Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Matti Vaittinen | 4407 | 82.13% | 6 | 46.15% |
Mehdi Djait | 958 | 17.85% | 6 | 46.15% |
Andy Shevchenko | 1 | 0.02% | 1 | 7.69% |
Total | 5366 | 13 |
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2022 ROHM Semiconductors * * ROHM/KIONIX accelerometer driver */ #include <linux/delay.h> #include <linux/device.h> #include <linux/interrupt.h> #include <linux/module.h> #include <linux/moduleparam.h> #include <linux/mutex.h> #include <linux/property.h> #include <linux/regmap.h> #include <linux/regulator/consumer.h> #include <linux/slab.h> #include <linux/string_choices.h> #include <linux/units.h> #include <linux/iio/iio.h> #include <linux/iio/sysfs.h> #include <linux/iio/trigger.h> #include <linux/iio/trigger_consumer.h> #include <linux/iio/triggered_buffer.h> #include "kionix-kx022a.h" /* * The KX022A has FIFO which can store 43 samples of HiRes data from 2 * channels. This equals to 43 (samples) * 3 (channels) * 2 (bytes/sample) to * 258 bytes of sample data. The quirk to know is that the amount of bytes in * the FIFO is advertised via 8 bit register (max value 255). The thing to note * is that full 258 bytes of data is indicated using the max value 255. */ #define KX022A_FIFO_LENGTH 43 #define KX022A_FIFO_FULL_VALUE 255 #define KX022A_SOFT_RESET_WAIT_TIME_US (5 * USEC_PER_MSEC) #define KX022A_SOFT_RESET_TOTAL_WAIT_TIME_US (500 * USEC_PER_MSEC) /* 3 axis, 2 bytes of data for each of the axis */ #define KX022A_FIFO_SAMPLES_SIZE_BYTES 6 #define KX022A_FIFO_MAX_BYTES \ (KX022A_FIFO_LENGTH * KX022A_FIFO_SAMPLES_SIZE_BYTES) enum { KX022A_STATE_SAMPLE, KX022A_STATE_FIFO, }; /* kx022a Regmap configs */ static const struct regmap_range kx022a_volatile_ranges[] = { { .range_min = KX022A_REG_XHP_L, .range_max = KX022A_REG_COTR, }, { .range_min = KX022A_REG_TSCP, .range_max = KX022A_REG_INT_REL, }, { /* The reset bit will be cleared by sensor */ .range_min = KX022A_REG_CNTL2, .range_max = KX022A_REG_CNTL2, }, { .range_min = KX022A_REG_BUF_STATUS_1, .range_max = KX022A_REG_BUF_READ, }, }; static const struct regmap_access_table kx022a_volatile_regs = { .yes_ranges = &kx022a_volatile_ranges[0], .n_yes_ranges = ARRAY_SIZE(kx022a_volatile_ranges), }; static const struct regmap_range kx022a_precious_ranges[] = { { .range_min = KX022A_REG_INT_REL, .range_max = KX022A_REG_INT_REL, }, }; static const struct regmap_access_table kx022a_precious_regs = { .yes_ranges = &kx022a_precious_ranges[0], .n_yes_ranges = ARRAY_SIZE(kx022a_precious_ranges), }; /* * The HW does not set WHO_AM_I reg as read-only but we don't want to write it * so we still include it in the read-only ranges. */ static const struct regmap_range kx022a_read_only_ranges[] = { { .range_min = KX022A_REG_XHP_L, .range_max = KX022A_REG_INT_REL, }, { .range_min = KX022A_REG_BUF_STATUS_1, .range_max = KX022A_REG_BUF_STATUS_2, }, { .range_min = KX022A_REG_BUF_READ, .range_max = KX022A_REG_BUF_READ, }, }; static const struct regmap_access_table kx022a_ro_regs = { .no_ranges = &kx022a_read_only_ranges[0], .n_no_ranges = ARRAY_SIZE(kx022a_read_only_ranges), }; static const struct regmap_range kx022a_write_only_ranges[] = { { .range_min = KX022A_REG_BTS_WUF_TH, .range_max = KX022A_REG_BTS_WUF_TH, }, { .range_min = KX022A_REG_MAN_WAKE, .range_max = KX022A_REG_MAN_WAKE, }, { .range_min = KX022A_REG_SELF_TEST, .range_max = KX022A_REG_SELF_TEST, }, { .range_min = KX022A_REG_BUF_CLEAR, .range_max = KX022A_REG_BUF_CLEAR, }, }; static const struct regmap_access_table kx022a_wo_regs = { .no_ranges = &kx022a_write_only_ranges[0], .n_no_ranges = ARRAY_SIZE(kx022a_write_only_ranges), }; static const struct regmap_range kx022a_noinc_read_ranges[] = { { .range_min = KX022A_REG_BUF_READ, .range_max = KX022A_REG_BUF_READ, }, }; static const struct regmap_access_table kx022a_nir_regs = { .yes_ranges = &kx022a_noinc_read_ranges[0], .n_yes_ranges = ARRAY_SIZE(kx022a_noinc_read_ranges), }; static const struct regmap_config kx022a_regmap_config = { .reg_bits = 8, .val_bits = 8, .volatile_table = &kx022a_volatile_regs, .rd_table = &kx022a_wo_regs, .wr_table = &kx022a_ro_regs, .rd_noinc_table = &kx022a_nir_regs, .precious_table = &kx022a_precious_regs, .max_register = KX022A_MAX_REGISTER, .cache_type = REGCACHE_RBTREE, }; /* Regmap configs kx132 */ static const struct regmap_range kx132_volatile_ranges[] = { { .range_min = KX132_REG_XADP_L, .range_max = KX132_REG_COTR, }, { .range_min = KX132_REG_TSCP, .range_max = KX132_REG_INT_REL, }, { /* The reset bit will be cleared by sensor */ .range_min = KX132_REG_CNTL2, .range_max = KX132_REG_CNTL2, }, { .range_min = KX132_REG_CNTL5, .range_max = KX132_REG_CNTL5, }, { .range_min = KX132_REG_BUF_STATUS_1, .range_max = KX132_REG_BUF_READ, }, }; static const struct regmap_access_table kx132_volatile_regs = { .yes_ranges = &kx132_volatile_ranges[0], .n_yes_ranges = ARRAY_SIZE(kx132_volatile_ranges), }; static const struct regmap_range kx132_precious_ranges[] = { { .range_min = KX132_REG_INT_REL, .range_max = KX132_REG_INT_REL, }, }; static const struct regmap_access_table kx132_precious_regs = { .yes_ranges = &kx132_precious_ranges[0], .n_yes_ranges = ARRAY_SIZE(kx132_precious_ranges), }; static const struct regmap_range kx132_read_only_ranges[] = { { .range_min = KX132_REG_XADP_L, .range_max = KX132_REG_INT_REL, }, { .range_min = KX132_REG_BUF_STATUS_1, .range_max = KX132_REG_BUF_STATUS_2, }, { .range_min = KX132_REG_BUF_READ, .range_max = KX132_REG_BUF_READ, }, { /* Kionix reserved registers: should not be written */ .range_min = 0x28, .range_max = 0x28, }, { .range_min = 0x35, .range_max = 0x36, }, { .range_min = 0x3c, .range_max = 0x48, }, { .range_min = 0x4e, .range_max = 0x5c, }, { .range_min = 0x77, .range_max = 0x7f, }, }; static const struct regmap_access_table kx132_ro_regs = { .no_ranges = &kx132_read_only_ranges[0], .n_no_ranges = ARRAY_SIZE(kx132_read_only_ranges), }; static const struct regmap_range kx132_write_only_ranges[] = { { .range_min = KX132_REG_SELF_TEST, .range_max = KX132_REG_SELF_TEST, }, { .range_min = KX132_REG_BUF_CLEAR, .range_max = KX132_REG_BUF_CLEAR, }, }; static const struct regmap_access_table kx132_wo_regs = { .no_ranges = &kx132_write_only_ranges[0], .n_no_ranges = ARRAY_SIZE(kx132_write_only_ranges), }; static const struct regmap_range kx132_noinc_read_ranges[] = { { .range_min = KX132_REG_BUF_READ, .range_max = KX132_REG_BUF_READ, }, }; static const struct regmap_access_table kx132_nir_regs = { .yes_ranges = &kx132_noinc_read_ranges[0], .n_yes_ranges = ARRAY_SIZE(kx132_noinc_read_ranges), }; static const struct regmap_config kx132_regmap_config = { .reg_bits = 8, .val_bits = 8, .volatile_table = &kx132_volatile_regs, .rd_table = &kx132_wo_regs, .wr_table = &kx132_ro_regs, .rd_noinc_table = &kx132_nir_regs, .precious_table = &kx132_precious_regs, .max_register = KX132_MAX_REGISTER, .cache_type = REGCACHE_RBTREE, }; struct kx022a_data { struct regmap *regmap; const struct kx022a_chip_info *chip_info; struct iio_trigger *trig; struct device *dev; struct iio_mount_matrix orientation; int64_t timestamp, old_timestamp; int irq; int inc_reg; int ien_reg; unsigned int state; unsigned int odr_ns; bool trigger_enabled; /* * Prevent toggling the sensor stby/active state (PC1 bit) in the * middle of a configuration, or when the fifo is enabled. Also, * protect the data stored/retrieved from this structure from * concurrent accesses. */ struct mutex mutex; u8 watermark; __le16 *fifo_buffer; /* 3 x 16bit accel data + timestamp */ __le16 buffer[8] __aligned(IIO_DMA_MINALIGN); struct { __le16 channels[3]; s64 ts __aligned(8); } scan; }; static const struct iio_mount_matrix * kx022a_get_mount_matrix(const struct iio_dev *idev, const struct iio_chan_spec *chan) { struct kx022a_data *data = iio_priv(idev); return &data->orientation; } enum { AXIS_X, AXIS_Y, AXIS_Z, AXIS_MAX }; static const unsigned long kx022a_scan_masks[] = { BIT(AXIS_X) | BIT(AXIS_Y) | BIT(AXIS_Z), 0 }; static const struct iio_chan_spec_ext_info kx022a_ext_info[] = { IIO_MOUNT_MATRIX(IIO_SHARED_BY_TYPE, kx022a_get_mount_matrix), { } }; #define KX022A_ACCEL_CHAN(axis, reg, index) \ { \ .type = IIO_ACCEL, \ .modified = 1, \ .channel2 = IIO_MOD_##axis, \ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \ .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) | \ BIT(IIO_CHAN_INFO_SAMP_FREQ), \ .info_mask_shared_by_type_available = \ BIT(IIO_CHAN_INFO_SCALE) | \ BIT(IIO_CHAN_INFO_SAMP_FREQ), \ .ext_info = kx022a_ext_info, \ .address = reg, \ .scan_index = index, \ .scan_type = { \ .sign = 's', \ .realbits = 16, \ .storagebits = 16, \ .endianness = IIO_LE, \ }, \ } static const struct iio_chan_spec kx022a_channels[] = { KX022A_ACCEL_CHAN(X, KX022A_REG_XOUT_L, 0), KX022A_ACCEL_CHAN(Y, KX022A_REG_YOUT_L, 1), KX022A_ACCEL_CHAN(Z, KX022A_REG_ZOUT_L, 2), IIO_CHAN_SOFT_TIMESTAMP(3), }; static const struct iio_chan_spec kx132_channels[] = { KX022A_ACCEL_CHAN(X, KX132_REG_XOUT_L, 0), KX022A_ACCEL_CHAN(Y, KX132_REG_YOUT_L, 1), KX022A_ACCEL_CHAN(Z, KX132_REG_ZOUT_L, 2), IIO_CHAN_SOFT_TIMESTAMP(3), }; /* * The sensor HW can support ODR up to 1600 Hz, which is beyond what most of the * Linux CPUs can handle without dropping samples. Also, the low power mode is * not available for higher sample rates. Thus, the driver only supports 200 Hz * and slower ODRs. The slowest is 0.78 Hz. */ static const int kx022a_accel_samp_freq_table[][2] = { { 0, 780000 }, { 1, 563000 }, { 3, 125000 }, { 6, 250000 }, { 12, 500000 }, { 25, 0 }, { 50, 0 }, { 100, 0 }, { 200, 0 }, }; static const unsigned int kx022a_odrs[] = { 1282051282, 639795266, 320 * MEGA, 160 * MEGA, 80 * MEGA, 40 * MEGA, 20 * MEGA, 10 * MEGA, 5 * MEGA, }; /* * range is typically +-2G/4G/8G/16G, distributed over the amount of bits. * The scale table can be calculated using * (range / 2^bits) * g = (range / 2^bits) * 9.80665 m/s^2 * => KX022A uses 16 bit (HiRes mode - assume the low 8 bits are zeroed * in low-power mode(?) ) * => +/-2G => 4 / 2^16 * 9,80665 * => +/-2G - 0.000598550415 * +/-4G - 0.00119710083 * +/-8G - 0.00239420166 * +/-16G - 0.00478840332 */ static const int kx022a_scale_table[][2] = { { 0, 598550 }, { 0, 1197101 }, { 0, 2394202 }, { 0, 4788403 }, }; static int kx022a_read_avail(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, const int **vals, int *type, int *length, long mask) { switch (mask) { case IIO_CHAN_INFO_SAMP_FREQ: *vals = (const int *)kx022a_accel_samp_freq_table; *length = ARRAY_SIZE(kx022a_accel_samp_freq_table) * ARRAY_SIZE(kx022a_accel_samp_freq_table[0]); *type = IIO_VAL_INT_PLUS_MICRO; return IIO_AVAIL_LIST; case IIO_CHAN_INFO_SCALE: *vals = (const int *)kx022a_scale_table; *length = ARRAY_SIZE(kx022a_scale_table) * ARRAY_SIZE(kx022a_scale_table[0]); *type = IIO_VAL_INT_PLUS_NANO; return IIO_AVAIL_LIST; default: return -EINVAL; } } #define KX022A_DEFAULT_PERIOD_NS (20 * NSEC_PER_MSEC) static void kx022a_reg2freq(unsigned int val, int *val1, int *val2) { *val1 = kx022a_accel_samp_freq_table[val & KX022A_MASK_ODR][0]; *val2 = kx022a_accel_samp_freq_table[val & KX022A_MASK_ODR][1]; } static void kx022a_reg2scale(unsigned int val, unsigned int *val1, unsigned int *val2) { val &= KX022A_MASK_GSEL; val >>= KX022A_GSEL_SHIFT; *val1 = kx022a_scale_table[val][0]; *val2 = kx022a_scale_table[val][1]; } static int kx022a_turn_on_off_unlocked(struct kx022a_data *data, bool on) { int ret; if (on) ret = regmap_set_bits(data->regmap, data->chip_info->cntl, KX022A_MASK_PC1); else ret = regmap_clear_bits(data->regmap, data->chip_info->cntl, KX022A_MASK_PC1); if (ret) dev_err(data->dev, "Turn %s fail %d\n", str_on_off(on), ret); return ret; } static int kx022a_turn_off_lock(struct kx022a_data *data) { int ret; mutex_lock(&data->mutex); ret = kx022a_turn_on_off_unlocked(data, false); if (ret) mutex_unlock(&data->mutex); return ret; } static int kx022a_turn_on_unlock(struct kx022a_data *data) { int ret; ret = kx022a_turn_on_off_unlocked(data, true); mutex_unlock(&data->mutex); return ret; } static int kx022a_write_raw_get_fmt(struct iio_dev *idev, struct iio_chan_spec const *chan, long mask) { switch (mask) { case IIO_CHAN_INFO_SCALE: return IIO_VAL_INT_PLUS_NANO; case IIO_CHAN_INFO_SAMP_FREQ: return IIO_VAL_INT_PLUS_MICRO; default: return -EINVAL; } } static int kx022a_write_raw(struct iio_dev *idev, struct iio_chan_spec const *chan, int val, int val2, long mask) { struct kx022a_data *data = iio_priv(idev); int ret, n; /* * We should not allow changing scale or frequency when FIFO is running * as it will mess the timestamp/scale for samples existing in the * buffer. If this turns out to be an issue we can later change logic * to internally flush the fifo before reconfiguring so the samples in * fifo keep matching the freq/scale settings. (Such setup could cause * issues if users trust the watermark to be reached within known * time-limit). */ ret = iio_device_claim_direct_mode(idev); if (ret) return ret; switch (mask) { case IIO_CHAN_INFO_SAMP_FREQ: n = ARRAY_SIZE(kx022a_accel_samp_freq_table); while (n--) if (val == kx022a_accel_samp_freq_table[n][0] && val2 == kx022a_accel_samp_freq_table[n][1]) break; if (n < 0) { ret = -EINVAL; goto unlock_out; } ret = kx022a_turn_off_lock(data); if (ret) break; ret = regmap_update_bits(data->regmap, data->chip_info->odcntl, KX022A_MASK_ODR, n); data->odr_ns = kx022a_odrs[n]; kx022a_turn_on_unlock(data); break; case IIO_CHAN_INFO_SCALE: n = ARRAY_SIZE(kx022a_scale_table); while (n-- > 0) if (val == kx022a_scale_table[n][0] && val2 == kx022a_scale_table[n][1]) break; if (n < 0) { ret = -EINVAL; goto unlock_out; } ret = kx022a_turn_off_lock(data); if (ret) break; ret = regmap_update_bits(data->regmap, data->chip_info->cntl, KX022A_MASK_GSEL, n << KX022A_GSEL_SHIFT); kx022a_turn_on_unlock(data); break; default: ret = -EINVAL; break; } unlock_out: iio_device_release_direct_mode(idev); return ret; } static int kx022a_fifo_set_wmi(struct kx022a_data *data) { u8 threshold; threshold = data->watermark; return regmap_update_bits(data->regmap, data->chip_info->buf_cntl1, KX022A_MASK_WM_TH, threshold); } static int kx022a_get_axis(struct kx022a_data *data, struct iio_chan_spec const *chan, int *val) { int ret; ret = regmap_bulk_read(data->regmap, chan->address, &data->buffer[0], sizeof(__le16)); if (ret) return ret; *val = le16_to_cpu(data->buffer[0]); return IIO_VAL_INT; } static int kx022a_read_raw(struct iio_dev *idev, struct iio_chan_spec const *chan, int *val, int *val2, long mask) { struct kx022a_data *data = iio_priv(idev); unsigned int regval; int ret; switch (mask) { case IIO_CHAN_INFO_RAW: ret = iio_device_claim_direct_mode(idev); if (ret) return ret; mutex_lock(&data->mutex); ret = kx022a_get_axis(data, chan, val); mutex_unlock(&data->mutex); iio_device_release_direct_mode(idev); return ret; case IIO_CHAN_INFO_SAMP_FREQ: ret = regmap_read(data->regmap, data->chip_info->odcntl, ®val); if (ret) return ret; if ((regval & KX022A_MASK_ODR) > ARRAY_SIZE(kx022a_accel_samp_freq_table)) { dev_err(data->dev, "Invalid ODR\n"); return -EINVAL; } kx022a_reg2freq(regval, val, val2); return IIO_VAL_INT_PLUS_MICRO; case IIO_CHAN_INFO_SCALE: ret = regmap_read(data->regmap, data->chip_info->cntl, ®val); if (ret < 0) return ret; kx022a_reg2scale(regval, val, val2); return IIO_VAL_INT_PLUS_NANO; } return -EINVAL; }; static int kx022a_set_watermark(struct iio_dev *idev, unsigned int val) { struct kx022a_data *data = iio_priv(idev); val = min(data->chip_info->fifo_length, val); mutex_lock(&data->mutex); data->watermark = val; mutex_unlock(&data->mutex); return 0; } static ssize_t hwfifo_enabled_show(struct device *dev, struct device_attribute *attr, char *buf) { struct iio_dev *idev = dev_to_iio_dev(dev); struct kx022a_data *data = iio_priv(idev); bool state; mutex_lock(&data->mutex); state = data->state; mutex_unlock(&data->mutex); return sysfs_emit(buf, "%d\n", state); } static ssize_t hwfifo_watermark_show(struct device *dev, struct device_attribute *attr, char *buf) { struct iio_dev *idev = dev_to_iio_dev(dev); struct kx022a_data *data = iio_priv(idev); int wm; mutex_lock(&data->mutex); wm = data->watermark; mutex_unlock(&data->mutex); return sysfs_emit(buf, "%d\n", wm); } static IIO_DEVICE_ATTR_RO(hwfifo_enabled, 0); static IIO_DEVICE_ATTR_RO(hwfifo_watermark, 0); static const struct iio_dev_attr *kx022a_fifo_attributes[] = { &iio_dev_attr_hwfifo_watermark, &iio_dev_attr_hwfifo_enabled, NULL }; static int kx022a_drop_fifo_contents(struct kx022a_data *data) { /* * We must clear the old time-stamp to avoid computing the timestamps * based on samples acquired when buffer was last enabled. * * We don't need to protect the timestamp as long as we are only * called from fifo-disable where we can guarantee the sensor is not * triggering interrupts and where the mutex is locked to prevent the * user-space access. */ data->timestamp = 0; return regmap_write(data->regmap, data->chip_info->buf_clear, 0x0); } static int kx022a_get_fifo_bytes_available(struct kx022a_data *data) { int ret, fifo_bytes; ret = regmap_read(data->regmap, KX022A_REG_BUF_STATUS_1, &fifo_bytes); if (ret) { dev_err(data->dev, "Error reading buffer status\n"); return ret; } if (fifo_bytes == KX022A_FIFO_FULL_VALUE) return KX022A_FIFO_MAX_BYTES; return fifo_bytes; } static int kx132_get_fifo_bytes_available(struct kx022a_data *data) { __le16 buf_status; int ret, fifo_bytes; ret = regmap_bulk_read(data->regmap, data->chip_info->buf_status1, &buf_status, sizeof(buf_status)); if (ret) { dev_err(data->dev, "Error reading buffer status\n"); return ret; } fifo_bytes = le16_to_cpu(buf_status); fifo_bytes &= data->chip_info->buf_smp_lvl_mask; fifo_bytes = min((unsigned int)fifo_bytes, data->chip_info->fifo_length * KX022A_FIFO_SAMPLES_SIZE_BYTES); return fifo_bytes; } static int __kx022a_fifo_flush(struct iio_dev *idev, unsigned int samples, bool irq) { struct kx022a_data *data = iio_priv(idev); uint64_t sample_period; int count, fifo_bytes; bool renable = false; int64_t tstamp; int ret, i; fifo_bytes = data->chip_info->get_fifo_bytes_available(data); if (fifo_bytes % KX022A_FIFO_SAMPLES_SIZE_BYTES) dev_warn(data->dev, "Bad FIFO alignment. Data may be corrupt\n"); count = fifo_bytes / KX022A_FIFO_SAMPLES_SIZE_BYTES; if (!count) return 0; /* * If we are being called from IRQ handler we know the stored timestamp * is fairly accurate for the last stored sample. Otherwise, if we are * called as a result of a read operation from userspace and hence * before the watermark interrupt was triggered, take a timestamp * now. We can fall anywhere in between two samples so the error in this * case is at most one sample period. */ if (!irq) { /* * We need to have the IRQ disabled or we risk of messing-up * the timestamps. If we are ran from IRQ, then the * IRQF_ONESHOT has us covered - but if we are ran by the * user-space read we need to disable the IRQ to be on a safe * side. We do this usng synchronous disable so that if the * IRQ thread is being ran on other CPU we wait for it to be * finished. */ disable_irq(data->irq); renable = true; data->old_timestamp = data->timestamp; data->timestamp = iio_get_time_ns(idev); } /* * Approximate timestamps for each of the sample based on the sampling * frequency, timestamp for last sample and number of samples. * * We'd better not use the current bandwidth settings to compute the * sample period. The real sample rate varies with the device and * small variation adds when we store a large number of samples. * * To avoid this issue we compute the actual sample period ourselves * based on the timestamp delta between the last two flush operations. */ if (data->old_timestamp) { sample_period = data->timestamp - data->old_timestamp; do_div(sample_period, count); } else { sample_period = data->odr_ns; } tstamp = data->timestamp - (count - 1) * sample_period; if (samples && count > samples) { /* * Here we leave some old samples to the buffer. We need to * adjust the timestamp to match the first sample in the buffer * or we will miscalculate the sample_period at next round. */ data->timestamp -= (count - samples) * sample_period; count = samples; } fifo_bytes = count * KX022A_FIFO_SAMPLES_SIZE_BYTES; ret = regmap_noinc_read(data->regmap, data->chip_info->buf_read, data->fifo_buffer, fifo_bytes); if (ret) goto renable_out; for (i = 0; i < count; i++) { __le16 *sam = &data->fifo_buffer[i * 3]; __le16 *chs; int bit; chs = &data->scan.channels[0]; for_each_set_bit(bit, idev->active_scan_mask, AXIS_MAX) chs[bit] = sam[bit]; iio_push_to_buffers_with_timestamp(idev, &data->scan, tstamp); tstamp += sample_period; } ret = count; renable_out: if (renable) enable_irq(data->irq); return ret; } static int kx022a_fifo_flush(struct iio_dev *idev, unsigned int samples) { struct kx022a_data *data = iio_priv(idev); int ret; mutex_lock(&data->mutex); ret = __kx022a_fifo_flush(idev, samples, false); mutex_unlock(&data->mutex); return ret; } static const struct iio_info kx022a_info = { .read_raw = &kx022a_read_raw, .write_raw = &kx022a_write_raw, .write_raw_get_fmt = &kx022a_write_raw_get_fmt, .read_avail = &kx022a_read_avail, .validate_trigger = iio_validate_own_trigger, .hwfifo_set_watermark = kx022a_set_watermark, .hwfifo_flush_to_buffer = kx022a_fifo_flush, }; static int kx022a_set_drdy_irq(struct kx022a_data *data, bool en) { if (en) return regmap_set_bits(data->regmap, data->chip_info->cntl, KX022A_MASK_DRDY); return regmap_clear_bits(data->regmap, data->chip_info->cntl, KX022A_MASK_DRDY); } static int kx022a_prepare_irq_pin(struct kx022a_data *data) { /* Enable IRQ1 pin. Set polarity to active low */ int mask = KX022A_MASK_IEN | KX022A_MASK_IPOL | KX022A_MASK_ITYP; int val = KX022A_MASK_IEN | KX022A_IPOL_LOW | KX022A_ITYP_LEVEL; int ret; ret = regmap_update_bits(data->regmap, data->inc_reg, mask, val); if (ret) return ret; /* We enable WMI to IRQ pin only at buffer_enable */ mask = KX022A_MASK_INS2_DRDY; return regmap_set_bits(data->regmap, data->ien_reg, mask); } static int kx022a_fifo_disable(struct kx022a_data *data) { int ret = 0; ret = kx022a_turn_off_lock(data); if (ret) return ret; ret = regmap_clear_bits(data->regmap, data->ien_reg, KX022A_MASK_WMI); if (ret) goto unlock_out; ret = regmap_clear_bits(data->regmap, data->chip_info->buf_cntl2, KX022A_MASK_BUF_EN); if (ret) goto unlock_out; data->state &= ~KX022A_STATE_FIFO; kx022a_drop_fifo_contents(data); kfree(data->fifo_buffer); return kx022a_turn_on_unlock(data); unlock_out: mutex_unlock(&data->mutex); return ret; } static int kx022a_buffer_predisable(struct iio_dev *idev) { struct kx022a_data *data = iio_priv(idev); if (iio_device_get_current_mode(idev) == INDIO_BUFFER_TRIGGERED) return 0; return kx022a_fifo_disable(data); } static int kx022a_fifo_enable(struct kx022a_data *data) { int ret; data->fifo_buffer = kmalloc_array(data->chip_info->fifo_length, KX022A_FIFO_SAMPLES_SIZE_BYTES, GFP_KERNEL); if (!data->fifo_buffer) return -ENOMEM; ret = kx022a_turn_off_lock(data); if (ret) return ret; /* Update watermark to HW */ ret = kx022a_fifo_set_wmi(data); if (ret) goto unlock_out; /* Enable buffer */ ret = regmap_set_bits(data->regmap, data->chip_info->buf_cntl2, KX022A_MASK_BUF_EN); if (ret) goto unlock_out; data->state |= KX022A_STATE_FIFO; ret = regmap_set_bits(data->regmap, data->ien_reg, KX022A_MASK_WMI); if (ret) goto unlock_out; return kx022a_turn_on_unlock(data); unlock_out: mutex_unlock(&data->mutex); return ret; } static int kx022a_buffer_postenable(struct iio_dev *idev) { struct kx022a_data *data = iio_priv(idev); /* * If we use data-ready trigger, then the IRQ masks should be handled by * trigger enable and the hardware buffer is not used but we just update * results to the IIO fifo when data-ready triggers. */ if (iio_device_get_current_mode(idev) == INDIO_BUFFER_TRIGGERED) return 0; return kx022a_fifo_enable(data); } static const struct iio_buffer_setup_ops kx022a_buffer_ops = { .postenable = kx022a_buffer_postenable, .predisable = kx022a_buffer_predisable, }; static irqreturn_t kx022a_trigger_handler(int irq, void *p) { struct iio_poll_func *pf = p; struct iio_dev *idev = pf->indio_dev; struct kx022a_data *data = iio_priv(idev); int ret; ret = regmap_bulk_read(data->regmap, data->chip_info->xout_l, data->buffer, KX022A_FIFO_SAMPLES_SIZE_BYTES); if (ret < 0) goto err_read; iio_push_to_buffers_with_timestamp(idev, data->buffer, data->timestamp); err_read: iio_trigger_notify_done(idev->trig); return IRQ_HANDLED; } /* Get timestamps and wake the thread if we need to read data */ static irqreturn_t kx022a_irq_handler(int irq, void *private) { struct iio_dev *idev = private; struct kx022a_data *data = iio_priv(idev); data->old_timestamp = data->timestamp; data->timestamp = iio_get_time_ns(idev); if (data->state & KX022A_STATE_FIFO || data->trigger_enabled) return IRQ_WAKE_THREAD; return IRQ_NONE; } /* * WMI and data-ready IRQs are acked when results are read. If we add * TILT/WAKE or other IRQs - then we may need to implement the acking * (which is racy). */ static irqreturn_t kx022a_irq_thread_handler(int irq, void *private) { struct iio_dev *idev = private; struct kx022a_data *data = iio_priv(idev); irqreturn_t ret = IRQ_NONE; mutex_lock(&data->mutex); if (data->trigger_enabled) { iio_trigger_poll_nested(data->trig); ret = IRQ_HANDLED; } if (data->state & KX022A_STATE_FIFO) { int ok; ok = __kx022a_fifo_flush(idev, data->chip_info->fifo_length, true); if (ok > 0) ret = IRQ_HANDLED; } mutex_unlock(&data->mutex); return ret; } static int kx022a_trigger_set_state(struct iio_trigger *trig, bool state) { struct kx022a_data *data = iio_trigger_get_drvdata(trig); int ret = 0; mutex_lock(&data->mutex); if (data->trigger_enabled == state) goto unlock_out; if (data->state & KX022A_STATE_FIFO) { dev_warn(data->dev, "Can't set trigger when FIFO enabled\n"); ret = -EBUSY; goto unlock_out; } ret = kx022a_turn_on_off_unlocked(data, false); if (ret) goto unlock_out; data->trigger_enabled = state; ret = kx022a_set_drdy_irq(data, state); if (ret) goto unlock_out; ret = kx022a_turn_on_off_unlocked(data, true); unlock_out: mutex_unlock(&data->mutex); return ret; } static const struct iio_trigger_ops kx022a_trigger_ops = { .set_trigger_state = kx022a_trigger_set_state, }; static int kx022a_chip_init(struct kx022a_data *data) { int ret, val; /* Reset the senor */ ret = regmap_write(data->regmap, data->chip_info->cntl2, KX022A_MASK_SRST); if (ret) return ret; /* * I've seen I2C read failures if we poll too fast after the sensor * reset. Slight delay gives I2C block the time to recover. */ msleep(1); ret = regmap_read_poll_timeout(data->regmap, data->chip_info->cntl2, val, !(val & KX022A_MASK_SRST), KX022A_SOFT_RESET_WAIT_TIME_US, KX022A_SOFT_RESET_TOTAL_WAIT_TIME_US); if (ret) { dev_err(data->dev, "Sensor reset %s\n", val & KX022A_MASK_SRST ? "timeout" : "fail#"); return ret; } ret = regmap_reinit_cache(data->regmap, data->chip_info->regmap_config); if (ret) { dev_err(data->dev, "Failed to reinit reg cache\n"); return ret; } /* set data res 16bit */ ret = regmap_set_bits(data->regmap, data->chip_info->buf_cntl2, KX022A_MASK_BRES16); if (ret) { dev_err(data->dev, "Failed to set data resolution\n"); return ret; } return kx022a_prepare_irq_pin(data); } const struct kx022a_chip_info kx022a_chip_info = { .name = "kx022-accel", .regmap_config = &kx022a_regmap_config, .channels = kx022a_channels, .num_channels = ARRAY_SIZE(kx022a_channels), .fifo_length = KX022A_FIFO_LENGTH, .who = KX022A_REG_WHO, .id = KX022A_ID, .cntl = KX022A_REG_CNTL, .cntl2 = KX022A_REG_CNTL2, .odcntl = KX022A_REG_ODCNTL, .buf_cntl1 = KX022A_REG_BUF_CNTL1, .buf_cntl2 = KX022A_REG_BUF_CNTL2, .buf_clear = KX022A_REG_BUF_CLEAR, .buf_status1 = KX022A_REG_BUF_STATUS_1, .buf_read = KX022A_REG_BUF_READ, .inc1 = KX022A_REG_INC1, .inc4 = KX022A_REG_INC4, .inc5 = KX022A_REG_INC5, .inc6 = KX022A_REG_INC6, .xout_l = KX022A_REG_XOUT_L, .get_fifo_bytes_available = kx022a_get_fifo_bytes_available, }; EXPORT_SYMBOL_NS_GPL(kx022a_chip_info, IIO_KX022A); const struct kx022a_chip_info kx132_chip_info = { .name = "kx132-1211", .regmap_config = &kx132_regmap_config, .channels = kx132_channels, .num_channels = ARRAY_SIZE(kx132_channels), .fifo_length = KX132_FIFO_LENGTH, .who = KX132_REG_WHO, .id = KX132_ID, .cntl = KX132_REG_CNTL, .cntl2 = KX132_REG_CNTL2, .odcntl = KX132_REG_ODCNTL, .buf_cntl1 = KX132_REG_BUF_CNTL1, .buf_cntl2 = KX132_REG_BUF_CNTL2, .buf_clear = KX132_REG_BUF_CLEAR, .buf_status1 = KX132_REG_BUF_STATUS_1, .buf_smp_lvl_mask = KX132_MASK_BUF_SMP_LVL, .buf_read = KX132_REG_BUF_READ, .inc1 = KX132_REG_INC1, .inc4 = KX132_REG_INC4, .inc5 = KX132_REG_INC5, .inc6 = KX132_REG_INC6, .xout_l = KX132_REG_XOUT_L, .get_fifo_bytes_available = kx132_get_fifo_bytes_available, }; EXPORT_SYMBOL_NS_GPL(kx132_chip_info, IIO_KX022A); /* * Despite the naming, KX132ACR-LBZ is not similar to KX132-1211 but it is * exact subset of KX022A. KX132ACR-LBZ is meant to be used for industrial * applications and the tap/double tap, free fall and tilt engines were * removed. Rest of the registers and functionalities (excluding the ID * register) are exact match to what is found in KX022. */ const struct kx022a_chip_info kx132acr_chip_info = { .name = "kx132acr-lbz", .regmap_config = &kx022a_regmap_config, .channels = kx022a_channels, .num_channels = ARRAY_SIZE(kx022a_channels), .fifo_length = KX022A_FIFO_LENGTH, .who = KX022A_REG_WHO, .id = KX132ACR_LBZ_ID, .cntl = KX022A_REG_CNTL, .cntl2 = KX022A_REG_CNTL2, .odcntl = KX022A_REG_ODCNTL, .buf_cntl1 = KX022A_REG_BUF_CNTL1, .buf_cntl2 = KX022A_REG_BUF_CNTL2, .buf_clear = KX022A_REG_BUF_CLEAR, .buf_status1 = KX022A_REG_BUF_STATUS_1, .buf_read = KX022A_REG_BUF_READ, .inc1 = KX022A_REG_INC1, .inc4 = KX022A_REG_INC4, .inc5 = KX022A_REG_INC5, .inc6 = KX022A_REG_INC6, .xout_l = KX022A_REG_XOUT_L, .get_fifo_bytes_available = kx022a_get_fifo_bytes_available, }; EXPORT_SYMBOL_NS_GPL(kx132acr_chip_info, IIO_KX022A); int kx022a_probe_internal(struct device *dev, const struct kx022a_chip_info *chip_info) { static const char * const regulator_names[] = {"io-vdd", "vdd"}; struct iio_trigger *indio_trig; struct fwnode_handle *fwnode; struct kx022a_data *data; struct regmap *regmap; unsigned int chip_id; struct iio_dev *idev; int ret, irq; char *name; regmap = dev_get_regmap(dev, NULL); if (!regmap) { dev_err(dev, "no regmap\n"); return -EINVAL; } fwnode = dev_fwnode(dev); if (!fwnode) return -ENODEV; idev = devm_iio_device_alloc(dev, sizeof(*data)); if (!idev) return -ENOMEM; data = iio_priv(idev); data->chip_info = chip_info; /* * VDD is the analog and digital domain voltage supply and * IO_VDD is the digital I/O voltage supply. */ ret = devm_regulator_bulk_get_enable(dev, ARRAY_SIZE(regulator_names), regulator_names); if (ret && ret != -ENODEV) return dev_err_probe(dev, ret, "failed to enable regulator\n"); ret = regmap_read(regmap, chip_info->who, &chip_id); if (ret) return dev_err_probe(dev, ret, "Failed to access sensor\n"); if (chip_id != chip_info->id) dev_warn(dev, "unknown device 0x%x\n", chip_id); irq = fwnode_irq_get_byname(fwnode, "INT1"); if (irq > 0) { data->inc_reg = chip_info->inc1; data->ien_reg = chip_info->inc4; } else { irq = fwnode_irq_get_byname(fwnode, "INT2"); if (irq < 0) return dev_err_probe(dev, irq, "No suitable IRQ\n"); data->inc_reg = chip_info->inc5; data->ien_reg = chip_info->inc6; } data->regmap = regmap; data->dev = dev; data->irq = irq; data->odr_ns = KX022A_DEFAULT_PERIOD_NS; mutex_init(&data->mutex); idev->channels = chip_info->channels; idev->num_channels = chip_info->num_channels; idev->name = chip_info->name; idev->info = &kx022a_info; idev->modes = INDIO_DIRECT_MODE | INDIO_BUFFER_SOFTWARE; idev->available_scan_masks = kx022a_scan_masks; /* Read the mounting matrix, if present */ ret = iio_read_mount_matrix(dev, &data->orientation); if (ret) return ret; /* The sensor must be turned off for configuration */ ret = kx022a_turn_off_lock(data); if (ret) return ret; ret = kx022a_chip_init(data); if (ret) { mutex_unlock(&data->mutex); return ret; } ret = kx022a_turn_on_unlock(data); if (ret) return ret; ret = devm_iio_triggered_buffer_setup_ext(dev, idev, &iio_pollfunc_store_time, kx022a_trigger_handler, IIO_BUFFER_DIRECTION_IN, &kx022a_buffer_ops, kx022a_fifo_attributes); if (ret) return dev_err_probe(data->dev, ret, "iio_triggered_buffer_setup_ext FAIL\n"); indio_trig = devm_iio_trigger_alloc(dev, "%sdata-rdy-dev%d", idev->name, iio_device_id(idev)); if (!indio_trig) return -ENOMEM; data->trig = indio_trig; indio_trig->ops = &kx022a_trigger_ops; iio_trigger_set_drvdata(indio_trig, data); /* * No need to check for NULL. request_threaded_irq() defaults to * dev_name() should the alloc fail. */ name = devm_kasprintf(data->dev, GFP_KERNEL, "%s-kx022a", dev_name(data->dev)); ret = devm_request_threaded_irq(data->dev, irq, kx022a_irq_handler, &kx022a_irq_thread_handler, IRQF_ONESHOT, name, idev); if (ret) return dev_err_probe(data->dev, ret, "Could not request IRQ\n"); ret = devm_iio_trigger_register(dev, indio_trig); if (ret) return dev_err_probe(data->dev, ret, "Trigger registration failed\n"); ret = devm_iio_device_register(data->dev, idev); if (ret < 0) return dev_err_probe(dev, ret, "Unable to register iio device\n"); return ret; } EXPORT_SYMBOL_NS_GPL(kx022a_probe_internal, IIO_KX022A); MODULE_DESCRIPTION("ROHM/Kionix KX022A accelerometer driver"); MODULE_AUTHOR("Matti Vaittinen <matti.vaittinen@fi.rohmeurope.com>"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1