr != FIELD_GET(IBI_TARGET_ADDR, ibi_status)) { /* the address changed unexpectedly */ ibi_status_error = ibi_status; } chunks = FIELD_GET(IBI_CHUNKS, ibi_status); ibi_chunks += chunks; if (!(ibi_status & IBI_LAST_STATUS)) { ibi_size += chunks * rh->ibi_chunk_sz; } else { ibi_size += FIELD_GET(IBI_DATA_LENGTH, ibi_status); last_ptr = ptr; break; } } /* validate what we've got */ if (last_ptr == -1) { /* this IBI sequence is not yet complete */ DBG("no LAST_STATUS available (e=%d d=%d)", enq_ptr, deq_ptr); return; } deq_ptr = last_ptr + 1; deq_ptr %= rh->ibi_status_entries; if (ibi_status_error) { dev_err(&hci->master.dev, "IBI error from %#x\n", ibi_addr); goto done; } /* determine who this is for */ dev = i3c_hci_addr_to_dev(hci, ibi_addr); if (!dev) { dev_err(&hci->master.dev, "IBI for unknown device %#x\n", ibi_addr); goto done; } dev_data = i3c_dev_get_master_data(dev); dev_ibi = dev_data->ibi_data; if (ibi_size > dev_ibi->max_len) { dev_err(&hci->master.dev, "IBI payload too big (%d > %d)\n", ibi_size, dev_ibi->max_len); goto done; } /* * This ring model is not suitable for zero-copy processing of IBIs. * We have the data chunk ring wrap-around to deal with, meaning * that the payload might span multiple chunks beginning at the * end of the ring and wrap to the start of the ring. Furthermore * there is no guarantee that those chunks will be released in order * and in a timely manner by the upper driver. So let's just copy * them to a discrete buffer. In practice they're supposed to be * small anyway. */ slot = i3c_generic_ibi_get_free_slot(dev_ibi->pool); if (!slot) { dev_err(&hci->master.dev, "no free slot for IBI\n"); goto done; } /* copy first part of the payload */ ibi_data_offset = rh->ibi_chunk_sz * rh->ibi_chunk_ptr; ring_ibi_data = rh->ibi_data + ibi_data_offset; ring_ibi_data_dma = rh->ibi_data_dma + ibi_data_offset; first_part = (rh->ibi_chunks_total - rh->ibi_chunk_ptr) * rh->ibi_chunk_sz; if (first_part > ibi_size) first_part = ibi_size; dma_sync_single_for_cpu(&hci->master.dev, ring_ibi_data_dma, first_part, DMA_FROM_DEVICE); memcpy(slot->data, ring_ibi_data, first_part); /* copy second part if any */ if (ibi_size > first_part) { /* we wrap back to the start and copy remaining data */ ring_ibi_data = rh->ibi_data; ring_ibi_data_dma = rh->ibi_data_dma; dma_sync_single_for_cpu(&hci->master.dev, ring_ibi_data_dma, ibi_size - first_part, DMA_FROM_DEVICE); memcpy(slot->data + first_part, ring_ibi_data, ibi_size - first_part); } /* submit it */ slot->dev = dev; slot->len = ibi_size; i3c_master_queue_ibi(dev, slot); done: /* take care to update the ibi dequeue pointer atomically */ spin_lock(&rh->lock); op1_val = rh_reg_read(RING_OPERATION1); op1_val &= ~RING_OP1_IBI_DEQ_PTR; op1_val |= FIELD_PREP(RING_OP1_IBI_DEQ_PTR, deq_ptr); rh_reg_write(RING_OPERATION1, op1_val); spin_unlock(&rh->lock); /* update the chunk pointer */ rh->ibi_chunk_ptr += ibi_chunks; rh->ibi_chunk_ptr %= rh->ibi_chunks_total; /* and tell the hardware about freed chunks */ rh_reg_write(CHUNK_CONTROL, rh_reg_read(CHUNK_CONTROL) + ibi_chunks); } static bool hci_dma_irq_handler(struct i3c_hci *hci, unsigned int mask) { struct hci_rings_data *rings = hci->io_data; unsigned int i; bool handled = false; for (i = 0; mask && i < rings->total; i++) { struct hci_rh_data *rh; u32 status; if (!(mask & BIT(i))) continue; mask &= ~BIT(i); rh = &rings->headers[i]; status = rh_reg_read(INTR_STATUS); DBG("rh%d status: %#x", i, status); if (!status) continue; rh_reg_write(INTR_STATUS, status); if (status & INTR_IBI_READY) hci_dma_process_ibi(hci, rh); if (status & (INTR_TRANSFER_COMPLETION | INTR_TRANSFER_ERR)) hci_dma_xfer_done(hci, rh); if (status & INTR_RING_OP) complete(&rh->op_done); if (status & INTR_TRANSFER_ABORT) { dev_notice_ratelimited(&hci->master.dev, "ring %d: Transfer Aborted\n", i); mipi_i3c_hci_resume(hci); } if (status & INTR_WARN_INS_STOP_MODE) dev_warn_ratelimited(&hci->master.dev, "ring %d: Inserted Stop on Mode Change\n", i); if (status & INTR_IBI_RING_FULL) dev_err_ratelimited(&hci->master.dev, "ring %d: IBI Ring Full Condition\n", i); handled = true; } return handled; } const struct hci_io_ops mipi_i3c_hci_dma = { .init = hci_dma_init, .cleanup = hci_dma_cleanup, .queue_xfer = hci_dma_queue_xfer, .dequeue_xfer = hci_dma_dequeue_xfer, .irq_handler = hci_dma_irq_handler, .request_ibi = hci_dma_request_ibi, .free_ibi = hci_dma_free_ibi, .recycle_ibi_slot = hci_dma_recycle_ibi_slot, };
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1